

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

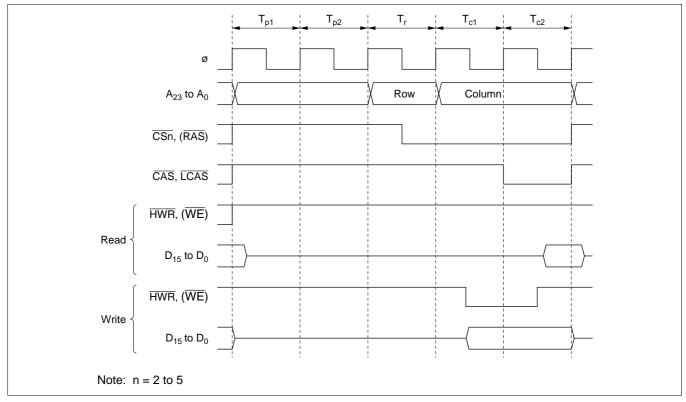
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d12392f20iv


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Туре	Instruction	Size*1	Function
Arithmetic operations	DIVXU	B/W	$Rd \div Rs \rightarrow Rd$ Performs unsigned division on data in two general registers: either 16 bits ÷ 8 bits \rightarrow 8-bit quotient and 8-bit remainder or 32 bits ÷ 16 bits \rightarrow 16-bit quotient and 16- bit remainder.
	DIVXS	B/W	$\begin{array}{l} Rd \div Rs \to Rd \\ Performs \text{ signed division on data in two general} \\ registers: either 16 bits \div 8 \text{ bits} \to 8 \text{-bit quotient and 8-bit} \\ remainder or 32 bits \div 16 \text{ bits} \to 16 \text{-bit quotient and 16-bit remainder.} \end{array}$
	CMP	B/W/L	Rd – Rs, Rd – #IMM Compares data in a general register with data in another general register or with immediate data, and sets CCR bits according to the result.
	NEG	B/W/L	$0 - Rd \rightarrow Rd$ Takes the two's complement (arithmetic complement) of data in a general register.
	EXTU	W/L	Rd (zero extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by padding with zeros on the left.
	EXTS	W/L	Rd (sign extension) \rightarrow Rd Extends the lower 8 bits of a 16-bit register to word size, or the lower 16 bits of a 32-bit register to longword size, by extending the sign bit.
	TAS	В	@ERd – 0, 1 \rightarrow (<bit 7=""> of @ERd)*² Tests memory contents, and sets the most significant bit (bit 7) to 1.</bit>
Logic operations	AND	B/W/L	$Rd \wedge Rs \rightarrow Rd$, $Rd \wedge \#IMM \rightarrow Rd$ Performs a logical AND operation on a general register and another general register or immediate data.
	OR	B/W/L	$Rd \lor Rs \rightarrow Rd$, $Rd \lor \#IMM \rightarrow Rd$ Performs a logical OR operation on a general register and another general register or immediate data.
	XOR	B/W/L	$Rd \oplus Rs \rightarrow Rd$, $Rd \oplus \#IMM \rightarrow Rd$ Performs a logical exclusive OR operation on a general register and another general register or immediate data.
	NOT	B/W/L	¬ (Rd) → (Rd) Takes the one's complement of general register contents.
Shift operations	SHAL SHAR	B/W/L	Rd (shift) \rightarrow Rd Performs an arithmetic shift on general register contents. 1-bit or 2-bit shift is possible.
	SHLL SHLR	B/W/L	Rd (shift) \rightarrow Rd Performs a logical shift on general register contents. 1-bit or 2-bit shift is possible.
	ROTL ROTR	B/W/L	Rd (rotate) \rightarrow Rd Rotates general register contents. 1-bit or 2-bit rotation is possible.
	ROTXL ROTXR	B/W/L	$\begin{array}{l} \mbox{Rd (rotate)} \rightarrow \mbox{Rd} \\ \mbox{Rotates general register contents through the carry flag.} \\ \mbox{1-bit or 2-bit rotation is possible.} \end{array}$

6.5.7 Precharge State Control

When DRAM is accessed, RAS precharging time must be secured. With the H8S/2357 Series, one T_p state is always inserted when DRAM space is accessed. This can be changed to two T_p states by setting the TPC bit in MCR to 1. Set the appropriate number of T_p cycles according to the DRAM connected and the operating frequency of the H8S/2357 Group. Figure 6-16 shows the timing when two T_p states are inserted.

When the TPC bit is set to 1, two T_p states are also used for refresh cycles.

Figure 6-16 Timing with Two Precharge States

6.5.8 Wait Control

There are two ways of inserting wait states in a DRAM access cycle: program wait insertion and pin wait insertion using the $\overline{\text{WAIT}}$ pin.

