

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f25k83-e-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-7: COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

Bank 0

EXAMPLE INSTRUCTION: ADDWF, f, d, a (Opcode: 0010 01da ffff fff)

0000h

0060h

0100h

When 'a' = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and 0FFh. This is the same as locations 3F60h to 3FFFh (Bank 63) of data memory.

Locations below 60h are not available in this Addressing mode.

the data memory space.

correct syntax is now:

ADDWF [k], d

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 63 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

9.4.4 SIMULTANEOUS LOW AND HIGH PRIORITY INTERRUPTS

When both high and low interrupts are active in the same instruction cycle (i.e., simultaneous interrupt events), both the high and the low priority requests are generated. The high priority ISR is serviced first before servicing the low priority interrupt see Figure 9-5.

FIGURE 9-5: INTERRUPT EXECUTION: SIMULTANEOUS LOW AND HIGH PRIORITY INTERRUPTS

EXAMPLE 9-4: SETTING UP VECTORED INTERRUPTS USING XC8

```
// NOTE 1: If IVTBASE is changed from its default value of 0x000008, then the
// "base(...)" argument must be provided in the ISR. Otherwise the vector
// table will be placed at 0x0008 by default regardless of the IVTBASE value.
// NOTE 2: When MVECEN=0 and IPEN=1, a separate argument as "high_priority"
// or "low_priority" can be used to distinguish between the two ISRs.
// If the argument is not provided, the ISR is considered high priority
// by default.
// NOTE 3: Multiple interrupts can be handled by the same ISR if they are
// specified in the "irq(...)" argument. Ex: irq(IRQ_TMR0, IRQ_CCP1)
void __interrupt(irq(IRQ_TMR0), base(0x4008)) TMR0_ISR(void)
{
       PIR3bits.TMR0IF = 0;
                                             // Clear the interrupt flag
       LATCbits.LC0 ^= 1;
                                             // ISR code goes here
}
void __interrupt(irq(default), base(0x4008)) DEFAULT_ISR(void)
{
       // Unhandled interrupts go here
}
void INTERRUPT_Initialize (void)
{
       INTCON0bits.GIEH = 1;
                                             // Enable high priority interrupts
       INTCONObits.GIEL = 1;
                                             // Enable low priority interrupts
       INTCONObits.IPEN = 1;
                                             // Enable interrupt priority
       PIE3bits.TMR0IE = 1;
                                             // Enable TMR0 interrupt
       PIE4bits.TMR1IE = 1;
                                             // Enable TMR1 interrupt
       IPR3bits.TMR0IP = 0;
                                             // Make TMR0 interrupt low priority
       // Change IVTBASE if required
       IVTBASEU = 0 \times 00;
                                             // Optional
       IVTBASEH = 0 \times 40;
                                             // Default is 0x0008
       IVTBASEL = 0x08;
}
```

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
I2C1RXIP	SPI1IP	SPI1TXIP	SPI1RXIP	DMA1AIP	DMA10RIP	DMA1DCNTIP	DMA1SCNTIP		
bit 7				•			bit 0		
Legend:									
R = Readabl	e bit	W = Writable	e bit	U = Unimpleme	ented bit, read a	as '0'			
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value at	POR and BOR	/Value at all othe	r Resets		
'1' = Bit is se	t	'0' = Bit is cle	eared						
bit 7	I2C1RXIP: I	² C1 Receive I	nterrupt Priori	ty bit					
	1 = High pri	ority							
	0 = Low price	ority							
bit 6	SPI1IP: SPI	1 Transmit Inte	errupt Priority	bit					
	1 = High pri	ority							
hit 5		² C1 Transmit I	nterrunt Prior	ity bit					
bit o	1 = High pri	ority							
	0 = Low price	ority							
bit 4	SPI1RXIP: S	SPI1 Receive	Interrupt Prior	ity bit					
	1 = High pri	ority							
	0 = Low price	ority							
bit 3	DMA1AIP: D	MA1 Abort Tr	ansmit Interru	pt Priority bit					
	1 = High pri	ority							
hit 2			un Interrunt P	riority bit					
	1 = High pri	ority	un interrupt i	nonty bit					
	0 = Low price	ority							
bit 1	DMA1DCNT	IP: DMA1 Des	stination Coun	t Interrupt Priori	ty bit				
	1 = High pri	ority							
	0 = Low price	ority							
bit 0	DMA1SCNT	IP: DMA1 Sou	urce Count Int	terrupt Priority bi	it				
	1 = High pri	ority							
		JIIIY							

