

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k83-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Device	SPDIP	SOIC	SSOP	UQFN	QFN
PIC18(L)F25K83	•	•	•	•	•
PIC18(L)F26K83	•	•	•	•	•

Note 1: Pin details are subject to change.

Pin Diagrams

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with PIC18(L)F25/26K83 Microcontrollers	
3.0	PIC18 CPU	
4.0	Memory Organization	
5.0	Device Configuration	
6.0		
7.0	Oscillator Module (with Fail-Safe Clock Monitor)	
8.0	Reference Clock Output Module	
9.0	Interrupt Controller	
10.0	Power-Saving Operation Modes	
12.0	Windowed Watchdog Timer (WWDT)	
12.0	8x8 Hardware Multiplier	
13.0	Nonvolatile Memory (NVM) Control.	
14.0	Cyclic Redundancy Check (CRC) Module with Memory Scannel	
15.0	Direct Memory Access (DMA)	
10.0	I/O POIS	
17.0	Peripheral Pin Select (PPS) Module	
18.0	Interrupt-on-Unange	
19.0	Peripheral Module Disable (PMD)	
20.0	Timero Module	
21.0		
22.0	Timer2/4/o Module	
23.0	Capture/Compare/PWM Module	
24.0	Puise-width Modulation (PWM)	
25.0	Signal Measurement Timer (SMTX)	
20.0	Complementary waveform Generator (CWG) Module	
27.0	Comigurable Logic Cell (CEC).	
28.0	Numerically Controlled Oscillator (NCO) Module	
29.0	Zero-Cross Detection (ZCD) Woodule	
30.0	Data signal Mounalor (DSW) Moune	
22.0	Universal Asynchronous Receiver Transmitter (UART) with Protocol Support	
32.0		
24.0		
34.0	CAN Wolding	
26.0	Fixed Voltage Reletence (FVR)	
27.0	Analog to Digital Convorter with Computation (ADC2) Medule	
30.0	Analog-to-bigital converter with computation (ADC2) Module	
30.0	Comparator Modulo	
40.0	Comparation Module	
40.0	In Circuit Serial Programming TW (ICSPTM)	
41.0	Instruction Soft Summany (ICSP **)	
42.0	Instruction Set Summary	
43.0	Nevelopment Support	
44.0	Electrical Specifications	00 / בח ד
40.0	DC and AC Characteristics Graphs and Tables	
40.0	Do and no onaradichetilo Oraphe and Tables	ו 20
+1.0		

4.4 PIC18 Instruction Cycle

4.4.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the Program Counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-2.

4.4.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the Program Counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 4-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-3: INSTRUCTION PIPELINE FLOW

	TCY0	Tcy1	Tcy2	TCY3	TCY4	TCY5
1. MOVLW 55h	Fetch 1	Execute 1		_		
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1
Note: These are some instructions that take multiple suches to support. Defects Costion 42.0 (Unstruction Cot						
Note: There are some instructions that take multiple cycles to execute. Refer to Section 42.0 "Instruction Set						

Summary" for details.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/W-1	
_	_	_	_	_	_	—	CP	
bit 7						·	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '1'				
-n = Value for blank device '1' = Bit is set				0' = Bit is cleared x = Bit is unknown				

REGISTER 5-9: CONFIGURATION WORD 5L (30 0008h)

bit 7-1 Unimplemented: Read as '1'

bit 0

CP: User Program Flash Memory and Data EEPROM Code Protection bit

1 = User Program Flash Memory and Data EEPROM code protection is disabled

0 = User Program Flash Memory and Data EEPROM code protection is enabled

REGISTER 5-10: CONFIGURATION WORD 5H (30 0009h)

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
—	—	_	—	_	—	_	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 Unimplemented: Read as '1'

