

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                                       |
|----------------------------|------------------------------------------------------------------------------|
| Core Processor             | H85/2000                                                                     |
| Core Size                  | 16-Bit                                                                       |
| Speed                      | 20MHz                                                                        |
| Connectivity               | SCI, SmartCard                                                               |
| Peripherals                | DMA, POR, PWM, WDT                                                           |
| Number of I/O              | 87                                                                           |
| Program Memory Size        | 256КВ (256К х 8)                                                             |
| Program Memory Type        | FLASH                                                                        |
| EEPROM Size                | -                                                                            |
| RAM Size                   | 8K x 8                                                                       |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 5.5V                                                                  |
| Data Converters            | A/D 8x10b; D/A 2x8b                                                          |
| Oscillator Type            | Internal                                                                     |
| Operating Temperature      | -20°C ~ 75°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                |
| Package / Case             | 120-TQFP                                                                     |
| Supplier Device Package    | 120-TQFP (14x14)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/df2398te20v |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| ltem                                 | Page | Revision (See Manual for Details)       |                             |
|--------------------------------------|------|-----------------------------------------|-----------------------------|
| G. Product Code Lineup               | 1014 | Table G-2 amended                       |                             |
| Table G-2 H8S/2398, H8S/2394,        |      | Product Type Product Code Mark Code     | Package (Package Code)      |
| H8S/2392, H8S/2390 Group Product     |      | H8S/2398 Masked ROM HD6432398 HD6432398 | TE*1 120-pin TQFP (TFP-120) |
| Code Lineup                          |      | HD6432398                               | F*1 128-pin QFP (FP-128B)   |
|                                      |      | F-ZTAT HD64F2398 HD64F2398              | TE*1 120-pin TQFP (TFP-120) |
|                                      |      | HD64F2398                               | F*1 128-pin QFP (FP-128B)   |
|                                      |      | HD64F2398                               | TET 120-pin TQFP (TFP-120)  |
|                                      |      | HD64F2398                               | FT 128-pin QFP (FP-128B)    |
| H. Package Dimensions                | 1015 | Figure H-1 replaced                     |                             |
| Figure H-1 TFP-120 Package Dimension |      |                                         |                             |



Figure 2-12 State Transitions

## 2.8.2 Reset State

When the  $\overline{\text{RES}}$  input goes low all current processing stops and the CPU enters the reset state. The CPU enters the poweron reset state when the NMI pin is high, or the manual reset\* state when the NMI pin is low. All interrupts are masked in the reset state. Reset exception handling starts when the  $\overline{\text{RES}}$  signal changes from low to high.

The reset state can also be entered by a watchdog timer overflow. For details, refer to section 13, Watchdog Timer.

Note: \* Manual reset is only supported in the H8S/2357 ZTAT.

#### 2.8.3 Exception-Handling State

The exception-handling state is a transient state that occurs when the CPU alters the normal processing flow due to a reset, interrupt, or trap instruction. The CPU fetches a start address (vector) from the exception vector table and branches to that address.

#### (1) Types of Exception Handling and Their Priority

Exception handling is performed for traces, resets, interrupts, and trap instructions. Table 2-7 indicates the types of exception handling and their priority. Trap instruction exception handling is always accepted, in the program execution state.

Exception handling and the stack structure depend on the interrupt control mode set in SYSCR.

## 6.12 Resets and the Bus Controller

In a power-on reset, the H8S/2357 Group, including the bus controller, enters the reset state at that point, and an executing bus cycle is discontinued.

In a manual reset\*, the bus controller's registers and internal state are maintained, and an executing external bus cycle is completed. In this case,  $\overline{WAIT}$  input is ignored. Also, since the DMAC is initialized by a manual reset\*,  $\overline{DACK}$  and  $\overline{TEND}$  output is disabled and these pins become I/O ports controlled by DDR and DR.

Note: \* Manual reset is only supported in the H8S/2357 ZTAT.

Figure 7-4 shows an example of the setting procedure for sequential mode.



Figure 7-4 Example of Sequential Mode Setting Procedure

#### 8.1.2 Block Diagram

Figure 8-1 shows a block diagram of the DTC.

