

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k83-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 PIC18 CPU

This family of devices contains a PIC18 8-bit CPU core based on the modified Harvard architecture. The PIC18 CPU supports:

- System Arbitration which decides memory access allocation depending on user priorities
- Vectored Interrupt capability with automatic two level deep context saving
- 31-level deep hardware stack with overflow and underflow reset capabilities
- Support Direct, Indirect, and Relative Addressing modes
- 8x8 Hardware Multiplier

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HC-1/u	U-0	
_	_			_	_	MEMV	_	
bit 7 bit 0								
Legend:								
R = Readable b	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		iown	-m/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			q = Value depends on condition					

REGISTER 6-3: PCON1: POWER CONTROL REGISTER 1

bit 7-2	Unimplemented: Read as '0	'

bit 1 **MEMV:** Memory Violation Flag bit

1 = No memory violation Reset occurred or set to '1' by firmware

0 = A memory violation Reset occurred (set to '0' in hardware when a memory violation occurs)

bit 0 Unimplemented: Read as '0'

TABLE 6-4: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN			_	_	_		BORRDY	75
PCON0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR	80
PCON1	_	_	_				MEMV	_	81

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

9.4.2 SERVING A HIGH PRIORITY INTERRUPT WHILE A LOW PRIORITY INTERRUPT PENDING

A high priority interrupt request will always take precedence over any interrupt of a lower priority. The high priority interrupt is acknowledged first, then the low-priority interrupt is acknowledged. Upon a return from the high priority ISR (by executing the RETFIE instruction), the low priority interrupt is serviced, see Figure 9-3.

If any other high priority interrupts are pending and enabled, then they are serviced before servicing the pending low priority interrupt. If no other high priority interrupt requests are active, the low priority interrupt is serviced.

FIGURE 9-3: INTERRUPT EXECUTION: HIGH PRIORITY INTERRUPT WITH A LOW PRIORITY INTERRUPT PENDING

R-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IOCIF ⁽²⁾) CRCIF	SCANIF	NVMIF	CSWIF ⁽³⁾	OSFIF	HLVDIF	SWIF
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	set	'0' = Bit is clea	ared	HS = Bit is se	et in hardware		
bit 7	IOCIF: Interrut	ipt-on-Change has occurred	Interrupt Flag	bit ⁽²⁾			
bit 6	0 = Interrupt CRCIF: CRC 1 = Interrupt 0 = Interrupt	Interrupt Flag has occurred (event has not o	bccurred bit must be cleare bccurred	ed by software)		
bit 5	SCANIF: Mer 1 = Interrupt 0 = Interrupt	nory Scanner I has occurred (event has not o	nterrupt Flag I must be cleare occurred	oit ed by software)		
bit 4	NVMIF: NVM 1 = Interrupt 0 = Interrupt	Interrupt Flag has occurred (event has not o	bit must be cleare occurred	ed by software)		
bit 3	CSWIF: Clock 1 = Interrupt 0 = Interrupt	< Switch Interru has occurred (event has not o	upt Flag bit ⁽³⁾ must be cleare occurred	ed by software)		
bit 2	OSFIF: Oscillator Fail Interrupt Flag bit 1 = Interrupt has occurred (must be cleared by software) 0 = Interrupt event has not occurred						
bit 1	HLVDIF: HLV 1 = Interrupt 0 = Interrupt	D Interrupt Fla has occurred (event has not o	g bit must be cleare occurred	ed by software)		
bit 0	SWIF: Software Interrupt Flag bit 1 = Software Interrupt Flag Enable 0 = Software Interrupt Flag Disable						
Note 1:	 Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. IOCLE is a read only bit. To clear the interrupt condition of the bits in the IOCLE registers must be cleared. 						
۷.		iy bit. To clear	ine interrupt o	onultion, all bit		egisters must i	se cleareu.

REGISTER 9-3: PIR0: PERIPHERAL INTERRUPT REQUEST REGISTER 0

Cours is a read-only bit. To clear the interrupt condition, an bits in the rock's registers must be cleared.
 The CSWIF interrupt will not wake the system from Sleep. The system will sleep until another interrupt causes the wake-up.

10.1.2 INTERRUPTS DURING DOZE

If an interrupt occurs and the Recover-On-Interrupt bit is clear (ROI = 0) at the time of the interrupt, the Interrupt Service Routine (ISR) continues to execute at the rate selected by DOZE<2:0>. Interrupt latency is extended by the DOZE<2:0> ratio.