TABLE 5-2:SUMMARY OF CONFIGURATION WORDS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
30 0000h	CONFIG1L	_	I	RSTOSC<2:0	>	_		FEXTOSC<2	:0>	1111 1111
30 0001h	CONFIG1H	_	_	FCMEN	_	CSWEN	_	PR1WAY	CLKOUTEN	1111 1111
30 0002h	CONFIG2L	BORE	N<1:0>	LPBOREN	IVT1WAY	MVECEN	PWR	TS<1:0>	MCLRE	1111 1111
30 0003h	CONFIG2H	XINST	—	DEBUG	STVREN	PPS1WAY	ZCD	BOR	V<1:0>	1111 1111
30 0004h	CONFIG3L	_	WDT	E<1:0>			WDTCPS<4		1111 1111	
30 0005h	CONFIG3H	_	_	v	VDTCCS<2:0	>	WDTCWS<2:0>			1111 1111
30 0006h	CONFIG4L	WRTAPP	_	_	SAFEN	BBEN		BBSIZE<2:0)>	1111 1111
30 0007h	CONFIG4H	_	_	LVP	_	WRTSAF	WRTD	WRTC	WRTB	1111 1111
30 0008h	CONFIG5L	_	_	_	_	_	—	_	CP	1111 1111
30 0009h	CONFIG5H	_	_	_	_	_	_	_	_	1111 1111

6.11.1 MEMORY EXECUTION VIOLATION

If the CPU executes outside the valid execution area, a memory execution violation Reset occurs.

The invalid execution areas are:

- 1. Addresses outside implemented program memory (see Table 5-1).
- 2. Storage Area Flash (SAF) inside program memory, if it is enabled.

When a memory execution violation is generated, flag MEMV is cleared in PCON1 (Register 6-3) to signal the cause of Reset. It needs to be set in the user code after a memory execution violation Reset has occurred to detect further violation Resets.

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON0 registers are updated to indicate the cause of the Reset. Table 6-3 shows the Reset conditions of these registers.

Condition	Program Counter	STATUS Register ^(1,2)	PCON0 Register	PCON1 Register
Power-on Reset	0	-110 0000	0011 110x	1-
Brown-out Reset	0	-110 0000	0011 11u0	1-
MCLR Reset during normal operation	0	-uuu uuuu	uuuu Ouuu	u-
MCLR Reset during Sleep	0	-10u uuuu	uuuu Ouuu	u-
WDT Time-out Reset	0	-0uu uuuu	uuu0 uuuu	u-
WWDT Window Violation Reset	0	-uuu uuuu	uu0u uuuu	u-
RESET Instruction Executed	0	-uuu uuuu	uuuu u0uu	u-
Stack Overflow Reset (STVREN = 1)	0	-uuu uuuu	luuu uuuu	u-
Stack Underflow Reset (STVREN = 1)	0	-uuu uuuu	uluu uuuu	u-
Memory Violation Reset	0	-uuu uuuu	uuuu uuuu	0-

TABLE 6-3: RESET CONDITION FOR SPECIAL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: If a Status bit is not implemented, that bit will be read as '0'.

2: Status bits Z, C, DC are reset by POR/BOR, but not defined by the Resets module (Register 4-2).

REGISTER 7-5:	OSCFRQ: HFINTOSC FREQUENCY SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—	—	—	—		FRQ	<3:0>	
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Reset value is determined by hardware

bit 7-4 Unimplemented: Read as '0'

bit 3-0 FRQ<3:0>: HFINTOSC Frequency Selection bits⁽¹⁾

FRQ<3:0>	Nominal Freq (MHz)
1001	
1010	
1111	
1110	Reserved
1101	
1100	
1011	
1000	64
0111	48
0110	32
0101	16
0100	12
0011	8
0010	4
0001	2
0000	1

Note 1: Refer to Table 7-2 for more information.

10.4 Register Definitions: Voltage Regulator Control

							1	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	
_	_	—	_	_	_	VREGPM	Reserved	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-2	Unimplemen	ted: Read as '	D'					
bit 1	VREGPM: Vo	ltage Regulato	r Power Mode	e Selection bit				
	1 = Low-Pow	er Sleep mode	enabled in SI	eep ⁽²⁾				
Draws lowest current in Sleep, slower wake-up								
	0 = Normal Power mode enabled in Sleep(2)							
	Draws hig	gher current in	Sleep, faster	wake-up				
bit 0	Reserved: Re	ead as '1'. Mair	ntain this bit se	et.				