The DTC's register information is stored in the on-chip RAM\*. A 32-bit bus connects the DTC to the on-chip RAM (1 kbyte), enabling 32-bit/1-state reading and writing of the DTC register information and hence helping to increase processing speed.

Note: \* When the DTC is used, the RAME bit in SYSCR must be set to 1.



Figure 8-1 Block Diagram of DTC

Bit 7—DTC Software Activation Enable (SWDTE): Enables or disables DTC activation by software.

When clearing the SWDTE bit to 0 by software, write 0 to SWDTE after reading SWDTE set to 1.

| Bit 7<br>SWDTE | Description                                                                  |                 |  |  |
|----------------|------------------------------------------------------------------------------|-----------------|--|--|
| 0              | DTC software activation is disabled                                          | (Initial value) |  |  |
|                | [Clearing condition]                                                         |                 |  |  |
|                | When the DISEL bit is 0 and the specified number of transfers have not ended |                 |  |  |
| 1              | DTC software activation is enabled                                           |                 |  |  |
|                | [Holding conditions]                                                         |                 |  |  |
|                | <ul> <li>When the DISEL bit is 1 and data transfer has ended</li> </ul>      |                 |  |  |
|                | When the specified number of transfers have ended                            |                 |  |  |
|                | <ul> <li>During data transfer due to software activation</li> </ul>          |                 |  |  |

Bits 6 to 0—DTC Software Activation Vectors 6 to 0 (DTVEC6 to DTVEC0): These bits specify a vector number for DTC software activation.

The vector address is expressed as H'0400 + ((vector number) << 1). <<1 indicates a one-bit left-shift. For example, when DTVEC6 to DTVEC0 = H'10, the vector address is H'0420.

#### 8.2.9 Module Stop Control Register (MSTPCR)



MSTPCR is a 16-bit readable/writable register that performs module stop mode control.

When the MSTP14 bit in MSTPCR is set to 1, the DTC operation stops at the end of the bus cycle and a transition is made to module stop mode. However, 1 cannot be written in the MSTP14 bit while the DTC is operating. For details, see section 21.5, Module Stop Mode.

MSTPCR is initialized to H'3FFF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 14—Module Stop (MSTP14): Specifies the DTC module stop mode.

| Bit 14 |                              |                 |
|--------|------------------------------|-----------------|
| MSTP14 | Description                  |                 |
| 0      | DTC module stop mode cleared | (Initial value) |
| 1      | DTC module stop mode set     |                 |

## 8.3.5 Normal Mode

In normal mode, one operation transfers one byte or one word of data.

From 1 to 65,536 transfers can be specified. Once the specified number of transfers have ended, a CPU interrupt can be requested.

Table 8-5 lists the register information in normal mode and figure 8-6 shows memory mapping in normal mode.

 Table 8-5
 Register Information in Normal Mode

| Name                             | Abbreviation | Function                       |
|----------------------------------|--------------|--------------------------------|
| DTC source address register      | SAR          | Designates source address      |
| DTC destination address register | DAR          | Designates destination address |
| DTC transfer count register A    | CRA          | Designates transfer count      |
| DTC transfer count register B    | CRB          | Not used                       |



Figure 8-6 Memory Mapping in Normal Mode

## **10.3** Interface to Bus Master

#### 10.3.1 16-Bit Registers

TCNT and TGR are 16-bit registers. As the data bus to the bus master is 16 bits wide, these registers can be read and written to in 16-bit units.

These registers cannot be read or written to in 8-bit units; 16-bit access must always be used.

An example of 16-bit register access operation is shown in figure 10-2.







Figure 10-27 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode.

Figure 10-27 Example of PWM Mode Operation (3)

## 10.7 Usage Notes

Note that the kinds of operation and contention described below occur during TPU operation.

**Input Clock Restrictions:** The input clock pulse width must be at least 1.5 states in the case of single-edge detection, and at least 2.5 states in the case of both-edge detection. The TPU will not operate properly with a narrower pulse width.