If an interrupt occurs and the ROI bit is set (ROI = 1) at the time of the interrupt, the DOZEN bit is cleared and the CPU executes at full speed. The prefetched instruction is executed and then the interrupt vector sequence is executed. In Figure 10-1, the interrupt occurs during the 2nd instruction cycle of the Doze period, and immediately brings the CPU out of Doze. If the Doze-On-Exit (DOE) bit is set (DOE = 1) when the RETFIE operation is executed, DOZEN is set, and the CPU executes at the reduced rate based on the DOZE<2:0> ratio.

EXAMPLE 10-1: DOZE SOFTWARE EXAMPLE

```
//Mainline operation
bool somethingToDo = FALSE:
void main()
   initializeSystem();
           // DOZE = 64:1 (for example)
           // ROI = 1;
   GIE = 1; // enable interrupts
   while (1)
   {
       // If ADC completed, process data
       if (somethingToDo)
       {
           doSomething();
           DOZEN = 1; // resume low-power
       }
   }
// Data interrupt handler
void interrupt()
   // DOZEN = 0 because ROI = 1
   if (ADIF)
   {
       somethingToDo = TRUE;
       DOE = 0; // make main() go fast
       ADIF = 0;
   // else check other interrupts...
   if (TMROIF)
   {
       timerTick++;
       DOE = 1; // make main() go slow
       TMROIF = 0;
   }
```

10.2 Sleep Mode

Sleep mode is entered by executing the SLEEP instruction, while the Idle Enable (IDLEN) bit of the CPUDOZE register is clear (IDLEN = 0).

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running if enabled for operation during Sleep
- 2. The PD bit of the STATUS register is cleared (Register 4-2)
- 3. The TO bit of the STATUS register is set (Register 4-2)
- 4. The CPU clock is disabled
- 5. LFINTOSC, SOSC, HFINTOSC and ADCRC are unaffected and peripherals using them may continue operation in Sleep.
- I/O ports maintain the status they had before Sleep was executed (driving high, low, or highimpedance)
- 7. Resets other than WDT are not affected by Sleep mode

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 38.0 "5-Bit Digital-to-Analog Converter (DAC) Module" and Section 35.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
WDTCON0			PS<4:0> SEN						172
WDTCON1	—	CS<2:0>			_	WINDOW<2:0>			173
WDTPSL	PSCNT<7:0>								174
WDTPSH	PSCNT<15:8>								174
WDTTMR		W	DTTMR<4:	0>	STATE	PSCNT	<17:16>	175	

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Windowed Watchdog Timer.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LATx7	LATx6	LATx5	LATx4	LATx3	LATx2	LATx1	LATx0	
bit 7				-	•		bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimpler	nented bit, read	d as '0'		
'1' = Bit is set '0' = Bit is cleared			x = Bit is unki	nown				
-n/n = Value at POR and BOR/Value at all other Resets								

REGISTER 16-3: LATx: LATx REGISTER⁽¹⁾

bit 7-0 LATx<7:0>: Rx7:Rx0 Output Latch Value bits

Note 1: Writes to LATx are equivalent with writes to the corresponding PORTx register. Reads from LATx register return register values, not I/O pin values.

TABLE 16-4: LAT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	SMT2MD	SMT1MD	CLC4MD	CLC3MD	CLC2MD	CLC1MD	DSMMD
bit 7							bit 0
r							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	Unimplement	ted: Read as 'o)'				
bit 6	SMT2MD: Dis	sable SMT2 Mo	dule bit				
	1 = SMT2 mc	odule disabled					
DIT 5	SMI1MD: DIS	sable SMI1 Mc	dule bit				
	$\perp = SMT1mc$ 0 = SMT1mc	odule disabled					
bit 4	CLC1MD: Dis	able CI C4 Mo	dule bit				
	1 = CLC4 mo	dule disabled					
	0 = CLC4 mo	dule enabled					
bit 3	CLC3MD: Dis	able CLC3 Mo	dule bit				
	1 = CLC3 mo	dule disabled					
	0 = CLC3 mo	dule enabled					
bit 2	CLC2MD: Dis	able CLC2 Mo	dule bit				
	1 = CLC2 mo	dule disabled					
	0 = CLC2 mo	dule enabled					
bit 1	CLC1MD: Dis	able CLC1 Mo	dule bit				
	1 = CLC1 mo	dule disabled					
bit 0		able Data Sign	al Modulator bi	t			
2.0	1 = DSM model	dule disabled					
	0 = DSM mod	dule enabled					

REGISTER 19-7: PMD6: PMD CONTROL REGISTER 6

22.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

In the level triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMR2_ers, as shown in Figure 22-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMR2_ers = 1. ON is controlled by BSF and BCF instructions. When ON=0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the T2PR value or two clock periods after the external Reset signal goes true and stays true.