REGISTER 9-25: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	CLC4IP	CCP4IP	CLC3IP	CWG3IP	CCP3IP	TMR6IP	TMR5GIP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6	CLC4IP: CLC	4 Interrupt Price	ority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 5	CCP4IP: CCF	P4 Interrupt Pri	ority bit				
	1 = High prio	rity					
	0 = Low prior	nty					
bit 4	CLC3IP: CLC	3 Interrupt Prid	ority bit				
	1 = High prio	rity					
L H 0							
DIT 3		/G3 Interrupt P	riority dit				
	\perp = High pho	rity					
bit 2	CCP3IP: CCF	P3 Interrupt Pri	oritv bit				
	1 = High prio	ritv					
	0 = Low prior	rity					
bit 1	TMR6IP: TMF	R6IP Interrupt I	Priority bit				
	1 = High prio	rity					
	0 = Low prior	rity					
bit 0	TMR5GIP: TN	MR5 Interrupt F	Priority bit				
	1 = High prio	rity					
	0 = Low prior	rity					

REGISTER 9-32: IPR9: PERIPHERAL INTERRUPT PRIORITY REGISTER 9

REGISTER 14-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	
			DATA	<15:8>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other Res				

bit 7-0 DATA<15:8>: CRC Input/Output Data bits

'1' = Bit is set

REGISTER 14-4: CRCDATL: CRC DATA LOW BYTE REGISTER

'0' = Bit is cleared

R/W-xx	R/W-x/x							
DATA<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **DATA<7:0>**: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 14-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ACC<15:8>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: CRC Accumulator Register bits

17.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 17-1.

The peripheral input is selected with the peripheral xxxPPS register (Register 17-1), and the peripheral output is selected with the PORT RxyPPS register (Register 17-2). For example, to select PORTC<7> as the UART1 RX input, set U1RXPPS to 0b1 0111, and to select PORTC<6> as the UART1 TX output set RC6PPS to 0b01 0011.

17.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has analog functions associated, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 17-1.

Note:	The notation "xxx" in the register name is					
	a place holder for the peripheral identifier.					
	For example, INT0PPS.					

17.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

• UART

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 17-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

FIGURE 17-1: SIMPLIFIED PPS BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
OVRD	OVRC	OVRB	OVRA	STRD ⁽²⁾	STRC ⁽²⁾	STRB ⁽²⁾	STRA ⁽²⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion	
bit 7	OVRD: Steer	ing Data D bit					
bit 6	OVRC: Steer	ing Data C bit					
bit 5	OVRB: Steer	ing Data B bit					
bit 4	OVRA: Steer	ing Data A bit					
bit 3	STRD: Steeri	ng Enable bit D) ⁽²⁾				
	1 = CWGxD o	output has the	CWG data inp	ut waveform wi	th polarity contr	ol from POLD I	oit
	0 = CWGxD d	output is assigr	ed to value of	OVRD bit			
bit 2	STRC: Steeri	ng Enable bit C	(2)				
	1 = CWGxC o	output has the	CWG data inp	ut waveform wit	th polarity contr	ol from POLC I	oit
	0 = CWGxC d	output is assigr	ied to value of	OVRC bit			
bit 1	STRB: Steeri	ng Enable bit E	3(2)				
	1 = CWGxB c	output has the	CWG data inpu	ut waveform wit	h polarity contr	ol from POLB b	pit
	0 = CWGxB c	output is assign	ed to value of	OVRB bit			
bit 0	STRA: Steeri	ng Enable bit A	(2)				
	1 = CWGxA c	output has the	CWG data inpi	ut waveform wit	h polarity contr	ol from POLA b	bit
	0 = CWGXA c	output is assign	ied to value of	OVRA bit			
Note 1: T	he bits in this reg	ister apply only	when MODE	<2:0> = 00x (R	egister 26-1, St	teering modes)	

REGISTER 26-5: CWGxSTR⁽¹⁾: CWG STEERING CONTROL REGISTER

2: This bit is double-buffered when MODE < 2:0 > = 0.01.