In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 states, and the pulse width must be at least 2.5 states. Figure 10-48 shows the input clock conditions in phase counting mode.



Figure 10-48 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

**Caution on Period Setting:** When counter clearing by compare match is set, TCNT is cleared in the final state in which it matches the TGR value (the point at which the count value matched by TCNT is updated). Consequently, the actual counter frequency is given by the following formula:

$$f = \frac{\phi}{(N+1)}$$

Where

f : Counter frequency

ø : Operating frequency

N : TGR set value

**Contention between Buffer Register Write and Input Capture:** If the input capture signal is generated in the  $T_2$  state of a buffer write cycle, the buffer operation takes precedence and the write to the buffer register is not performed.

Figure 10-55 shows the timing in this case.



Figure 10-55 Contention between Buffer Register Write and Input Capture

**Contention between Overflow/Underflow and Counter Clearing:** If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 10-56 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.



Figure 10-56 Contention between Overflow and Counter Clearing

#### **15.3.4** Register Settings

Table 15-3 shows a bit map of the registers used by the Smart Card interface.

Bits indicated as 0 or 1 must be set to the value shown. The setting of other bits is described below.

| Table 15-3 | Smart | Card | Interface | Register | Settings |
|------------|-------|------|-----------|----------|----------|
|            |       |      |           |          |          |

|          | Bit   |       |       |       |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Register | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| SMR      | GM    | 0     | 1     | O/E   | 1     | 0     | CKS1  | CKS0  |
| BRR      | BRR7  | BRR6  | BRR5  | BRR4  | BRR3  | BRR2  | BRR1  | BRR0  |
| SCR      | TIE   | RIE   | TE    | RE    | 0     | 0     | CKE1* | CKE0  |
| TDR      | TDR7  | TDR6  | TDR5  | TDR4  | TDR3  | TDR2  | TDR1  | TDR0  |
| SSR      | TDRE  | RDRF  | ORER  | ERS   | PER   | TEND  | 0     | 0     |
| RDR      | RDR7  | RDR6  | RDR5  | RDR4  | RDR3  | RDR2  | RDR1  | RDR0  |
| SCMR     |       |       | —     | —     | SDIR  | SINV  | —     | SMIF  |

Notes: —: Not used.

 $\ast$  The CKE1 bit must be cleared to 0 when the GM bit in SMR is cleared to 0.

**SMR Setting:** The GM bit is cleared to 0 in normal Smart Card interface mode, and set to 1 in GSM mode. The  $O/\overline{E}$  bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

Bits CKS1 and CKS0 select the clock source of the on-chip baud rate generator. See section 15.3.5, Clock.

BRR Setting: BRR is used to set the bit rate. See section 15.3.5, Clock, for the method of calculating the value to be set.

**SCR Setting:** The function of the TIE, RIE, TE, and RE bits is the same as for the normal SCI. For details, see section 14, Serial Communication Interface (SCI).

Bits CKE1 and CKE0 specify the clock output. When the GM bit in SMR is cleared to 0, set these bits to B'00 if a clock is not to be output, or to B'01 if a clock is to be output. When the GM bit in SMR is set to 1, clock output is performed. The clock output can also be fixed high or low.

#### Smart Card Mode Register (SCMR) Setting:

The SDIR bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SINV bit is cleared to 0 if the IC card is of the direct convention type, and set to 1 if of the inverse convention type.

The SMIF bit is set to 1 in the case of the Smart Card interface.

Examples of register settings and the waveform of the start character are shown below for the two types of IC card (direct convention and inverse convention).