Program Wait Insertion: When the bit in ASTCR corresponding to an area designated as DRAM space is set to 1, from 0 to 3 wait states can be inserted automatically between the T_{c1} state and T_{c2} state, according to the settings of WCRH and WCRL.

Pin Wait Insertion: When the WAITE bit in BCRH is set to 1, wait input by means of the \overline{WAIT} pin is enabled regardless of the setting of the AST bit in ASTCR. When DRAM space is accessed in this state, a program wait is first inserted. If the \overline{WAIT} pin is low at the falling edge of \emptyset in the last T_{c1} or T_w state, another T_w state is inserted. If the \overline{WAIT} pin is held low, T_w states are inserted until it goes high.

RENESAS

Bit 7—Data Transfer Master Enable 1 (DTME1): Enables or disables data transfer on channel 1.

Bit 7 DTME1	Description	
0	Data transfer disabled. In burst mode, cleared to 0 by an NMI interrupt	(Initial value)
1	Data transfer enabled	

Bit 5—Data Transfer Master Enable 0 (DTME0): Enables or disables data transfer on channel 0.

Bit 5 DTME0	Description	
0	Data transfer disabled. In normal mode, cleared to 0 by an NMI interrupt (Initial value))
1	Data transfer enabled	_

Bits 6 and 4—Data Transfer Enable (DTE): When DTE = 0, data transfer is disabled and the activation source selected by the data transfer factor setting is ignored. If the activation source is an internal interrupt, an interrupt request is issued to the CPU or DTC. If the DTIE bit is set to 1 when DTE = 0, the DMAC regards this as indicating the end of a transfer, and issues a transfer end interrupt request to the CPU.

The conditions for the DTE bit being cleared to 0 are as follows:

- When initialization is performed
- When the specified number of transfers have been completed
- When 0 is written to the DTE bit to forcibly abort the transfer, or for a similar reason

When DTE = 1 and DTME = 1, data transfer is enabled and the DMAC waits for a request by the activation source selected by the data transfer factor setting. When a request is issued by the activation source, DMA transfer is executed.

The condition for the DTE bit being set to 1 is as follows:

• When 1 is written to the DTE bit after the DTE bit is read as 0

Bit 6—Data Transfer Enable 1 (DTE1): Enables or disables data transfer on channel 1.

Bit 6		
DTE1	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

Bit 4—Data Transfer Enable 0 (DTE0): Enables or disables data transfer on channel 0.

Bit 4 DTE0	Description	
0	Data transfer disabled	(Initial value)
1	Data transfer enabled	

When the DMAC is activated, take any necessary steps to prevent an internal interrupt or $\overline{\text{DREQ}}$ pin low level remaining from the end of the previous transfer, etc.

Internal Interrupt after End of Transfer: When the DTE bit is cleared to 0 by the end of transfer or an abort, the selected internal interrupt request will be sent to the CPU or DTC even if DTA is set to 1.

Also, if internal DMAC activation has already been initiated when operation is aborted, the transfer is executed but flag clearing is not performed for the selected internal interrupt even if DTA is set to 1.

An internal interrupt request following the end of transfer or an abort should be handled by the CPU as necessary.

Channel Re-Setting: To reactivate a number of channels when multiple channels are enabled, use exclusive handling of transfer end interrupts, and perform DMABCR control bit operations exclusively.

Note, in particular, that in cases where multiple interrupts are generated between reading and writing of DMABCR, and a DMABCR operation is performed during new interrupt handling, the DMABCR write data in the original interrupt handling routine will be incorrect, and the write may invalidate the results of the operations by the multiple interrupts. Ensure that overlapping DMABCR operations are not performed by multiple interrupts, and that there is no separation between read and write operations by the use of a bit-manipulation instruction.

Also, when the DTE and DTME bits are cleared by the DMAC or are written with 0, they must first be read while cleared to 0 before the CPU can write 1 to them.

Selection Method and Pin Functions

Pin

P1₄/PO12/TIOCA1 The pin function is switched as shown below according to the combination of the TPU channel 1 setting by bits MD3 to MD0 in TMDR1, bits IOA3 to IOA0 in TIOR1, bits CCLR1 and CCLR0 in TCR1, bit NDER12 in NDERH, and bit P14DDR.

TPU Channel 1 Setting	Table Below (1)	Та	able Below	(2)
P14DDR	—	0	1	1
NDER12	—	—	0	1
Pin function	TIOCA1 output	P1₄ input	P1₄ output	PO12 output
		TI	OCA1 inpu	t *1

Note: 1. TIOCA1 input when MD3 to MD0 = B'0000, B'01××, IOA3 to IOA0 = B'10××.