G1D4T G1D4N G1D3T G1D3N G1D2T G1D2N G1D1T bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' U = Dit is unshanged W = Dit is unshanged U = Unimplemented bit, read as '0'	G1D1N bit 0								
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' U = Dit is unshanged	bit 0 er Resets								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' W = Bit is unshared W = Bit is unshared D = Unimplemented bit, read as '0'	er Resets								
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' W = Bit is unshared W = Dit is unshared	er Resets								
R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'u = Rt is unsharedu = Rt is unsharedu = Rt is unshared$	er Resets								
	er Resets								
u = או וא unchangeo x = או וא unknown -n/n = value at POR and BOR/Value at all othe									
'1' = Bit is set '0' = Bit is cleared									
bit 7 G1D4T: Gate 0 Data 4 True (non-inverted) bit									
1 = CLCIN3 (true) is gated into CLCx Gate 0									
0 = CLCIN3 (true) is not gated into CLCx Gate 0									
bit 6 G1D4N: Gate 0 Data 4 Negated (inverted) bit									
1 = CLCIN3 (inverted) is gated into CLCx Gate 0 0 = CLCIN3 (inverted) is not gated into CLCx Gate 0									
bit 5 G1D3T: Gate 0 Data 3 True (non-inverted) bit									
1 = CLCIN2 (true) is gated into CLCx Gate 0	1 = CLCIN2 (true) is gated into CLCx Gate 0								
0 = CLCIN2 (true) is not gated into CLCx Gate 0									
bit 4 G1D3N: Gate 0 Data 3 Negated (inverted) bit									
1 = CLCIN2 (inverted) is gated into CLCx Gate 0									
0 = CLCIN2 (inverted) is not gated into CLCx Gate 0									
bit 3 G1D2T: Gate 0 Data 2 True (non-inverted) bit									
1 = CLCIN1 (true) is gated into CLCx Gate 0									
bit 2 G1D2N: Gate 0 Data 2 Negated (inverted) bit									
1 = C[CIN1 (inverted) is gated into C[Cy Gate 0]									
0 = CLCIN1 (inverted) is not gated into CLCx Gate 0									
bit 1 G1D1T: Gate 0 Data 1 True (non-inverted) bit									
1 = CLCIN0 (true) is gated into CLCx Gate 0									
0 = CLCIN0 (true) is not gated into CLCx Gate 0									
bit 0 G1D1N: Gate 0 Data 1 Negated (inverted) bit									
1 = CLCIN0 (inverted) is gated into CLCx Gate 0									
0 = CLCIN0 (inverted) is not gated into CLCx Gate 0									

REGISTER 27-7: CLCxGLS0: GATE 0 LOGIC SELECT REGISTER

29.0 ZERO-CROSS DETECTION (ZCD) MODULE

The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, VCPINV, which is typically 0.75V above ground.

The connection to the signal to be detected is through a series current-limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 29-2.

The ZCD module is useful when monitoring an A/C waveform for, but not limited to, the following purposes:

- A/C period measurement
- Accurate long term time measurement
- Dimmer phase delayed drive
- Low EMI cycle switching

29.1 External Resistor Selection

The ZCD module requires a current-limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 29-1 and Figure 29-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it does not interfere with the current source and sink.

EQUATION 29-1: EXTERNAL RESISTOR

$$RSERIES = \frac{VPEAK}{3 \times 10^{-4}}$$

FIGURE 29-1: EXTERN

31.2.1.1 Enabling the Transmitter

The UART transmitter is enabled for asynchronous operations by configuring the following control bits:

- TXEN = 1
- MODE<3:0> = 0h through 3h
- UxBRGH:L = desired baud rate
- UxBRGS = desired baud rate multiplier
- RxyPPS = code for desired output pin
- ON = 1

All other UART control bits are assumed to be in their default state.

Setting the TXEN bit in the UxCON0 register enables the transmitter circuitry of the UART. The MODE<3:0> bits in the UxCON0 register select the desired mode. Setting the ON bit in the UxCON1 register enables the UART. When TXEN is set and the transmitter is not idle, the TX pin is automatically configured as an output. When the transmitter is idle, the TX pin drive is relinquished to the port TRIS control. If the TX pin is shared with an analog peripheral, the analog I/O function should be disabled by clearing the corresponding ANSEL bit.