Bit 7—A/D End Flag (ADF): Status flag that indicates the end of A/D conversion.

| Bit 7<br>ADF | Description                                                                 |  |  |  |  |
|--------------|-----------------------------------------------------------------------------|--|--|--|--|
| 0            | [Clearing conditions] (Initial value)                                       |  |  |  |  |
|              | <ul> <li>When 0 is written to the ADF flag after reading ADF = 1</li> </ul> |  |  |  |  |
|              | When the DTC is activated by an ADI interrupt and ADDR is read              |  |  |  |  |
| 1            | [Setting conditions]                                                        |  |  |  |  |
|              | Single mode: When A/D conversion ends                                       |  |  |  |  |
|              | Scan mode: When A/D conversion ends on all specified channels               |  |  |  |  |

**Bit 6—A/D Interrupt Enable (ADIE):** Selects enabling or disabling of interrupt (ADI) requests at the end of A/D conversion.

| Bit 6<br>ADIE | Description                                         |                 |
|---------------|-----------------------------------------------------|-----------------|
| 0             | A/D conversion end interrupt (ADI) request disabled | (Initial value) |
| 1             | A/D conversion end interrupt (ADI) request enabled  |                 |

Bit 5—A/D Start (ADST): Selects starting or stopping on A/D conversion. Holds a value of 1 during A/D conversion.

The ADST bit can be set to 1 by software, a timer conversion start trigger, or the A/D external trigger input pin (ADTRG).

| Bit 5<br>ADST | Description |              |                                                                                                                                                       |                                                     |  |  |
|---------------|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| 0             | •           | A/D conversi | on stopped                                                                                                                                            | (Initial value)                                     |  |  |
| 1             | •           | Single mode: | Single mode: A/D conversion is started. Cleared to 0 automatically when conversion on the specified channel ends.                                     |                                                     |  |  |
|               | •           | Scan mode:   | A/D conversion is started. Conversion continues<br>selected channels until ADST is cleared to 0 by<br>a transition to standby mode or module stop mod | sequentially on the<br>software, a reset, or<br>de. |  |  |

**Bit 4—Scan Mode (SCAN):** Selects single mode or scan mode as the A/D conversion operating mode. See section 16.4, Operation, for single mode and scan mode operation. Only set the SCAN bit while conversion is stopped (ADST = 0).

| Bit 4<br>SCAN | Description |                 |
|---------------|-------------|-----------------|
| 0             | Single mode | (Initial value) |
| 1             | Scan mode   |                 |

**Bit 3—Clock Select (CKS):** Sets the A/D conversion time. Only change the conversion time while conversion is stopped (ADST = 0).

| Bit 3<br>CKS | Description                         |                 |  |
|--------------|-------------------------------------|-----------------|--|
| 0            | Conversion time = 266 states (max.) | (Initial value) |  |
| 1            | Conversion time = 134 states (max.) |                 |  |

| ltem                              |                                     | Symbol                         | Min | Тур           | Max       | Unit | <b>Test Conditions</b> |
|-----------------------------------|-------------------------------------|--------------------------------|-----|---------------|-----------|------|------------------------|
| Current dissipation* <sup>2</sup> | Normal operation                    | ۱ <sub>cc</sub> * <sup>4</sup> | _   | 46<br>(5.0 V  | 69<br>')  | mA   | f = 20 MHz             |
|                                   | Sleep mode                          | _                              | _   | 37<br>(5.0 V  | 56<br>)   | mA   | f = 20 MHz             |
|                                   | Standby                             |                                | _   | 0.01          | 10        | μΑ   | $T_a \le 50^\circ C$   |
|                                   | mode*3                              |                                | _   |               | 80        |      | 50°C < T <sub>a</sub>  |
| Analog power supply current       | During A/D<br>and D/A<br>conversion | Al <sub>cc</sub>               | —   | 0.8<br>(5.0 V | 2.0<br>)  | mA   |                        |
|                                   | Idle                                |                                | _   | 0.01          | 5.0       | μΑ   | _                      |
| Reference<br>current              | During A/D<br>and D/A<br>conversion | Al <sub>cc</sub>               | —   | 2.2<br>(5.0 V | 3.0<br>') | mA   |                        |
|                                   | Idle                                |                                | _   | 0.01          | 5.0       | μΑ   | _                      |
| RAM standby v                     | oltage                              | V <sub>RAM</sub>               | 2.0 |               |           | V    |                        |

Notes: 1. If the A/D and D/A converters are not used, do not leave the  $AV_{cc}$ ,  $AV_{ss}$ , and  $V_{ref}$  pins open. Connect  $AV_{cc}$  and  $V_{ref}$  to  $V_{cc}$  pin, and connect  $AV_{ss}$  to  $V_{ss}$  pin.