The timer starts counting, and the PWM output is set high, on either the clock following the T2PR match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.

	Re: 10.0001960 9122018
MODE	0b00111
TMRx_clk	
TxPR	5
Instruction ⁽¹⁾ -	(BSF) (BSF)
ON	
TMRx_ers	
TxTMR	$0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	
Note 2	I: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

FIGURE 25-11: WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F25/26K83

25.6.11 WINDOWED COUNTER MODE

This mode counts pulses on the SMTx_signal input, within a window dictated by the SMTxWIN input. It begins counting upon seeing a rising edge of the SMTxWIN input, updates the SMTxCPW register on a falling edge of the SMTxWIN input, and updates the SMTxCPR register on each rising edge of the SMTxWIN input beyond the first. See Figure 25-21 and Figure 25-22.

FIGURE 30-1: SIMPLIFIED BLOCK DIAGRAM OF THE DATA SIGNAL MODULATOR

© 2017 Microchip Technology Inc.

34.8.7 INFORMATION PROCESSING TIME

The Information Processing Time (IPT) is the time segment starting at the sample point that is reserved for calculation of the subsequent bit level. The CAN specification defines this time to be less than or equal to 2 Tq. The ECAN module defines this time to be 2 Tq. Thus, Phase Segment 2 must be at least 2 Tq long.

34.8.8 CLOCK SELECTION

The CLKSEL bit of the CIOCON register allows for selection between two CAN input clocks. When CLKSEL = 0 (default), the CAN clock (Fosc in the equations above) will be the same as the system clock. When CLKSEL = 1, the CAN clock will be the clock selected by the FEXTOSC Configuration bit, regardless of the system clock. This allows for the core of the device to be clocked by a PLL at 64 MHz (16 MHz HS crystal+4xPLL) while keeping the CAN clocked by the base 16 MHz HS crystal without the PLL, for example.

Note: If CLKSEL = 1, the system clock must be greater than or equal to the FEXTOSC selected clock. Having a slower system clock than the CAN clock will lead to unexpected behavior.The Information Processing Time (IPT) is the time segment starting at the sample point that is reserved for calculation of the subsequent bit level. The CAN specification defines this time to be less than or equal to 2 Tq. The CAN module defines this time to be 2 Tq. Thus, Phase Segment 2 must be at least 2 Tq long.

34.9 Synchronization

To compensate for phase shifts between the oscillator frequencies of each of the nodes on the bus, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (Sync_Seg). The circuit will then adjust the values of Phase Segment 1 and Phase Segment 2 as necessary. There are two mechanisms used for synchronization.

34.9.1 HARD SYNCHRONIZATION

Hard synchronization is only done when there is a recessive to dominant edge during a bus Idle condition, indicating the start of a message. After hard synchronization, the bit time counters are restarted with Sync_Seg. Hard synchronization forces the edge, which has occurred to lie within the synchronization segment of the restarted bit time. Due to the rules of synchronization, if a hard synchronization occurs, there will not be a resynchronization within that bit time.

34.9.2 RESYNCHRONIZATION

As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2 may be shortened. The amount of lengthening or shortening of the phase buffer segments has an upper bound given by the Synchronization Jump Width (SJW). The value of the SJW will be added to Phase Segment 1 (see Figure 34-6) or subtracted from Phase Segment 2 (see Figure 34-7). The SJW is programmable between 1 Tq and 4 Tq.

Clocking information will only be derived from recessive to dominant transitions. The property, that only a fixed maximum number of successive bits have the same value, ensures resynchronization to the bit stream during a frame.

The phase error of an edge is given by the position of the edge relative to Sync_Seg, measured in Tq. The phase error is defined in magnitude of Tq as follows:

- e = 0 if the edge lies within Sync_Seg.
- e > 0 if the edge lies before the sample point.
- e < 0 if the edge lies after the sample point of the previous bit.

If the magnitude of the phase error is less than, or equal to, the programmed value of the Synchronization Jump Width, the effect of a resynchronization is the same as that of a hard synchronization.

If the magnitude of the phase error is larger than the Synchronization Jump Width and if the phase error is positive, then Phase Segment 1 is lengthened by an amount equal to the Synchronization Jump Width.

If the magnitude of the phase error is larger than the resynchronization jump width and if the phase error is negative, then Phase Segment 2 is shortened by an amount equal to the Synchronization Jump Width.