Note: The UxTXIF Transmitter Interrupt flag is set when the TXEN enable bit is set and the UxTXB register can accept data.

31.2.1.2 Transmitting Data

A transmission is initiated by writing a character to the UxTXB register. If this is the first character, or the previous character has been completely transmitted from the TSR, the data in the UxTXB is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the UxTXB until the previous character transmission is complete. The pending character in the UxTXB is then transferred to the TSR at the beginning of the previous character Stop bit transmission. The transmission of the Start bit, data bits and Stop bit sequence commences immediately following the completion of all of the previous character's Stop bits.

31.2.1.3 Transmit Data Polarity

The polarity of the transmit data is controlled with the TXPOL bit in the UxCON2 register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the TXPOL bit to '1' will invert the transmit data, resulting in low true idle and data bits. The TXPOL bit controls transmit data polarity in all modes.

31.2.1.4 Transmit Interrupt Flag

The UxTXIF interrupt flag bit in the PIR register is set whenever the UART transmitter is enabled and no character is being held for transmission in the UxTXB. In other words, the UxTXIF bit is clear only when the TSR is busy with a character and a new character has been queued for transmission in the UxTXB. The UxTXIF interrupt can be enabled by setting the UxTXIE interrupt enable bit in the PIE register. However, the UxTXIF flag bit will be set whenever the UxTXB is empty, regardless of the state of UxTXIE enable bit.The UxTXIF bit is read-only and cannot be set or cleared by software.

To use interrupts when transmitting data, set the UxTXIE bit only when there is more data to send. Clear the UxTXIE interrupt enable bit upon writing UxTXB with the last character of the transmission.

31.2.1.5 TSR Status

The TXMTIF bit in the UxERRIR register indicates the status of the TSR. This is a read-only bit. The TXMTIF bit is set when the TSR is empty and idle. The TXMTIF bit is cleared when a character is transferred to the TSR from the UxTXB. The TXMTIF bit remains clear until all bits, including the Stop bits, have been shifted out of the TSR and a byte is not waiting in the UxTXB register.

The TXMTIF will generate an interrupt when the TXMTIE bit in the UxERRIE register is set.

Note: The TSR is not mapped in data memory, so it is not available to the user.

31.2.1.6 Transmitter 7-bit Mode

7-Bit mode is selected when the MODE<3:0> bits are set to '0001'. In 7-bit mode, only the seven Least Significant bits of the data written to UxTXB are transmitted. The Most Significant bit is ignored.

31.2.1.7 Transmitter Parity Modes

When the Odd or even Parity mode is selected, all data is sent as nine bits. The first eight bits are data and the 9th bit is parity. Even and odd parity is selected when the MODE<3:0> bits are set to '0011' and '0010', respectively. Parity is automatically determined by the module and inserted in the serial data stream.

PIC18(L)F25/26K83

REGISTEI	R 32-9: SPIxC	ON2: SPI C	ONFIGURAT	ON REGIST	ER 2				
R-0/0	R-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0		
BUSY	SSFLT	_	_		SSET	TXR ⁽¹⁾	RXR ⁽¹⁾		
bit 7							bit C		
Lonondi									
R = Reada	hle hit	W = Writable	hit	II = I Inimple	mented hit read	l as '0'			
		vv – viitabie							
bit 7	BUSY: SPI M	odule Busy Si	tatus bit						
	1 = Data exch	ange is busy							
	0 = Data exch	ange is not ta	aking place						
bit 6	SSFLT: SS(in) Fault Status	bit						
	If SSET = 0								
	1 = SS(in) ended the transaction unexpectedly, and the data byte being received was lost								
	0 = SS(in) ended normally								
	If SSET = 1								
	This bit is unchanged.								
bit 5-3	Unimplemen	ted: Read as	'0'						
bit 2	SSET: Slave S	Select Enable	bit						
	Master mode:								
	1 = SS(out) is driven to the active state continuously								
	0 = SS(out) is driven to the active state while the transmit counter is not zero								
	Slave mode:								
	1 = SS(in) is ignored and data is clocked on all SCK(in) (as though SS = TRUE at all times)								
	0 = SS(in) enables/disables data input and tri-states SDO if the TRIS bit associated with the SDO pir is set (see Table 32-2 for details)								
bit 1	TXR: Transmi	it Data-Requir	ed Control bit ⁽	1)					
	1 = TxFIFO d	ata is required	d for a transfer						
	0 = TxFIFO data is not required for a transfer								
bit 0	RXR: Receive	FIFO Space	-Required Con	trol bit ⁽¹⁾					
	1 = Data trans	sfers are susp	ended if the R	xFIFO is full					
	0 = Received	data is not sto	ored in the FIF	0					
Note 1:	See Table 32-1 as pertaining to TXR	well as Secti and RXR fun	on 32.5 "Mast ction.	er mode" and	Section 32.6 "S	Slave Mode" fo	or more details		