- 2. Current dissipation values are for  $V_{IH}$  min =  $V_{CC}$  -0.2 V and  $V_{IL}$  max = 0.5 V with all output pins unloaded and the on-chip pull-up MOS in the off state.
- 3. The values are for  $V_{_{RAM}} \leq V_{_{CC}}$  < 4.5 V,  $V_{_{IH}}$  min =  $V_{_{CC}} \times$  0.9, and  $V_{_{IL}}$  max = 0.3 V.
- 4.  $I_{cc}$  depends on  $V_{cc}$  and f as follows:  $I_{cc}$  max = 3.0 (mA) + 0.60 (mA/(MHz × V)) ×  $V_{cc}$  × f [normal mode]  $I_{cc}$  max = 3.0 (mA) + 0.48 (mA/(MHz × V)) ×  $V_{cc}$  × f [sleep mode]

#### Table 22-13 Permissible Output Currents

Conditions:  $V_{CC} = 5.0 \text{ V} \pm 10\%$ ,  $AV_{CC} = 5.0 \text{ V} \pm 10\%$ ,  $V_{ref} = 4.5 \text{ V}$  to  $AV_{CC}$ ,  $V_{SS} = AV_{SS} = 0 \text{ V}$ ,  $T_a = -20 \text{ to } +75^{\circ}\text{C}$  (regular specifications),  $T_a = -40 \text{ to } +85^{\circ}\text{C}$  (wide-range specifications)

| Item                                         |                                                     | Symbol                  | Min | Тур | Max | Unit |
|----------------------------------------------|-----------------------------------------------------|-------------------------|-----|-----|-----|------|
| Permissible output                           | Ports 1, A to C                                     | I <sub>ol</sub>         | _   |     | 10  | mA   |
| low current (per pin)                        | Other output pins                                   |                         | _   |     | 2.0 | mA   |
| Permissible output<br>low current (total)    | Total of 32 pins<br>including ports 1<br>and A to C | $\sum I_{OL}$           | —   | —   | 80  | mA   |
|                                              | Total of all output<br>pins, including the<br>above | _                       | _   | _   | 120 | mA   |
| Permissible output<br>high current (per pin) | All output pins                                     | <b>—I</b> <sub>он</sub> | _   | —   | 2.0 | mA   |
| Permissible output<br>high current (total)   | Total of all output pins                            | $\Sigma - I_{OH}$       | _   | —   | 40  | mA   |

Notes: 1. To protect chip reliability, do not exceed the output current values in table 22-13.

2. When driving a darlington pair or LED directly, always insert a current-limiting resistor in the output line, as show in figures 22-33 and 22-34.