TPU Channel 1 Setting	(2)	(1)	(2)	(1)	(1)	(2)
MD3 to MD0	B'0000	, B'01××	B'001×	B'0010	B'00	011
IOA3 to IOA0	B'0000 B'0100 B'1×××	B'0001 to B'0011 B'0101 to B'0111	B'××00	Other than B'××00	Other tha	ın B'××00
CCLR1, CCLR0	_				Other than B'01	B'01
Output function		Output compare output		PWM mode 1 output* ²	PWM mode 2 output	—

 \times : Don't care

Note: 2. TIOCB1 output is disabled.

9.7.3 Pin Functions

Port 6 pins also function as interrupt input pins ($\overline{IRQ0}$ to $\overline{IRQ3}$), DMAC I/O pins ($\overline{DREQ0}$, $\overline{TEND0}$, $\overline{DREQ1}$, and $\overline{TEND1}$), and bus control output pins ($\overline{CS4}$ to $\overline{CS7}$). Port 6 pin functions are shown in table 9-12.

Pin	Selection Meth	od and Pin Fur	nctions			
P6 ₇ /IRQ3/CS7	The pin function is switched as shown below according to bit P67DDR.					
	Mode	Мос	le 7*	Modes 4 to 6*		
	P67DDR	0	1	0	1	
	Pin function	P67 input pin	P67 output pin	P67 input pin	CS7 output pir	
			IRQ3 interru	upt input pin		
	Note: * Modes 6	and 7 are prov	rided in the on-cl	hip ROM versio	n only.	
P6 ₆ /IRQ2/CS6	The pin function	is switched as	shown below ac	cording to bit P	66DDR.	
	Mode	Mode 7*		Modes	4 to 6*	
	P66DDR	0	1	0	1	
	Pin function	P6 ₆ input pin	P66 output pin	P6 ₆ input pin	CS6 output pi	
		IRQ2 interrupt input pin				
	Note: * Modes 6	6 and 7 are prov	rided in the on-cl	hip ROM versio	M version only.	
P6₅/IRQ1	The pin function	The pin function is switched as shown below according to bit P65DDR.				
	P65DDR		0	1		
	Pin function	P6₅ in	put pin	P6₅ output pin		
		IRQ1 interrupt input pin				
P6 ₄ /IRQ0	The pin function	is switched as	shown below ac	cording to bit P	64DDR.	
	P64DDR		0	1		
	Pin function	P6 ₄ in	put pin	P6₄ output pin		
			IRQ0 interru	upt input pin	pt input pin	

Table 9-12Port 6 Pin Functions

Modes 4 and 5: In modes 4 and 5, port C pins are automatically designated as address outputs.

Port C pin functions in modes 4 and 5 are shown in figure 9-18.

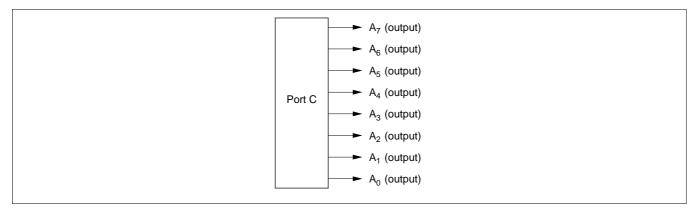


Figure 9-18 Port C Pin Functions (Modes 4 and 5)

9.10.4 MOS Input Pull-Up Function (On-Chip ROM Version Only)

Port C has a on-chip MOS input pull-up function that can be controlled by software. This MOS input pull-up function can be used in modes 6 and 7, and can be specified as on or off on an individual bit basis.

When a PCDDR bit is cleared to 0 in mode 6 or 7, setting the corresponding PCPCR bit to 1 turns on the MOS input pullup for that pin.

The MOS input pull-up function is in the off state after a power-on reset, and in hardware standby mode. The prior state is retained after a manual reset*, and in software standby mode.

Table 9-18 summarizes the MOS input pull-up states.

Note: * Manual reset is only supported in the H8S/2357 ZTAT.

Table 9-18 MOS Input Pull-Up States (Port C)

Modes	Power-On Reset	 	Software Standby Mode	In Other Operations
6, 7	OFF	ON/OFF		
4, 5		OFF		

Legend:

OFF: MOS input pull-up is always off.

ON/OFF: On when PCDDR = 0 and PCPCR = 1; otherwise off.