2: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

PIC18(L)F25/26K83

REGISTER 33-4: I2CxCLK: I²C CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	—	—		CLK	<3:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Hardware set HC = Hardware clear

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CL

Г

CLK<3:0>: I²C Clock Selection Bits

CLK<3:0>	I ² Cx Clock Selection
1010-1111	Reserved
1001	SMT1 overflow
1000	TMR6 post scaled output
0111	TMR4 post scaled output
0110	TMR2 post scaled output
0101	TMR0 overflow
0100	Clock Reference output
0011	MFINTOSC (500 kHz)
0010	HFINTOSC
0001	Fosc
0000	Fosc/4

TABLE 34-3:TOTAL FREQUENCY ERROR AT VARIOUS PLL GENERATED CLOCK SPEEDS
(100 PPM OSCILLATOR DRIFT, INCLUDING ERROR FROM JITTER)

	Frequency Error at Various Nominal Bit Times (Bit Rates)							
Nominal PLL Output	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)				
40 MHz	0.01125%	0.01250%	0.015%	0.02%				
24 MHz	0.01209%	0.01418%	0.018%	0.027%				
16 MHz	0.01313%	0.01625%	0.023%	0.035%				

34.8.2 TIME QUANTA

As already mentioned, the Time Quanta is a fixed unit derived from the oscillator period and baud rate prescaler. Its relationship to TBIT and the Nominal Bit Rate is shown in Example 34-1.

EXAMPLE 34-1: CALCULATING TQ, NOMINAL BIT RATE AND NOMINAL BIT TIME

 $TQ (\mu s) = (2 * (BRP + 1))/FOSC (MHz)$

TBIT (μ s) = TQ (μ s) * number of TQ per bit interval

Nominal Bit Rate (bits/s) = 1/TBIT

This frequency (Fosc) refers to the effective frequency used. If, for example, a 10 MHz external signal is used along with a PLL, then the effective frequency will be 4 x 10 MHz which equals 40 MHz.

CASE 1:

For FOSC = 16 MHz, BRP<5:0> = 00h and Nominal Bit Time = 8 TQ: $TQ = (2 * 1)/16 = 0.125 \ \mu s \ (125 \ ns)$ $TBIT = 8 * 0.125 = 1 \ \mu s \ (10^{-6}s)$ Nominal Bit Rate = $1/10^{-6} = 10^{6}$ bits/s (1 Mb/s)

CASE 2:

For FOSC = 20 MHz, BRP<5:0> = 01h and Nominal Bit Time = 8 Tq: $Tq = (2 * 2)/20 = 0.2 \ \mu s \ (200 \ ns)$ TBIT = 8 * 0.2 = 1.6 $\ \mu s \ (1.6 * 10^{-6} s)$ Nominal Bit Rate = 1/1.6 * 10⁻⁶s = 625,000 bits/s (625 Kb/s)

CASE 3:

For Fosc = 25 MHz, BRP<5:0> = 3Fh and Nominal Bit Time = 25 Tq:

The frequencies of the oscillators in the different nodes must be coordinated in order to provide a system wide specified Nominal Bit Time. This means that all oscillators must have a Tosc that is an integral divisor of TQ. It should also be noted that although the number of TQ is programmable from 4 to 25, the usable minimum is 8 Tq. There is no assurance that a bit time of less than 8 Tq in length will operate correctly.

34.8.3 SYNCHRONIZATION SEGMENT

This part of the bit time is used to synchronize the various CAN nodes on the bus. The edge of the input signal is expected to occur during the sync segment. The duration is 1 Tq.