|       |                |            | Inst     | Ad<br>truc | dre              | ssir<br>Le | ig M<br>ngtl | lode<br>n (B | ytes | <u>.</u> |             |   |     |                   |                   |                   |               |   |
|-------|----------------|------------|----------|------------|------------------|------------|--------------|--------------|------|----------|-------------|---|-----|-------------------|-------------------|-------------------|---------------|---|
|       |                | eziS bnere |          | u a        | (uga,k           | +uЯ∃@\nЯ∃  | e            | a,PC)        | ee   |          |             | Ŭ | puo | itio              | Ŭ                 | ode               | No. of States | ~ |
|       | Mnemonic       | od0        | u<br>xx# | שוב<br>עט  | <u>り</u> @<br>っの | -@         | <b>e</b> @   | )@           | 00   | _        | Operation   | - | I   | z                 | N                 | 0<br>>            | Advanced      |   |
| SHLR  | SHLR.B Rd      | В          |          | 2          |                  |            |              |              |      |          |             |   |     | 0                 | $\leftrightarrow$ | $\leftrightarrow$ | -             |   |
|       | SHLR.B #2,Rd   | В          |          | 2          |                  |            |              |              |      |          |             |   |     | 0                 | $\leftrightarrow$ |                   | -             |   |
|       | SHLR.W Rd      | ≥          |          | 2          |                  |            |              |              |      | 0        |             |   |     | 0                 | $\leftrightarrow$ | $\leftrightarrow$ | ~             |   |
|       | SHLR.W #2,Rd   | ≥          |          | 2          |                  |            |              |              |      |          | MSB LSB C   |   |     | 0                 | $\leftrightarrow$ | $\leftrightarrow$ | -             |   |
|       | SHLR.L ERd     | _          |          | 2          |                  |            |              |              |      |          |             | I |     | 0                 | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | SHLR.L #2,ERd  | _          |          | 2          |                  |            |              |              |      |          |             | Ι |     | 0                 | $\leftrightarrow$ | ↔<br>0            | 1             |   |
| ROTXL | ROTXL.B Rd     | В          |          | 2          |                  |            |              |              |      |          |             | Ι |     | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | ROTXL.B #2,Rd  | В          |          | 2          |                  |            |              |              |      |          |             | I |     | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | ROTXL.W Rd     | N          |          | 2          |                  |            |              |              |      |          |             | Ι |     | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | ROTXL.W #2,Rd  | Ν          |          | 2          |                  |            |              |              |      |          | C MSB + LSB | Ι |     | $\leftrightarrow$ | $\leftrightarrow$ | ↓ 0               | 1             |   |
|       | ROTXL.L ERd    | _          |          | ~          |                  |            |              |              |      |          |             | Ι | Ι   | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | ROTXL.L #2,ERd | _          |          | ~          |                  |            |              |              |      |          |             | Ι | Ι   | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | -             |   |
| ROTXR | ROTXR.B Rd     | В          |          | 2          |                  |            |              |              |      |          |             | Ι |     | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | ROTXR.B #2,Rd  | ш          |          | 2          |                  |            |              |              |      |          |             |   |     | $\leftrightarrow$ | $\leftrightarrow$ | $\leftrightarrow$ | -             |   |
|       | ROTXR.W Rd     | ≥          |          | N          |                  |            |              |              |      | T        |             |   |     | $\leftrightarrow$ | $\leftrightarrow$ | $\leftrightarrow$ | -             |   |
|       | ROTXR.W #2,Rd  | 8          |          | 2          |                  |            |              |              |      |          | MSB - LSB C | I |     | $\leftrightarrow$ | $\leftrightarrow$ | ↔ 0               | 1             |   |
|       | ROTXR.L ERd    | _          |          | 2          |                  |            |              |              |      |          |             | Ι | Ι   | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |
|       | ROTXR.L #2,ERd | _          |          | 5          |                  |            |              |              |      |          |             | I |     | $\leftrightarrow$ | $\leftrightarrow$ | ↔<br>0            | 1             |   |