Note: * Manual reset is only supported in the H8S/2357 ZTAT.

ltem	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
DMAC activation	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture	TGR3A compare match or input capture	TGR4A compare match or input capture	TGR5A compare match or input capture
DTC activation	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
A/D converter trigger	TGR0A compare match or input capture	TGR1A compare match or input capture	TGR2A compare match or input capture	TGR3A compare match or input capture	TGR4A compare match or input capture	TGR5A compare match or input capture
PPG trigger	TGR0A/ TGR0B compare match or input capture	TGR1A/ TGR1B compare match or input capture	TGR2A/ TGR2B compare match or input capture	TGR3A/ TGR3B compare match or input capture	_	_
Interrupt sources	 5 sources Compare match or input capture 04 Compare match or input capture 0E Compare match or input capture 0C Compare match or input capture 0C Compare match or input capture 0E Overflow 	 Compare match or input capture 18 Overflow Underflow 	 match or input capture 2<i>A</i> Compare match or input capture 2E Overflow 	 Compare match or input capture 31 Compare 	match or input A capture 44 • Compare match or input B capture 4E • Overflow • Underflow	 Compare match or input capture 5B Overflow

Legend:

 \bigcirc : Possible

— : Not possible

Waveform Output by Compare Match: The TPU can perform 0, 1, or toggle output from the corresponding output pin using compare match.

• Example of setting procedure for waveform output by compare match Figure 10-9 shows an example of the setting procedure for waveform output by compare match

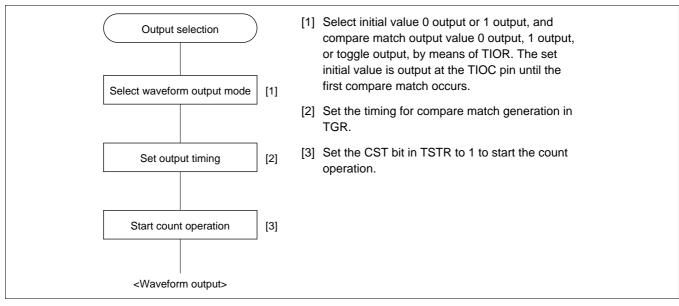


Figure 10-9 Example of Setting Procedure for Waveform Output by Compare Match

• Examples of waveform output operation Figure 10-10 shows an example of 0 output/1 output.

In this example TCNT has been designated as a free-running counter, and settings have been made so that 1 is output by compare match A, and 0 is output by compare match B. When the set level and the pin level coincide, the pin level

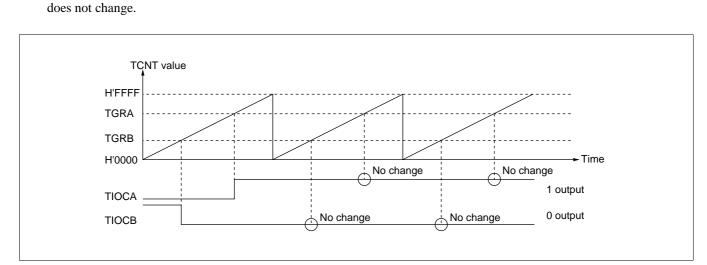


Figure 10-10 Example of 0 Output/1 Output Operation

PWM output is generated from the TIOCA and TIOCC pins by pairing TGRA with TGRB and TGRC with TGRD. The output specified by bits IOA3 to IOA0 and IOC3 to IOC0 in TIOR is output from the TIOCA and TIOCC pins at compare matches A and C, and the output specified by bits IOB3 to IOB0 and IOD3 to IOD0 in TIOR is output at compare matches B and D. The initial output value is the value set in TGRA or TGRC. If the set values of paired TGRs are identical, the output value does not change when a compare match occurs.

In PWM mode 1, a maximum 8-phase PWM output is possible.

• PWM mode 2

PWM output is generated using one TGR as the cycle register and the others as duty registers. The output specified in TIOR is performed by means of compare matches. Upon counter clearing by a synchronization register compare match, the output value of each pin is the initial value set in TIOR. If the set values of the cycle and duty registers are identical, the output value does not change when a compare match occurs.

In PWM mode 2, a maximum 15-phase PWM output is possible by combined use with synchronous operation.

The correspondence between PWM output pins and registers is shown in table 10-7.

		(Dutput Pins
Channel	Registers	PWM Mode 1	PWM Mode 2
0	TGR0A	TIOCA0	TIOCA0
	TGR0B		TIOCB0
	TGR0C	TIOCC0	TIOCC0
	TGR0D		TIOCD0
1	TGR1A	TIOCA1	TIOCA1
	TGR1B		TIOCB1
2	TGR2A	TIOCA2	TIOCA2
	TGR2B		TIOCB2
3	TGR3A	TIOCA3	TIOCA3
	TGR3B		TIOCB3
	TGR3C	TIOCC3	TIOCC3
	TGR3D		TIOCD3
4	TGR4A	TIOCA4	TIOCA4
	TGR4B		TIOCB4
5	TGR5A	TIOCA5	TIOCA5
	TGR5B		TIOCB5

Table 10-7 PWM Output Registers and Output Pins

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the period is set.

Bit 5 OVF	Description	
0	[Clearing condition]	(Initial value)
	Cleared by reading OVF when OVF = 1, then writing 0 to OVF	
1	[Setting condition]	
	Set when TCNT overflows from H'FF to H'00	

Bit 5—Timer Overflow Flag (OVF): Status flag indicating that TCNT has overflowed (changed from H'FF to H'00).

Bit 4—A/D Trigger Enable (ADTE) (TCSR0 Only): Selects enabling or disabling of A/D converter start requests by compare-match A.

In TCSR1, this bit is reserved: it is always read as 1 and cannot be modified.

Bit 4 ADTE	Description	
0	A/D converter start requests by compare match A are disabled	(Initial value)
1	A/D converter start requests by compare match A are enabled	

Bits 3 to 0—Output Select 3 to 0 (OS3 to OS0): These bits specify how the timer output level is to be changed by a compare match of TCOR and TCNT.

Bits OS3 and OS2 select the effect of compare match B on the output level, bits OS1 and OS0 select the effect of compare match A on the output level, and both of them can be controlled independently.

Note, however, that priorities are set such that: toggle output > 1 output > 0 output. If compare matches occur simultaneously, the output changes according to the compare match with the higher priority.

Timer output is disabled when bits OS3 to OS0 are all 0.

After a reset, the timer output is 0 until the first compare match event occurs.

Bit 3 OS3	Bit 2 OS2	Description	
0	0	No change when compare match B occurs	(Initial value)
	1	0 is output when compare match B occurs	
1	0	1 is output when compare match B occurs	
	1	Output is inverted when compare match B occurs (toggle output)	
Bit 1 OS1	Bit 0 OS0	Description	
0	0	No change when compare match A acquire	(Initial value)

0	0	No change when compare match A occurs	(Initial value)
	1	0 is output when compare match A occurs	
1	0	1 is output when compare match A occurs	
_	1	Output is inverted when compare match A occurs (toggle output)	

12.3.5 Operation with Cascaded Connection

If bits CKS2 to CKS0 in either TCR0 or TCR1 are set to B'100, the 8-bit timers of the two channels are cascaded. With this configuration, a single 16-bit timer could be used (16-bit timer mode) or compare matches of the 8-bit channel 0 could be counted by the timer of channel 1 (compare match counter mode). In this case, the timer operates as below.

16-Bit Counter Mode: When bits CKS2 to CKS0 in TCR0 are set to B'100, the timer functions as a single 16-bit timer with channel 0 occupying the upper 8 bits and channel 1 occupying the lower 8 bits.

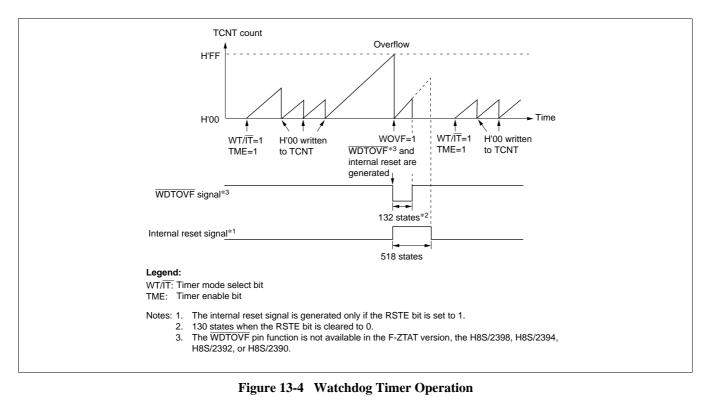
- Setting of compare match flags
 - The CMF flag in TCSR0 is set to 1 when a 16-bit compare match event occurs.
 - The CMF flag in TCSR1 is set to 1 when a lower 8-bit compare match event occurs.
- Counter clear specification
 - If the CCLR1 and CCLR0 bits in TCR0 have been set for counter clear at compare match, the 16-bit counter (TCNT0 and TCNT1 together) is cleared when a 16-bit compare match event occurs. The 16-bit counter (TCNT0 and TCNT1 together) is cleared even if counter clear by the TMRI0 pin has also been set.
 - The settings of the CCLR1 and CCLR0 bits in TCR1 are ignored. The lower 8 bits cannot be cleared independently.
- Pin output
 - Control of output from the TMO0 pin by bits OS3 to OS0 in TCSR0 is in accordance with the 16-bit compare match conditions.
 - Control of output from the TMO1 pin by bits OS3 to OS0 in TCSR1 is in accordance with the lower 8-bit compare match conditions.

Compare Match Counter Mode: When bits CKS2 to CKS0 in TCR1 are B'100, TCNT1 counts compare match A's for channel 0.

Channels 0 and 1 are controlled independently. Conditions such as setting of the CMF flag, generation of interrupts, output from the TMO pin, and counter clear are in accordance with the settings for each channel.

Note on Usage: If the 16-bit counter mode and compare match counter mode are set simultaneously, the input clock pulses for TCNT0 and TCNT1 are not generated and thus the counters will stop operating. Software should therefore avoid using both these modes.

13.3 Operation


13.3.1 Watchdog Timer Operation

To use the WDT as a watchdog timer, set the WT/ $\overline{\text{IT}}$ and TME bits to 1. Software must prevent TCNT overflows by rewriting the TCNT value (normally be writing H'00) before overflows occurs. This ensures that TCNT does not overflow while the system is operating normally. If TCNT overflows without being rewritten because of a system crash or other error, the WDTOVF signal*¹ is output. This is shown in figure 13-4. This WDTOVF signal*¹ can be used to reset the system. The WDTOVF signal*¹ is output for 132 states when RSTE = 1, and for 130 states when RSTE = 0.

If TCNT overflows when 1 is set in the RSTE bit in RSTCSR, a signal that resets the H8S/2357 Group internally is generated at the same time as the $\overline{\text{WDTOVF}}$ signal^{*1}. This reset can be selected as a power-on reset or a manual reset^{*2}, depending on the setting of the RSTS bit in RSTCSR. The internal reset signal is output for 518 states.

If a reset caused by a signal input to the $\overline{\text{RES}}$ pin occurs at the same time as a reset caused by a WDT overflow, the $\overline{\text{RES}}$ pin reset has priority and the WOVF bit in RSTCSR is cleared to 0.

Notes: 1. In the F-ZTAT version, the H8S/2398, H8S/2394, H8S/2392, or H8S/2390, the WDTOVF pin function is not available.

2. Manual reset is only supported in the H8S/2357 ZTAT.

16.2 Register Descriptions

Bit :	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0	—	Ι	—	—	Ι	—
Initial value :	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R/W :	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R

16.2.1 A/D Data Registers A to D (ADDRA to ADDRD)

There are four 16-bit read-only ADDR registers, ADDRA to ADDRD, used to store the results of A/D conversion.

The 10-bit data resulting from A/D conversion is transferred to the ADDR register for the selected channel and stored there. The upper 8 bits of the converted data are transferred to the upper byte (bits 15 to 8) of ADDR, and the lower 2 bits are transferred to the lower byte (bits 7 and 6) and stored. Bits 5 to 0 are always read as 0.

The correspondence between the analog input channels and ADDR registers is shown in table 16-3.

ADDR can always be read by the CPU. The upper byte can be read directly, but for the lower byte, data transfer is performed via a temporary register (TEMP). For details, see section 16.3, Interface to Bus Master.

The ADDR registers are initialized to H'0000 by a reset, and in standby mode or module stop mode.

Table 16-3 Analog Input Channels and Corresponding ADDR Registers

Ana	log Input Channel		
Group 0	Group 1	A/D Data Register	
AN0	AN4	ADDRA	
AN1	AN5	ADDRB	
AN2	AN6	ADDRC	
AN3	AN7	ADDRD	

16.2.2 A/D Control/Status Register (ADCSR)

Bit	:	7	6	5	4	3	2	1	0
		ADF	ADIE	ADST	SCAN	CKS	CH2	CH1	CH0
Initial valu	le :	0	0	0	0	0	0	0	0
R/W	:	R/(W)*	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Note: * Only 0 can be written to bit 7, to clear this flag.

ADCSR is an 8-bit readable/writable register that controls A/D conversion operations and shows the status of the operation.

ADCSR is initialized to H'00 by a reset, and in hardware standby mode or module stop mode.

17.1.3 Pin Configuration

Table 17-1 summarizes the input and output pins of the D/A converter.

Table 17-1Pin Configuration

Pin Name	Symbol	I/O	Function
Analog power pin	AV_{cc}	Input	Analog power source
Analog ground pin	AV_{ss}	Input	Analog ground and reference voltage
Analog output pin 0	DA0	Output	Channel 0 analog output
Analog output pin 1	DA1	Output	Channel 1 analog output
Reference voltage pin	$V_{\rm ref}$	Input	Analog reference voltage

17.1.4 Register Configuration

Table 17-2 summarizes the registers of the D/A converter.

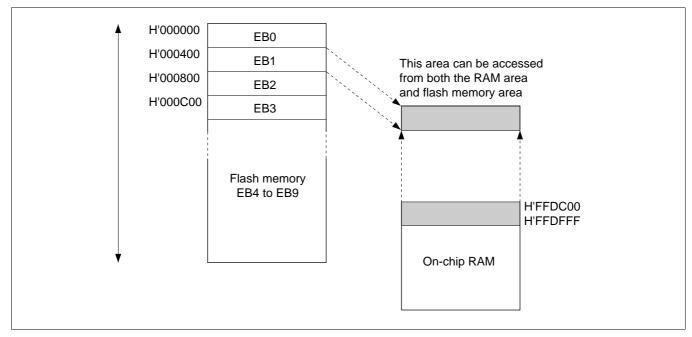
Table 17-2 D/A Converter Registers

Name	Abbreviation	R/W	Initial Value	Address*
D/A data register 0	DADR0	R/W	H'00	H'FFA4
D/A data register 1	DADR1	R/W	H'00	H'FFA5
D/A control register	DACR	R/W	H'1F	H'FFA6
Module stop control register	MSTPCR	R/W	H'3FFF	H'FF3C

Note:* Lower 16 bits of the address.

19.10 Flash Memory Protection

There are three kinds of flash memory program/erase protection: hardware protection, software protection, and error protection.


19.10.1 Hardware Protection

Hardware protection refers to a state in which programming/erasing of flash memory is forcibly disabled or aborted. Hardware protection is reset by settings in flash memory control registers 1 and 2 (FLMCR1, FLMCR2) and erase block registers 1 and 2 (EBR1, EBR2). (See table 19-16.)

Table 19-16	Hardware Protection
Table 19-16	Hardware Protection

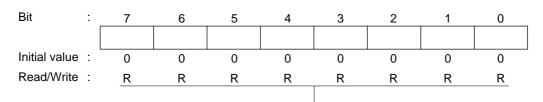
		Fu	nctions
Item	Description	Program	Erase
FWE pin protection	 When a low level is input to the FWE pin, FLMCR1, FLMCR2 (excluding the FLER bit), EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. 	Yes	Yes
Reset/standby protection	 In a reset (including a WDT overflow reset) and in standby mode, FLMCR1, FLMCR2, EBR1, and EBR2 are initialized, and the program/erase-protected state is entered. In a reset via the RES pin, the reset state 	Yes	Yes
	is not entered unless the RES pin is held low until oscillation stabilizes after powering on. In the case of a reset during operation, hold the $\overline{\text{RES}}$ pin low for the $\overline{\text{RES}}$ pulse width specified in the AC Characteristics section.		

19.11.2 RAM Overlap

An example in which flash memory block area EB1 is overlapped is shown below.

Figure 19.23 Example of RAM Overlap Operation

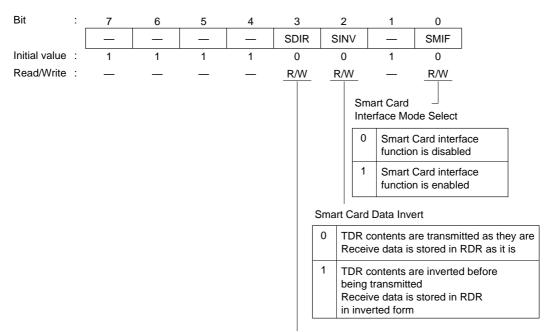
Example in Which Flash Memory Block Area (EB1) is Overlapped


- 1. Set bits RAMS, RAM1, and RAM0 in RAMER to 1, 0, 1, to overlap part of RAM onto the area (EB1) for which realtime programming is required.
- 2. Real-time programming is performed using the overlapping RAM.
- 3. After the program data has been confirmed, the RAMS bit is cleared, releasing RAM overlap.
- 4. The data written in the overlapping RAM is written into the flash memory space (EB1).
- Notes: 1. When the RAMS bit is set to 1, program/erase protection is enabled for all blocks regardless of the value of RAM1 and RAM0 (emulation protection). In this state, setting the P or E bit in flash memory control register 1 (FLMCR1) will not cause a transition to program mode or erase mode. When actually programming a flash memory area, the RAMS bit should be cleared to 0.
 - 2. A RAM area cannot be erased by execution of software in accordance with the erase algorithm while flash memory emulation in RAM is being used.
 - 3. Block area EB0 includes the vector table. When performing RAM emulation, the vector table is needed by the overlap RAM.

		1	lus	Addressing Mode/ Instruction Length (Bytes)	dre	ising Ler	Addressing Mode/ ruction Length (By	(By	tes								
		erand Size		~d:	d,ERn) מאז	+uЯ3@\nЯ3	e	4,PC)	88 (ပိ	indi	tion	ပိ	Condition Code	No. of States* ¹
	Mnemonic	odO	xx#	u A			e @		ത	Operation		-	I	z	> 2	с 2	Advanced
AND	AND.B #xx:8,Rd	В	5							Rd8∧#xx:8→Rd8				\leftrightarrow	0 ↔	0	-
	AND.B Rs,Rd	В		2						Rd8∧Rs8→Rd8				\leftrightarrow	C ↔	0	-
	AND.W #xx:16,Rd	≥	4							Rd16∧#xx:16→Rd16				\leftrightarrow	C ↔	0	5
	AND.W Rs,Rd	≥		2						Rd16∧Rs16→Rd16				\leftrightarrow		0	-
	AND.L #xx:32,ERd	٦	6							ERd32∧#xx:32→ERd32	2			\Rightarrow	¢	0	- 3
	AND.L ERs, ERd	Г		4						ERd32∧ERs32→ERd32	2			\leftrightarrow	¢ C	0	2
OR	OR.B #xx:8,Rd	В	2							Rd8∨#xx:8→Rd8				\leftrightarrow	0 ≎		-
	OR.B Rs,Rd	В		2						Rd8∨Rs8→Rd8				\leftrightarrow	C ↔	0	-
	OR.W #xx:16,Rd	≥	4							Rd16∨#xx:16→Rd16				\leftrightarrow	C ↔	0	2
	OR.W Rs,Rd	≥		2						Rd16∨Rs16→Rd16				\leftrightarrow	0 ↓		-
	OR.L #xx:32,ERd	_	9							ERd32∨#xx:32→ERd32	2			\leftrightarrow	¢ ¢	0	3
	OR.L ERS, ERd	Г		4						ERd32∨ERs32→ERd32	2			\leftrightarrow	¢ ¢	0	2
XOR	XOR.B #xx:8,Rd	В	5					-		Rd8⊕#xx:8→Rd8				\leftrightarrow	0 ↔	0	- -
	XOR.B Rs,Rd	В		2						Rd8⊕Rs8→Rd8				\leftrightarrow	O ↔	0	-
	XOR.W #xx:16,Rd	≥	4							Rd16⊕#xx:16→Rd16				\leftrightarrow	C ↔	0	2
	XOR.W Rs,Rd	≥		2						Rd16⊕Rs16→Rd16				\leftrightarrow	C ↔	0	+
	XOR.L #xx:32,ERd	_	9							ERd32⊕#xx:32→ERd32	2			\leftrightarrow	¢ ¢	0	3
	XOR.L ERs, ERd	_		4						ERd32⊕ERs32→ERd32	2			\leftrightarrow	0 ↔		2
NOT	NOT.B Rd	В		2						– Rd8→Rd8				\leftrightarrow	0 ↔	0	-
	NOT.W Rd	8		2						– Rd16→Rd16				\leftrightarrow	¢ ¢	0	-
	NOT.L ERd	_		2						- ERd32-→ERd32				\leftrightarrow	¢ C	0	۰

(3) Logical Instructions

RDR1—Receive Data Register 1



Stores received serial data

SCMR1—Smart Card Mode Register 1

H'FF86 SCI1, Smart Card Interface 1

Smart Card Data Direction

0	TDR contents are transmitted LSB-first Receive data is stored in RDR LSB-first
1	TDR contents are transmitted MSB-first Receive data is stored in RDR MSB-first

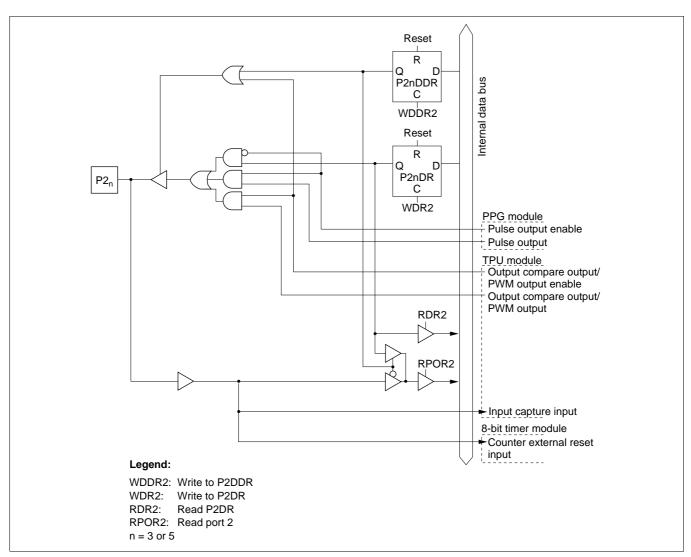


Figure C-2 (c) Port 2 Block Diagram (Pins P2₃ and P2₅)