34.9.3 SYNCHRONIZATION RULES

- Only one synchronization within one bit time is allowed.
- An edge will be used for synchronization only if the value detected at the previous sample point (previously read bus value) differs from the bus value immediately after the edge.
- All other recessive to dominant edges fulfilling rules 1 and 2 will be used for resynchronization, with the exception that a node transmitting a dominant bit will not perform a resynchronization as a result of a recessive to dominant edge with a positive phase error.

EXAMPLE 34-2: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS TX/RX BUFFERS (CONTINUED)

ErrorInter	rupt	
BCF	PIR3, ERRIF	; Clear the interrupt flag
		; Handle error.
RETFIE		
TXB2Interr	upt	
BCF	PIR3, TXB2IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXBlInterr	upt	
BCF	PIR3, TXB1IF	; Clear the interrupt flag
GOTO	AccessBuffer	
TXB0Interr	upt	
BCF	PIR3, TXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
RXBlInterr	upt	
BCF	PIR3, RXB1IF	; Clear the interrupt flag
GOTO	Accessbuffer	
RXB0Interr	upt	
BCF	PIR3, RXB0IF	; Clear the interrupt flag
GOTO	AccessBuffer	
AccessBuff	er	; This is either TX or RX interrupt
; Copy	CANSTAT.ICODE bits to CANCON.	WIN bits
MOVF	TempCANCON, W	; Clear CANCON.WIN bits before copying
		; new ones.
ANDLW	B'11110001'	; Use previously saved CANCON value to
		; make sure same value.
MOVWF	TempCANCON	; Copy masked value back to TempCANCON
MOVF	TempCANSTAT, W	; Retrieve ICODE bits
ANDLW	B'00001110'	; Use previously saved CANSTAT value
		; to make sure same value.
IORWF	TempCANCON	; Copy ICODE bits to WIN bits.
MOVFF	TempCANCON, CANCON	; Copy the result to actual CANCON
; Acce	ss current buffer…	
; User	code	
; Rest	ore CANCON.WIN bits	
MOVF	CANCON, W	; Preserve current non WIN bits
ANDLW	B'11110001'	
IORWF	TempCANCON	; Restore original WIN bits
; Do n	ot need to restore CANSTAT - i	t is read-only register.
; Retu	rn from interrupt or check for	another module interrupt source

								.	
Mode 0	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R-0	
	RXFUL("	RXM1	RXM0		RXRTRRO	FILHIT2	FILHIT1	FILHIT0	
	R/C-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
Mode 1,2	RXFUL ⁽¹⁾	RXM1	RTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHITO	
	bit 7						1	bit 0	
Legend:	id: C = Clearable bit								
R = Reada	able bit		W = Writable	bit	U = Unimple	emented bit, r	ead as '0'		
-n = Value	at POR		'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is un	known	
hit 7		aiva Full Stati							
DIL 7		eive Full Statt	as bill ^{er}	0000000					
	0 = Receive k	ouffer is open	to receive a n	iessage iew messag	е				
bit 6-5, 6	<u>Mode 0:</u>								
	RXM<1:0>: F	Receive Buffe	r Mode bit 1 (d	combines wi	th RXM0 to fo	orm RXM<1:0)> bits, see bit	t 5)	
	11 = Receive	all message	s (including the	ose with err	ors); filter crite	eria is ignored	d IDL must be '	- '	
	01 = Receive	only valid me	essages with s	standard ide	ntifier. EXIDE	N in RXFnSI	DL must be '0	⊥)'	
	00 = Receive	all valid mes	sages as per	EXIDEN bit	in RXFnSIDL	register			
	<u>Mode 1, 2:</u> RXM1: Recei	ive Buffer Mo	de bit						
	 1 = Receive all messages (including those with errors); acceptance filters are ignored 0 = Receive all valid messages as per acceptance filters 								
bit 5	5 <u>Mode 0:</u> RXM<1:0>: Receive Buffer Mode bit 0 (combines with RXM1 to form RXM<1:0> bits, see bit 6) <u>Mode 1, 2:</u> DTRD2: Demote Transmission Desuest bit for Dessined Measure (read only)						t 6)		
	1 = A remote	transmission	request is rec	eived	ived wessay				
	0 = A remote transmission request is not received								
bit 4	bit 4 <u>Mode 0:</u> FILHIT2 4: Filter Hit bit 4								
	<u>Mode 1, 2:</u>								
	FILHIT<4:0>: Filter Hit bit 4								
hit 2	I his bit comp	ines with othe	er dits to torm	the filter acc	ceptance bits<	<4:U>.			
DIL 3	RXRTRRO: F	Remote Trans	mission Reau	est bit for R	eceived Mess	age (read-or	nlv)		
	1 = A remote	transmission	request is rec	eived		0 (<i>,</i>		
	0 = A remote	transmission	request is not	t received					
	Mode 1, 2:		0						
	This bit comb	ines with oth	ა er bits to form	the filter ac	centance hite	<4.0>			
Note 1:	This bit is set b	by the CAN mo	odule upon rec	eiving a me	ssage and mu	st be cleared	by software at	fter the buffer	

REGISTER 34-14: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER

is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full.