REGISTER 10-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

Note 1: Not present in LF parts.

2: See Section 45.0 "Electrical Specifications".

12.0 8x8 HARDWARE MULTIPLIER

12.1 Introduction

All PIC18 devices include an 8x8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 12-1.

12.2 Operation

Example 12-1 shows the instruction sequence for an 8x8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 12-2 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 12-1: 8x8 UNSIGNED MULTIPLY ROUTINE

MULWF ARGZ ; ARGI * ARGZ	->
; PRODH:PRODL	

EXAMPLE 12-2: 8x8 SIGNED MULTIPLY

MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cvcles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9v9 uppigpod	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs	
8x8 unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs	
	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs	
oxo signeu	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μs	
16x16 unsigned	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μs	242 μs	
16x16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs	
16x16 signed	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs	
	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 μs	

TABLE 12-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

	_						
U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—			RxyPP	S<5:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable b	bit	U = Unimple	mented bit, rea	id as '0'	
u = Bit is uncha	inged	x = Bit is unkn	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Re				
'1' = Bit is set		'0' = Bit is clea	ired				

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RxyPPS<5:0>:** Pin Rxy Output Source Selection bits See Table 17-2 for the list of available ports.

REGISTER 23-4: CCPxCAP: CAPTURE INPUT SELECTION MULTIPLEXER REGISTER

U-0	U-0	U-0	U-0	R/W-0/x	R/W-0/x	R/W-0/x	R/W-0/x	
—	—	—	—	CTS<3:0>				
bit 7							bit 0	

Legend:						
R = Readable bit	W = Writable bit	ritable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-3 Unimplemented: Read as '0'

bit 2-0 CTS<2:0>: Capture Trigger Input Selection bits

CTS-2:0>	Connection							
	CCP1	CCP2	CCP3	CCP4				
1111-1001		Rese	erved					
1000		CAN_rx_t	imestamp					
0111		CLC4_out						
0110		CLC3_out						
0101		CLC	2_out					
0100		CLC	1_out					
0011		IOC_Ir	iterrupt					
0010		CMP2_output						
0001	CMP1_output							
0000	Pin selected by CCP1PPS	Pin selected by CCP2PPS	Pin selected by CCP3PPS	Pin selected by CCP4PPS				

REGISTER 23-5: CCPRxL: CCPx REGISTER LOW BYTE

'1' = Bit is set

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			RL<	:7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimple	mented bit, read	l as '0'	

'0' = Bit is cleared

bit 7-0 $\frac{\text{MODE} = \text{Capture Mode:}}{\text{RL} < 7:0 >: \text{LSB of captured TMR1 value}}$ $\frac{\text{MODE} = \text{Compare Mode:}}{\text{RL} < 7:0 >: \text{LSB compared to TMR1 value}}$ $\frac{\text{MODE} = \text{PWM Mode \&\& FMT = 0:}}{\text{RL} < 7:0 >: \text{CCPW} < 7:0 > - \text{Pulse-Width LS 8 bits}}$ $\frac{\text{MODE} = \text{PWM Mode \&\& FMT = 1:}}{\text{RL} < 7:6 >: \text{CCPW} < 1:0 > - \text{Pulse-Width LS 2 bits}}$ $\frac{\text{RL} < 5:0 >: \text{Not used}}{\text{RL} < 5:0 >: \text{Not used}}$

-n = Value at POR

x = Bit is unknown

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x		
SMTxCPR<7:0>									
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bi	it	U = Unimplei	mented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is clear	ed						