# TIOR4—Timer I/O Control Register 4

H'FE92

| Bit :          |     | 7     | -     | 6     | 5                       |                                 | 4                                    |                             | 3    |                                | 2                              | 1                                   | 0                                               |                                                                        |
|----------------|-----|-------|-------|-------|-------------------------|---------------------------------|--------------------------------------|-----------------------------|------|--------------------------------|--------------------------------|-------------------------------------|-------------------------------------------------|------------------------------------------------------------------------|
|                | 10  | B3    | 10    | OB2   | IOB1                    | IC                              | OB0                                  | 10                          | DA3  |                                | IOA2                           | IOA1                                | IOA0                                            |                                                                        |
| Initial value: | (   | C     |       | 0     | 0                       |                                 | 0                                    |                             | 0    |                                | 0                              | 0                                   | 0                                               |                                                                        |
| Read/Write :   | R/  | W/    | F     | R/W   | R/W                     | F                               | R/W                                  | F                           | R/W  |                                | R/W                            | R/W                                 | R/W                                             |                                                                        |
|                |     |       |       |       |                         |                                 |                                      |                             |      |                                |                                |                                     |                                                 |                                                                        |
|                |     |       |       |       |                         |                                 | т                                    | GR4A                        | NI/C | Co                             | ntrol                          |                                     |                                                 |                                                                        |
|                |     |       |       |       |                         |                                 | 0                                    | 0                           | 0    | 0                              | TGR4A                          | Output                              | disabled                                        |                                                                        |
|                |     |       |       |       |                         |                                 |                                      |                             |      | 1                              | compare                        | Initial o                           | output is 0                                     | 0 output at compare match                                              |
|                |     |       |       |       |                         |                                 |                                      | İ                           | 1    | 0                              | register                       | output                              |                                                 | 1 output at compare match                                              |
|                |     |       |       |       |                         |                                 |                                      |                             |      | 1                              | 1                              |                                     |                                                 | Toggle output at compare match                                         |
|                |     |       |       |       |                         |                                 |                                      | 1                           | 0    | 0                              |                                | Output                              | disabled                                        |                                                                        |
|                |     |       |       |       |                         |                                 |                                      |                             |      | 1                              |                                | Initial of                          | output is 1                                     | 0 output at compare match                                              |
|                |     |       |       |       |                         |                                 |                                      |                             | 1    | 0                              | ]                              | output                              |                                                 | 1 output at compare match                                              |
|                |     |       |       |       |                         |                                 |                                      |                             |      | 1                              |                                |                                     |                                                 | Toggle output at compare match                                         |
|                |     |       |       |       |                         |                                 | 1                                    | 0                           | 0    | 0                              | TGR4A                          | Captu                               | re input                                        | Input capture at rising edge                                           |
|                |     |       |       |       |                         |                                 |                                      |                             |      | 1                              | capture                        | TIOCA                               | e is<br>∖4 pin                                  | Input capture at falling edge                                          |
|                |     |       |       |       |                         |                                 |                                      |                             | 1    | ×                              | register                       |                                     | -                                               | Input capture at both edges                                            |
|                |     |       |       |       |                         |                                 |                                      | 1                           | ×    | ×                              |                                | Captu<br>source<br>compa<br>input o | re input<br>e is TGR3A<br>are match/<br>capture | Input capture at generation of<br>TGR3A compare match/input<br>capture |
|                |     |       |       |       |                         |                                 |                                      |                             |      |                                |                                | 1                                   |                                                 | ×: Don't care                                                          |
|                | TGR | 4B I/ | 'O Co | ontro | 1                       |                                 |                                      |                             |      |                                |                                |                                     |                                                 |                                                                        |
|                | 0   | 0     | 0     | 0     | 0 TGR4B Output disabled |                                 |                                      |                             |      |                                |                                |                                     |                                                 |                                                                        |
|                |     | Ū     |       | 1     | is output               | Initial output i<br>output      |                                      | itial output is 0<br>Itput  |      | ) out                          | tput at con                    | npare m                             | atch                                            |                                                                        |
|                |     |       | 1     | 0     | register                |                                 |                                      |                             |      | 1 output at compare match      |                                |                                     | atch                                            |                                                                        |
|                |     |       |       | 1     |                         |                                 |                                      |                             | -    | Toggle output at compare match |                                |                                     | are match                                       |                                                                        |
|                |     | 1     | 0     | 0     |                         | Outpu                           | ut disa                              | abled                       |      |                                |                                |                                     |                                                 |                                                                        |
|                |     |       |       | 1     |                         | Initial                         | outpu                                | ut is 1                     | (    | ) out                          | tput at con                    | npare m                             | atch                                            |                                                                        |
|                |     |       | 1     | 0     |                         | outpu                           | t                                    |                             |      | lout                           | tput at con                    | npare m                             | atch                                            |                                                                        |
|                |     |       |       | 1     |                         |                                 |                                      |                             | -    | Fogo                           | le output                      | at comp                             | are match                                       |                                                                        |
|                | 1   | 0     | 0     | 0     | TGR4B                   | Captu                           | ure in                               | put                         | 1    | nput                           | t capture a                    | at rising                           | edge                                            |                                                                        |
|                |     |       |       | 1     | is input<br>capture     | sourc                           | e is<br>R4 ni                        | in                          | Ī    | nput                           | t capture a                    | at falling                          | edge                                            |                                                                        |
|                |     |       | 1     | ×     | register                |                                 | Dip                                  |                             | I    | nput                           | t capture a                    | at both e                           | dges                                            |                                                                        |
|                |     | 1     | ×     | ×     |                         | Captu<br>sourc<br>comp<br>input | ure in<br>ce is T<br>pare n<br>captu | put<br>FGR3<br>natch<br>ure |      | nput<br>FGR<br>capti           | t capture a<br>3C compa<br>ure | at genera<br>are mato               | ation of<br>h/input                             |                                                                        |