REGISTER 34-46: SDFLC: STANDARD DATA BYTES FILTER LENGTH COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_			FLC4	FLC3	FLC2	FLC1	FLC0	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writa	ble bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is	set	'0' = Bit is cle	ared	x = Bit is unkr	ıown	
bit 7-5	Unimplement	ted: Read	as '0'					
bit 4-0	FLC<4:0>: Fil	lter Length	Count bits					
	Mode 0:							
	Not used; forced to '00		0000'.					
	<u>Mode 1, 2:</u>							
	00000-10010 = 0		18 bits are availa depends on the D as RX buffer) of t	ble for standar LC<3:0> bits (F he message be	d data byte filte RXBnDLC<3:0> eing received.	er. Actual numbe or BnDLC<3:0	er of bits used > if configured	
	If DLC<3:0>	= 0000	No bits will be compared with incoming data bits.					
	If DLC<3:0>	= 0001	Up to 8 data bits on pared with the co	of RXFnEID<7: rresponding nu	0>, as determir umber of data b	ed by FLC<2:0 its of the incom	>, will be com- ing message.	
	If DLC<3:0>	= 0010	Up to 16 data bit	s of RXFnEID	<15:0>, as dete	ermined by FLC	<3:0>, will be	
			compared with t message.	he correspond	ling number o	f data bits of	the incoming	
	If DLC<3:0>	= 0011	Up to 18 data bit compared with t message.	s of RXFnEID.	<17:0>, as dete ding number o	ermined by FLC f data bits of	<4:0>, will be the incoming	

Note 1: This register is available in Mode 1 and 2 only.

© 2017 Microchip Technology Inc.

DYERCONO	R/W-0							
	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_0
PYERCON1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_0
PYERCON2	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_0
	_							
DYERCON2	R/W-0							
KAFBCON5	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_0
	_							
PYERCONA	R/W-0							
KAFBCUN4	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_0
RXFBCON5	R/W-0							
	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_0
PYERCONE	R/W-0							
	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_0
PYERCON7	R/W-0							
	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_0
	bit 7							bit 0

REGISTER 34-47: RXFBCONn: RECEIVE FILTER BUFFER CONTROL REGISTER 'n'(1)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 F<15:2>BP_<3:0>: Filter n Buffer Pointer Nibble bits 0000 = Filter n is associated with RXB0 0001 = Filter n is associated with RXB1 0010 = Filter n is associated with B0 0011 = Filter n is associated with B1 ... 0111 = Filter n is associated with B5 1111-1000 = Reserved

Note 1: This register is available in Mode 1 and 2 only.

39.13 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown in Table 39-2. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 39-2:

Peripheral	Bit Name Prefix
C1	C1
C2	C2

REGISTER 39-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-1	R/W-0/0	R/W-0/0
EN	OUT	—	POL	—	—	HYS	SYNC
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EN: Comparator Enable bit					
	 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power 					
bit 6	OUT: Comparator Output bit					
	$\frac{\text{If POL} = 0 \text{ (noninverted polarity):}}{1 = CxVP > CxVN}$ $0 = CxVP < CxVN$ $\frac{\text{If POL} = 1 \text{ (inverted polarity):}}{1 = CxVP < CxVN}$					
	0 = CxVP > CxVN					
bit 5	Unimplemented: Read as '0'					
bit 4	POL: Comparator Output Polarity Select bit					
	 1 = Comparator output is inverted 0 = Comparator output is not inverted 					
bit 3	Unimplemented: Read as '0'					
bit 2	Unimplemented: Read as '1'					
bit 1	HYS: Comparator Hysteresis Enable bit					
	 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled 					
bit 0	SYNC: Comparator Output Synchronous Mode bit					
	 1 = Comparator output to Timer1/3/5 and I/O pin is synchronous to changes on Timer1 clock source. 0 = Comparator output to Timer1/3/5 and I/O pin is asynchronous Output updated on the falling edge of Timer1/3/5 clock source. 					

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2

PIC18(L)F25/26K83

REVISION HISTORY

Revision A (8/2017)

Initial release of the document.