34.8.4 PROPAGATION SEGMENT

This part of the bit time is used to compensate for physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The length of the propagation segment can be programmed from 1 TQ to 8 TQ by setting the PRSEG<2:0> bits.

34.8.5 PHASE BUFFER SEGMENTS

The phase buffer segments are used to optimally locate the sampling point of the received bit within the Nominal Bit Time. The sampling point occurs between Phase Segment 1 and Phase Segment 2. These segments can be lengthened or shortened by the resynchronization process. The end of Phase Segment 1 determines the sampling point within a bit time. Phase Segment 1 is programmable from 1 TQ to 8 TQ in duration. Phase Segment 2 provides a delay before the next transmitted data transition and is also programmable from 1 TQ to 8 TQ in duration. However, due to IPT requirements, the actual minimum length of Phase Segment 2 is 2 To, or it may be defined to be equal to the greater of Phase Segment 1 or the Information Processing Time (IPT). The sampling point should be as late as possible or approximately 80% of the bit time.

34.8.6 SAMPLE POINT

The sample point is the point of time at which the bus level is read and the value of the received bit is determined. The sampling point occurs at the end of Phase Segment 1. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The value of the received bit is determined to be the value of the majority decision of three values. The three samples are taken at the sample point and twice before, with a time of TQ/2 between each sample.

34.15.3 DEDICATED CAN RECEIVE BUFFER REGISTERS

This section shows the dedicated CAN Receive Buffer registers with their associated control registers.

REGISTER 34-13: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER

	R/C-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R-0	R-0	
Mode 0	RXFUL ⁽¹⁾	RXM1	RXM0	_	RXRTRRO	RXB0DBEN	JTOFF ⁽²⁾	FILHIT0	
								J	
Mode 1.2	R/C-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
would 1,2	RXFUL ⁽¹⁾	RXM1	RTRRO	FILHITF4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	
	bit 7								
			0 0 0 0 0 1	. 1. 11					
Legend:			C = Clearable				· · · · · · · · · · · · · · · · · · ·		
R = Reada			vv = vvritable			emented bit, re	ad as 'U'		
-n = value	alPOR		I = Bit is se	l	0 = Bit is ci	eared	x = Bit is unk	nown	
bit 7	RXFUI : Rece	eive Full Statu	is bit(1)						
	1 = Receive b	ouffer contains	s a received m	lessage					
	0 = Receive b	ouffer is open	to receive a n	ew message	е				
bit 6,6-5	Mode 0:	-							
	RXM<1:0>: F	Receive Buffer	Mode bit 1 (c	combines wi	th RXM0 to fo	orm RXM<1:0	> bits, see bit	5)	
	11 = Receive	all messages	(including the	ose with erro	ors); filter crit	eria is ignored			
	10 = Receive	only valid me	essages with e	extended ide	entifier; EXID		DL must be '1	,	
	01 = Receive	all valid mes	ssages with s	he EXIDEN	hit in the RX	EN IN RAFIISIL	JL must be 0		
	Mode 1 2					i noibe regiot			
	RXM1: Recei	ve Buffer Mod	le bit 1						
	1 = Receive a	all messages ((including thos	se with error	s); acceptan	ce filters are ig	nored		
	0 = Receive a	all valid messa	ages as per ao	cceptance fi	lters				
bit 5	Mode 0:								
	RXM0: Recei	ive Buffer Mod	de bit 0 (comb	ines with RX	XM1 to form I	≺XM<1:0>bits	, see bit 6)		
	RTRRO: Ren	note Transmis	sion Request	hit for Rece	ived Messad	e (read-only)			
	1 = A remote	transmission	request is rec	eived	ived messag	c (read only)			
	0 = A remote	transmission	request is not	received					
bit 4	Mode 0:		·						
	Unimplemen	ted: Read as	'0'						
	<u>Mode 1, 2:</u>								
	FILHIT<4:0>:	: Filter Hit bit 4	1 Ar hita ta farma	filtor accort	onoo hito<1:0				
hit 3	Mode 0:	mes with othe				12.			
DIL J	RXRTRRO: F	Remote Trans	mission Reau	est bit for R	eceived Mes	sage (read-on	Iv)		
	1 = A remote	transmission	request is rec	eived		<u><u></u></u>	<i></i>		
	0 = A remote transmission request is not received								
	Mode 1, 2:								
	FILHIT<4:0>: Filter Hit bit 3								
	This bit combines with other bits to form filter acceptance bits<4:0>.								
Note 1:	This bit is set I buffer is read	by the CAN m As long as R	odule upon re XFUL is set in	eceiving a m	essage and i	nust be cleare	ed by software buffer will be	after the considered	
	full. After clear is not cleared,	then RXB0IF	IL flag, the PIF is set again.	R5 bit, RXB0)IF, can be cl	eared. If RXB)IF is cleared,	but RXFUL	

2: This bit allows the same filter jump table for both RXB0CON and RXB1CON.