×: Don't care

## P6DDR—Port 6 Data Direction Register H'FEB5 Port 6

| Bit           | : | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|---------------|---|--------|--------|--------|--------|--------|--------|--------|--------|
|               |   | P67DDR | P66DDR | P65DDR | P64DDR | P63DDR | P62DDR | P61DDR | P60DDR |
| Initial value | : | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Read/Write    | : | W      | W      | W      | W      | W      | W      | W      | W      |
|               |   |        |        |        |        |        |        |        |        |

Specify input or output for individual port 6 pins

| PADDR—Port A Data | Dire | ction Regi | ster   | H'FI        | EB9         |              |             | Port A             |        |
|-------------------|------|------------|--------|-------------|-------------|--------------|-------------|--------------------|--------|
| Bit               | :    | 7          | 6      | 5           | 4           | 3            | 2           | 1                  | 0      |
|                   |      | PA7DDR     | PA6DDR | PA5DDR      | PA4DDR      | PA3DDR       | PA2DDR      | PA1DDR             | PA0DDR |
| Initial value     | :    | 0          | 0      | 0           | 0           | 0            | 0           | 0                  | 0      |
| Read/Write        | :    | W          | W      | W           | W           | W            | W           | W                  | W      |
|                   |      |            | Spe    | ecify input | or output f | for individu | ual port A  | pins               |        |
| PBDDR—Port B Data | Dire | ction Regi | ster   | H'FI        | EBA<br>[O   | n-chip R(    | OM versi    | Port B<br>on Only] |        |
| Bit               | :    | 7          | 6      | 5           | 4           | 3            | 2           | 1                  | 0      |
|                   |      | PB7DDF     | PB6DDR | PB5DDR      | PB4DDR      | PB3DDR       | PB2DDR      | PB1DDR P           | B0DDR  |
| Initial valu      | e :  | 0          | 0      | 0           | 0           | 0            | 0           | 0                  | 0      |
| Read/Writ         | e :  | W          | W      | W           | W           | W            | W           | W                  | W      |
|                   |      |            | Sp     | ecify input | or output f | or individu  | al port B p | ins                |        |
| PCDDR—Port C Data | Dire | ction Regi | ster   | H'FI        | CBB [O      | n chin D(    | M vorsi     | Port C             |        |
|                   |      |            |        |             | ĮU          | п-стр К      | JIVI VEISI  | on Omyj            |        |
| Bit               | :    | 7          | 6      | 5           | 4           | 3            | 2           | 1                  | 0      |

| Bit           | : | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|---------------|---|--------|--------|--------|--------|--------|--------|--------|--------|
|               |   | PC7DDR | PC6DDR | PC5DDR | PC4DDR | PC3DDR | PC2DDR | PC1DDR | PC0DDR |
| Initial value | : | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| Read/Write    | : | W      | W      | W      | W      | W      | W      | W      | W      |
|               |   |        |        |        |        |        |        |        |        |
|               |   |        |        |        |        |        |        |        |        |

Specify input or output for individual port C pins

#### TIER0—Timer Interrupt Enable Register 0 H'FFD4

**TPU0** 



0 A/D conversion start request generation disabled

1 A/D conversion start request generation enabled

## C.10 Port D Block Diagram



Figure C-10 Port D Block Diagram (Pin PD<sub>0</sub> to PD<sub>7</sub>)

# H8S/2357 Group, H8S/2357F-ZTAT<sup>™</sup>, H8S/2398F-ZTAT<sup>™</sup> Hardware Manual



Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan