Renesas - D12390F20V Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	87
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b SAR; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	128-BFQFP
Supplier Device Package	128-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12390f20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Туре	Symbol	TFP-120	FP-128B	I/O	Name	and F	unction				
Operating mode control	MD ₂ to MD ₀	115 to 113	125 to 123	Input	put Mode pins: These p operating mode. The relation between pins MD ₂ to MD ₀ and mode is shown below should not be chang H8S/2357 Group is c			ins set the the settings of the operating v. These pins ed while the perating.			
						MD₁	MD₀	Operating Mode			
					0	0	0	_			
							1	_			
						1	0	_			
							1	_			
					1	0	0	Mode 4*			
							1	Mode 5*			
						1	0	Mode 6			
							1	Mode 7			
					Note: * In ROMIess version, only modes 4 and 5 are available.						
System control	RES	73	81	Input	Reset input: When this pin is driven low, the chip is reset. The type of reset can be selected according to the NMI input level. At power-on, the NMI pin input level should be set high.						
	STBY	75	83	Input	Standby: When this pin is driven low a transition is made to hardware standby mode.						
	BREQ	88	96	Input	Bus ro bus m the H8	equest aster to 3S/2357	: Used b issue a 7 Group	by an external a bus request to			
	BREQO	86	94	Output	Bus request output: The external bus request signal used when an internal bus master accesses external space in the external bus- released state						
	BACK	87	95	Output	Bus re Indica releas	equest tes that ed to a	acknow the bus n extern	vledge: s has been al bus master.			
	FWE* ²	72	80	Input	Flash Enabl progra	write e es/disa amming	enable: bles flas J.	sh memory			
Interrupts	NMI	74	82	Input	Nonm nonm is not	askab askable used, it	le interru e interru t should	r upt: Requests a pt. When this pin be fixed high.			
	IRQ7 to IRQ0	32 to 29, 28 to 25	38, 37, 34, 33, 32 to 29	Input	Interr reque	upt rec st a ma	juest 7 iskable i	to 0: These pins interrupt.			

Table 4-2 Exception Vector Table

			Vector Address*1
Exception Source		Vector Number	Advanced Mode
Power-on reset		0	H'0000 to H'0003
Manual reset*3		1	H'0004 to H'0007
Reserved for syster	n use	2	H'0008 to H'000B
		3	H'000C to H'000F
		4	H'0010 to H'0013
Trace		5	H'0014 to H'0017
Reserved for syster	m use	6	H'0018 to H'001B
External interrupt	NMI	7	H'001C to H'001F
Trap instruction (4 s	sources)	8	H'0020 to H'0023
		9	H'0024 to H'0027
		10	H'0028 to H'002B
		11	H'002C to H'002F
Reserved for syster	m use	12	H'0030 to H'0033
		13	H'0034 to H'0037
		14	H'0038 to H'003B
		15	H'003C to H'003F
External interrupt	IRQ0	16	H'0040 to H'0043
	IRQ1	17	H'0044 to H'0047
	IRQ2	18	H'0048 to H'004B
	IRQ3	19	H'004C to H'004F
	IRQ4	20	H'0050 to H'0053
	IRQ5	21	H'0054 to H'0057
	IRQ6	22	H'0058 to H'005B
	IRQ7	23	H'005C to H'005F
Internal interrupt*2		24 	H'0060 to H'0063
		91	H'016C to H'016F

Notes: 1. Lower 16 bits of the address.

2. For details of internal interrupt vectors, see section 5.3.3, Interrupt Exception Handling Vector Table.

3. Manual reset is only supported in the H8S/2357 ZTAT.

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1.

Bit 3 W51	Bit 2 W50	Description
0	0	Program wait not inserted when external space area 5 is accessed
	1	1 program wait state inserted when external space area 5 is accessed
1	0	2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed (Initial value)

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1.

Bit 1	Bit 0	
W41	W40	Description
0	0	Program wait not inserted when external space area 4 is accessed
	1	1 program wait state inserted when external space area 4 is accessed
1	0	2 program wait states inserted when external space area 4 is accessed
	1	3 program wait states inserted when external space area 4 is accessed (Initial value)

(2) WCRL

Bit	:	7	6	5	4	3	2	1	0
	Ī	W31	W30	W21	W20	W11	W10	W01	W00
Initial value	:	1	1	1	1	1	1	1	1
R/W	:	R/W							

Bits 7 and 6—Area 3 Wait Control 1 and 0 (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1.