REGISTER 34-34: BnDLC: TX/RX BUFFER 'n' DATA LENGTH CODE REGISTERS IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL<n>) = 0]⁽¹⁾

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x	
	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown	
bit 7	Unimplemen	ted: Read as '	0'					
bit 6	RXRTR: Rece	eiver Remote T	ransmission I	Request bit				
	1 = This is a r	emote transmi	ssion request					
	0 = This is no	t a remote tran	smission requ	uest				
bit 5	RB1: Reserve	ed bit 1						
	Reserved by	CAN Spec and	read as '0'.					
bit 4	RB0: Reserve	ed bit 0						
	Reserved by	CAN Spec and	read as '0'.					
bit 3-0	DLC<3:0>: D	ata Length Coo	de bits					
	1111 = Reser	rved						
	1110 = Reser	rved						
	1101 = Reser	rved						
	1100 = Reser	rved						
	1011 = Reser	rved						
	1010 = Rese r	rved						
	1001 = Reser	rved						
	1000 = Data I	length = 8 byte	S					
	0111 = Data	length = 7 byte	S					
	0110 = Data length = 6 bytes							
	0100 = Data I	length = 5 byte	5					
	0100 - Dala I	engli – 4 byle	3 c					
	0010 = Data length = 3 bytes							
	0010 - Data	length = 1 byte	3					
	0000 = Data I	length = 0 byte	s					

Note 1: These registers are available in Mode 1 and 2 only.

© 2017 Microchip Technology Inc.

DS40001943A-page 660

REGISTER 37-9: ADPREL: ADC PRECHARGE TIME CONTROL REGISTER (LOW BYTE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PRE	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 **PRE<7:0>**: Precharge Time Select bits See Table 37-4.

REGISTER 37-10: ADPREH: ADC PRECHARGE TIME CONTROL REGISTER (HIGH BYTE)

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			PRE<12:8>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 PRE<12:8>: Precharge Time Select bits See Table 37-4.

Note: If PRE is not equal to '0', then ADACQ = b' 0000000 means Acquisition time is 256 clocks of the selected ADC clock.

TABLE 37-4: PRECHARGE TIME

ADPRE	Precharge time
1 1111 1111 1111	8191 clocks of the selected ADC clock
1 1111 1111 1110	8190 clocks of the selected ADC clock
1 1111 1111 1101	8189 clocks of the selected ADC clock
0 0000 0000 0010	2 clocks of the selected ADC clock
0 0000 0000 0001	1 clock of the selected ADC clock
0 0000 0000 0000	Not included in the data conversion cycle

© 2017 Microchip Technology Inc.

REGISTER 40	-2. הבעטי	CONT. LOW-	VOLIAGEL				
U-0	U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	_	_	_		SEL	<3:0>	
bit 7							bit 0

REGISTER 40-2: HLVDCON1: LOW-VOLTAGE DETECT CONTROL REGISTER 1

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = Bit is unchanged		

bit 7-4 Unimplemented: Read as '0'

bit 3-0

SEL<3:0>: High/Low Voltage Detection Limit Selection bits

SEL<3:0>	Typical Voltage			
1111	Reserved			
1110	4.65V			
1101	4.35V			
1100	4.20V			
1011	4.00V			
1010	3.75V			
1001	3.60V			
1000	3.35V			
0111	3.15V			
0110	2.90V			
0101	2.75V			
0100	2.60V			
0011	2.50V			
0010	2.25V			
0001	2.10V			
0000	1.90V			

TABLE 40-2: SUMMARY OF REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
HLVDCON0	EN	—	OUT	RDY	-	-	INTH	INTL	709
HLVDCON1	-	-	I	—		710			

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

	Units			MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B