Bit 7	Bit 6	
W31	W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed
	1	3 program wait states inserted when external space area 3 is accessed (Initial value)

(1) Normal Mode

ETCRA

Transfer Counter																	
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ETCR	:																
Initial value	:	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
R/W	:	R/W															

*: Undefined

In normal mode, ETCRA functions as a 16-bit transfer counter. ETCRA is decremented by 1 each time a transfer is performed, and transfer ends when the count reaches H'0000. ETCRB is not used at this time.

ETCRB

ETCRB is not used in normal mode.

(2) Block Transfer Mode

ETCRA

Holds b	olock	size																	
Bit	:	1	5	1	14	1	3	1	2	1	1	1	0	9	9		8		
ETCRA	н:																		
Initial va	alue :		*		*	;	k	:	*	;	ĸ	:	*	:	*	:	*		
R/W	:	R	/W	R	/W	R/	W/	R	/W	R	W/W	R	/W	R	/W	R	/W		
Block s	ize c	ounte	er																
Bit	:		7		6	į	5		4	;	3		2		1		0		
ETCRA	L :																		
Initial va	alue :	:	*	:	*	;	k	:	*	;	k	:	*	:	*	:	*		
R/W	:	R	/W	R	/W	R/	/W	R	/W	R	/W	R	/W	R	/W	R	/W		
																		*	: Undefine
ETCRB																			
Block T	rans	fer Co	ounte	er															
Bit	:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ETCRB	:																		
Initial va	alue :	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*		
R/W	:	R/W	R/W	R/W	' R/W	' R/W	R/W	R/W	R/W	/ R/W									

In block transfer mode, ETCRAL functions as an 8-bit block size counter and ETCRAH holds the block size. ETCRAL is decremented each time a 1-byte or 1-word transfer is performed, and when the count reaches H'00, ETCRAL is loaded with the value in ETCRAH. So by setting the block size in ETCRAH and ETCRAL, it is possible to repeatedly transfer blocks consisting of any desired number of bytes or words.

ETCRB functions in block transfer mode, as a 16-bit block transfer counter. ETCRB is decremented by 1 each time a block is transferred, and transfer ends when the count reaches H'0000.

7.5.2 Sequential Mode

Sequential mode can be specified by clearing the RPE bit in DMACR to 0. In sequential mode, MAR is updated after each byte or word transfer in response to a single transfer request, and this is executed the number of times specified in ETCR.

One address is specified by MAR, and the other by IOAR. The transfer direction can be specified by the DTDIR bit in DMACR.

Table 7-6 summarizes register functions in sequential mode.

Table 7-6 Register Functions in Sequential Mode

	Fur	nction				
Register	DTDIR = 0	DTDIR = 1	Initial Setting	Operation		
23 MAR	0 Source address register	Destination address register	Start address of transfer destination or transfer source	Incremented/ decremented every transfer		
23 15 H'FF IOAR	0 Destination address register	Source address register	Start address of transfer source or transfer destination	Fixed		
15 ETCR	0 Transfer co	unter	Number of transfers	Decremented every transfer; transfer ends when count reaches H'0000		

Legend:

MAR: Memory address register IOAR: I/O address register ETCR: Transfer count register DTDIR:Data transfer direction bit

MAR specifies the start address of the transfer source or transfer destination as 24 bits. MAR is incremented or decremented by 1 or 2 each time a byte or word is transferred.

IOAR specifies the lower 16 bits of the other address. The 8 bits above IOAR have a value of H'FF.

9.2 Port 1

9.2.1 Overview

Port 1 is an 8-bit I/O port. Port 1 pins also function as PPG output pins (PO15 to PO8), TPU I/O pins (TCLKA, TCLKB, TCLKC, TCLKD, TIOCA0, TIOCB0, TIOCC0, TIOCD0, TIOCA1, TIOCB1, TIOCA2, and TIOCB2), and DMAC output pins (DACK0 and DACK1). Port 1 pin functions are the same in all operating modes.

Figure 9-1 shows the port 1 pin configuration.

Figure 9-1 Port 1 Pin Functions

9.2.2 Register Configuration

Table 9-2 shows the port 1 register configuration.

Table 9-2Port 1 Registers

Name	Abbreviation	R/W	Initial Value	Address*
Port 1 data direction register	P1DDR	W	H'00	H'FEB0
Port 1 data register	P1DR	R/W	H'00	H'FF60
Port 1 register	PORT1	R	Undefined	H'FF50

Note: * Lower 16 bits of the address.

- A/D converter conversion start trigger can be generated
 Channel 0 to 5 compare match A/input capture A signals can be used as A/D converter conversion start trigger
- Module stop mode can be set
 - As the initial setting, TPU operation is halted. Register access is enabled by exiting module stop mode.

Table 10-1 lists the functions of the TPU.

10.4.3 Synchronous Operation

In synchronous operation, the values in a number of TCNT counters can be rewritten simultaneously (synchronous presetting). Also, a number of TCNT counters can be cleared simultaneously by making the appropriate setting in TCR (synchronous clearing).

Synchronous operation enables TGR to be incremented with respect to a single time base.

Channels 0 to 5 can all be designated for synchronous operation.

Example of Synchronous Operation Setting Procedure: Figure 10-14 shows an example of the synchronous operation setting procedure.

Figure 10-14 Example of Synchronous Operation Setting Procedure

Example of Synchronous Operation: Figure 10-15 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for channels 0 to 2, TGR0B compare match has been set as the channel 0 counter clearing source, and synchronous clearing has been set for the channel 1 and 2 counter clearing sources.

Three-phase PWM waveforms are output from pins TIOC0A, TIOC1A, and TIOC2A. At this time, synchronous presetting, and synchronous clearing by TGR0B compare match, is performed for channel 0 to 2 TCNT counters, and the data set in TGR0B is used as the PWM cycle.

Figure 11-6 Setup Procedure for Non-Overlapping Pulse Output (Example)

For details of the multiprocessor communication function, see section 14.3.3, Multiprocessor Communication Function.

Bit 2 MP	Description	
0	Multiprocessor function disabled	(Initial value)
1	Multiprocessor format selected	

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the clock source for the baud rate generator. The clock source can be selected from ø, ø/4, ø/16, and ø/64, according to the setting of bits CKS1 and CKS0.

For the relation between the clock source, the bit rate register setting, and the baud rate, see section 14.2.8, Bit Rate Register (BRR).

Bit 1 CKS1	Bit 0 CKS0	Description	
0	0	ø clock	(Initial value)
	1	ø/4 clock	
1	0	ø/16 clock	
	1	ø/64 clock	

14.2.6 Serial Control Register (SCR)

Bit	:	7	6	5	4	3	2	1	0
		TIE	RIE	TE	RE	MPIE	TEIE	CKE1	CKE0
Initial value	e:	0	0	0	0	0	0	0	0
R/W	:	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

SCR is a register that performs enabling or disabling of SCI transfer operations, serial clock output in asynchronous mode, and interrupt requests, and selection of the serial clock source.

SCR can be read or written to by the CPU at all times.

SCR is initialized to H'00 by a reset, and by putting the device in standby mode or module stop mode. In the H8S/2398, H8S/2394, H8S/2392, and H8S/2390, however, the value in SCR is initialized to H'00 by a reset, or in hardware standby mode, but SCR retains its current state when the device enters software standby mode or module stop mode.

Bit 7—Transmit Interrupt Enable (TIE): Enables or disables transmit data empty interrupt (TXI) request generation when serial transmit data is transferred from TDR to TSR and the TDRE flag in SSR is set to 1.

Bit 7		
TIE	Description	
0	Transmit data empty interrupt (TXI) requests disabled*	(Initial value)
1	Transmit data empty interrupt (TXI) requests enabled	

Note:* TXI interrupt request cancellation can be performed by reading 1 from the TDRE flag, then clearing it to 0, or clearing the TIE bit to 0.

- Where M : Reception margin (%)
 - N : Ratio of bit rate to clock (N = 16)
 - D : Clock duty (D = 0 to 1.0)
 - L : Frame length (L = 9 to 12)
 - F : Absolute value of clock rate deviation

Assuming values of F = 0 and D = 0.5 in formula (1), a reception margin of 46.875% is given by formula (2) below.

When D = 0.5 and F = 0, $M = (0.5 - \frac{1}{2 \times 16}) \times 100\%$ = 46.875% Formula (2)

However, this is only the computed value, and a margin of 20% to 30% should be allowed in system design.

Restrictions on Use of DMAC or DTC

- When an external clock source is used as the serial clock, the transmit clock should not be input until at least 5 ø clock cycles after TDR is updated by the DMAC or DTC. Misoperation may occur if the transmit clock is input within 4 ø clocks after TDR is updated. (Figure 14-22)
- When RDR is read by the DMAC or DTC, be sure to set the activation source to the relevant SCI reception data full interrupt (RXI).

Figure 14-22 Example of Clocked Synchronous Transmission by DTC

Operation before mode transition (for the H8S/2398, H8S/2394, H8S/2392, and H8S/2390)

Before a mode transition to module stop mode or software standby mode, SCR should be initialized first, then SMR, BRR, and SCMR should be initialized.

On completion of conversion, the ADF flag is set to 1. If the ADIE bit is set to 1 at this time, an ADI interrupt request is generated. The ADF flag is cleared by writing 0 after reading ADCSR.

When the operating mode or analog input channel must be changed during analog conversion, to prevent incorrect operation, first clear the ADST bit to 0 in ADCSR to halt A/D conversion. After making the necessary changes, set the ADST bit to 1 to start A/D conversion again. The ADST bit can be set at the same time as the operating mode or input channel is changed.

Typical operations when channel 1 (AN1) is selected in single mode are described next. Figure 16-3 shows a timing diagram for this example.

- [1] Single mode is selected (SCAN = 0), input channel AN1 is selected (CH2 = 0, CH1 = 0, CH0 = 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST = 1).
- [2] When A/D conversion is completed, the result is transferred to ADDRB. At the same time the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes idle.
- [3] Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- [4] The A/D interrupt handling routine starts.
- [5] The routine reads ADCSR, then writes 0 to the ADF flag.
- [6] The routine reads and processes the connection result (ADDRB).
- [7] Execution of the A/D interrupt handling routine ends. After that, if the ADST bit is set to 1, A/D conversion starts again and steps [2] to [7] are repeated.

ADIE ADST	A/D conversion Set* Set*
ADF State of channel 0 (AN0)	
State of channel 1 (AN1)	Idle A/D conversion 1 A/D conversion 2 Idle
State of channel 2 (AN2)	Idle
State of channel 3 (AN3)	Idle
ADDRA	
ADDRB	A/D conversion result A/D conversion result A/D conversion result
ADDRC	
ADDRD	
Note: * Vertic	cal arrows () indicate instructions executed by software.

Figure 16-3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Current dissipation* ²	Normal operation	۱ _{cc} * ⁴	_	46 (5.0 V	69 ')	mA	f = 20 MHz
	Sleep mode	_	_	37 (5.0 V	56)	mA	f = 20 MHz
	Standby		_	0.01	10	μΑ	$T_a \le 50^\circ C$
	mode*3		_		80		50°C < T _a
Analog power supply current	During A/D and D/A conversion	Al _{cc}	—	0.8 (5.0 V	2.0)	mA	
	Idle		_	0.01	5.0	μΑ	_
Reference current	During A/D and D/A conversion	Al _{cc}	—	2.2 (5.0 V	3.0 ')	mA	
	Idle		_	0.01	5.0	μΑ	_
RAM standby v	oltage	V _{RAM}	2.0			V	

Notes: 1. If the A/D and D/A converters are not used, do not leave the AV_{cc} , AV_{ss} , and V_{ref} pins open. Connect AV_{cc} and V_{ref} to V_{cc} pin, and connect AV_{ss} to V_{ss} pin.

- 2. Current dissipation values are for V_{IH} min = V_{CC} -0.2 V and V_{IL} max = 0.5 V with all output pins unloaded and the on-chip pull-up MOS in the off state.
- 3. The values are for $V_{_{RAM}} \leq V_{_{CC}}$ < 4.5 V, $V_{_{IH}}$ min = $V_{_{CC}} \times$ 0.9, and $V_{_{IL}}$ max = 0.3 V.
- 4. I_{cc} depends on V_{cc} and f as follows: I_{cc} max = 3.0 (mA) + 0.60 (mA/(MHz × V)) × V_{cc} × f [normal mode] I_{cc} max = 3.0 (mA) + 0.48 (mA/(MHz × V)) × V_{cc} × f [sleep mode]

Table 22-13 Permissible Output Currents

Conditions: $V_{CC} = 5.0 \text{ V} \pm 10\%$, $AV_{CC} = 5.0 \text{ V} \pm 10\%$, $V_{ref} = 4.5 \text{ V}$ to AV_{CC} , $V_{SS} = AV_{SS} = 0 \text{ V}$, $T_a = -20 \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40 \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output	Ports 1, A to C	I _{ol}	_		10	mA
low current (per pin)	Other output pins		_		2.0	mA
Permissible output low current (total)	Total of 32 pins including ports 1 and A to C	$\sum I_{OL}$	—	—	80	mA
	Total of all output pins, including the above	_	_	_	120	mA
Permissible output high current (per pin)	All output pins	—I _{он}	_	—	2.0	mA
Permissible output high current (total)	Total of all output pins	$\Sigma - I_{OH}$	_	—	40	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 22-13.

2. When driving a darlington pair or LED directly, always insert a current-limiting resistor in the output line, as show in figures 22-33 and 22-34.

Table 22-25 Permissible Output Currents

```
Conditions: V_{CC} = 2.7 to 5.5 V, AV_{CC} = 2.7 to 5.5 V, V_{ref} = 2.7 to AV_{CC}, V_{SS} = AV_{SS} = 0 V,
```

 $T_a = -20$ to $+75^{\circ}C$ (regular specifications), $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications)

Item		Symbol	Min	Тур	Max	Unit
Permissible output	Ports 1, A to C	I _{ol}	_	_	10	mA
low current (per pin)	Other output pins		—		2.0	mA
Permissible output low current (total)	Total of 32 pins including ports 1 and A to C	ΣI_{OL}	_	—	80	mA
	Total of all output pins, including the above		_	—	120	mA
Permissible output high current (per pin)	All output pins	—I _{ОН}	_	—	2.0	mA
Permissible output high current (total)	Total of all output pins	Σ –I _{OH}	—	_	40	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 22-25.

2. When driving a darlington pair or LED directly, always insert a current-limiting resistor in the output line, as show in figures 22-65 and 22-66.

Figure 22-65 Darlington Pair Drive Circuit (Example)

Figure 22-66 LED Drive Circuit (Example)

			Inst	Ad truc	dres	sin(gth gth	(By	tes)			
		eziS bnare		L L L L L L L L L L L L L L L L L L L	(u83,t	+uX3@/uX3	9	()J4,¤	na		Condition Code	No. of States* ¹
	Mnemonic	odo	XX#	⊎ш их)@]@	-@	e@)@)@	-	Operation	I H N Z C	Advanced
BSET	BSET #xx:3,Rd	В								(#xx:3 of Rd8)←1		1
	BSET #xx:3,@ERd	В		4						(#xx:3 of @ERd)←1		4
	BSET #xx:3,@aa:8	В					4			(#xx:3 of @aa:8)←1		4
	BSET #xx:3,@aa:16	В					9			(#xx:3 of @aa:16)←1		5
	BSET #xx:3,@aa:32	В					8			(#xx:3 of @aa:32)←1		6
	BSET Rn,Rd	В		2						(Rn8 of Rd8)←1		1
	BSET Rn,@ERd	В		4						(Rn8 of @ERd)←1		4
	BSET Rn,@aa:8	В		_	_		4	_		(Rn8 of @aa:8)←1		4
	BSET Rn,@aa:16	В					9			(Rn8 of @aa:16)←1		5
	BSET Rn, @aa:32	В					8			(Rn8 of @aa:32)←1		6
BCLR	BCLR #xx:3,Rd	В	• •							(#xx:3 of Rd8)←0		1
	BCLR #xx:3,@ERd	В		4						(#xx:3 of @ERd)←0		4
	BCLR #xx:3,@aa:8	В					4			(#xx:3 of @aa:8)←0		4
	BCLR #xx:3,@aa:16	В					9			(#xx:3 of @aa:16)←0		5
	BCLR #xx:3,@aa:32	В		_	_		8	_	_	(#xx:3 of @aa:32)←0		6
	BCLR Rn,Rd	ш			_					(Rn8 of Rd8)←0		1
	BCLR Rn,@ERd	ш		4						(Rn8 of @ERd)←0		4
	BCLR Rn, @aa:8	ш					4			(Rn8 of @aa:8)←0		4
	BCLR Rn, @aa:16	В	_	_			9			(Rn8 of @aa:16)←0		5

(5) Bit-Manipulation Instructions

A.4 Number of States Required for Instruction Execution

The tables in this section can be used to calculate the number of states required for instruction execution by the CPU. Table A-5 indicates the number of instruction fetch, data read/write, and other cycles occurring in each instruction. Table A-4 indicates the number of states required for each cycle. The number of states required for execution of an instruction can be calculated from these two tables as follows:

Execution states = $I \times S_I + J \times S_J + K \times S_K + L \times S_L + M \times S_M + N \times S_N$

Examples: Advanced mode, program code and stack located in external memory, on-chip supporting modules accessed in two states with 8-bit bus width, external devices accessed in three states with one wait state and 16-bit bus width.

1. BSET #0, @FFFFC7:8

From table A-5:

 $I=L=2, \quad J=K=M=N=0$

From table A-4:

 $S_{\rm I} = 4, S_{\rm L} = 2$

Number of states required for execution = $2 \times 4 + 2 \times 2 = 12$

2. JSR @@30

From table A-5:

$$I = J = K = 2, L = M = N = 0$$

From table A-4:

$$\mathbf{S}_{\mathrm{I}} = \mathbf{S}_{\mathrm{J}} = \mathbf{S}_{\mathrm{K}} = 4$$

Number of states required for execution = $2 \times 4 + 2 \times 4 + 2 \times 4 = 24$

Table A-4Number of States per Cycle

				Ac	cess Co	nditions		
			On-Chip	Supporting		Externa	al Device	
			Module		8-Bi	t Bus	16-B	it Bus
Cycle		On-Chip Memory	8-Bit Bus	16-Bit Bus	2-State Access	3-State Access	2-State Access	3-State Access
Instruction fetch	Sı	1	4	2	4	6 + 2m	2	3 + m
Branch address read	$S_{\scriptscriptstyle J}$							
Stack operation	$\mathbf{S}_{\mathbf{k}}$							
Byte data access	$S_{\scriptscriptstyle L}$		2		2	3 + m	-	
Word data access	$S_{\scriptscriptstyle M}$		4		4	6 + 2m	-	
Internal operation	$S_{\scriptscriptstyle N}$	1	1	1	1	1	1	1

Legend:

m: Number of wait states inserted into external device access

TSR3—Timer Status Register 3

H'FE85

TPU3

TPU3

H'FE86

DACR—D/A Control Register

0	Analog output DA1 is disabled
1	Channel 1 D/A conversion is enabled Analog output DA1 is enabled

D/A Conversion Control

DAOE1	DAOE0	DAE	Description
0	0	×	Channel 0 and 1 D/A conversion disabled
	1	0	Channel 0 D/A conversion enabled
			Channel 1 D/A conversion disabled
		1	Channel 0 and 1 D/A conversions enabled
1	0	0	Channel 0 D/A conversion disabled
			Channel 1 D/A conversion enabled
		1	Channel 0 and 1 D/A conversion enabled
	1	×	Channel 0 and 1 D/A conversion enabled

DACR—Reserved Register

H'FFAC

×: Don't care D/A

C.6 Port 6 Block Diagram

Figure C-6 (a) Port 6 Block Diagram (Pin P6₀)