REGISTER 25-10: SMTxCPRL: SMT CAPTURED PERIOD REGISTER – LOW BYTE

bit 7-0 SMTxCPR<7:0>: Significant bits of the SMT Period Latch – Low Byte

REGISTER 25-11: SMTxCPRH: SMT CAPTURED PERIOD REGISTER - HIGH BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
			SMTxC	PR<15:8>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other			

bit 7-0 SMTxCPR<15:8>: Significant bits of the SMT Period Latch – High Byte

'0' = Bit is cleared

REGISTER 25-12: SMTxCPRU: SMT CAPTURED PERIOD REGISTER – UPPER BYTE

R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x	R-x/x
SMTxCPR<23:16>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxCPR<23:16>: Significant bits of the SMT Period Latch – Upper Byte

'1' = Bit is set

26.2.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 26-4. This alternation creates the push-pull effect required for driving some transformer-based power supply designs. Steering modes are not used in Push-Pull mode. A basic block diagram for the Push-Pull mode is shown in Figure 26-3.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWGxA.

The unused outputs CWGxC and CWGxD drive copies of CWGxA and CWGxB, respectively, but with polarity controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

REGISTER 28-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		ACC<	19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ACC<19:16>: NCO1 Accumulator, Upper Byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

REGISTER 28-6: NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE^(1,2)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
INC<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: NCO1INC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

REGISTER 28-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE⁽¹⁾

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | INC< | 15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

PIC18(L)F25/26K83

Preliminary

36.2.1 CALIBRATION

36.2.1.1 Single-Point Calibration

Single-point calibration is performed by application software using Equation 36-1 and the assumed Mt. A reading of VTSENSE at a known temperature is taken, and the theoretical temperature is calculated by temporarily setting TOFFSET = 0. Then TOFFSET is computed as the difference of the actual and calculated temperatures. Finally, TOFFSET is stored in nonvolatile memory within the device, and is applied to future readings to gain a more accurate measurement.

36.2.1.2 Higher-Order Calibration

If the application requires more precise temperature measurement, additional calibrations steps will be necessary. For these applications, two-point or three-point calibration is recommended.

Note 1:	The TOFFSET value may be determined by the user with a temperature test.
2:	Although the measurement range is -40° C to $+125^{\circ}$ C, due to the variations in offset error, the single-point uncalibrated calculated TSENSE value may indicate a temperature from -140° C to $+225^{\circ}$ C, before the calibration offset is applied.
3:	The User must take into consideration self-heating of the device at different clock frequencies and output pin loading. For package related thermal characteris-

tics information, refer to Table 45-6.

36.2.2 TEMPERATURE RESOLUTION

The resolution of the ADC reading, Ma (°C/count), depends on both the ADC resolution N and the reference voltage used for conversion, as shown in Equation 36-2. It is recommended to use the smallest VREF value, such as 2.048 FVR reference voltage, instead of VDD.

Note: Refer to Table 45-17 for FVR reference voltage accuracy.

EQUATION 36-2: TEMPERATURE RESOLUTION (°C/LSb)

$$Ma = \frac{V_{REF}}{2^{N}} \times Mt$$
$$Ma = \frac{\frac{V_{REF}}{2^{N}}}{Mv}$$

Where:

Mv = sensor voltage sensitivity (V/°C)

VREF = Reference voltage of the ADC module (in Volts) N = Resolution of the ADC

The typical Mv value for a single diode is approximately -1.267 to -1.32 mV/C.

The typical Mv value for a stack of two diodes (Low Range setting) is approximately -2.533 mV/C.

The typical Mv value for a stack of three diodes (High range setting) is approximately -3.8 mV/C.

36.3 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait a certain time for the ADC value to settle, after the ADC input multiplexer is connected to the temperature indicator output, before the conversion is performed.

37.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting
- Conversion Trigger Selection
- ADC Acquisition Time
- ADC Precharge Time
- Additional Sample and Hold Capacitor
- Single/Double Sample Conversion
- Guard Ring Outputs

37.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 16.0 "I/O Ports"** for more information.

Note: Analog voltages on any pin that is defined as a digital input may cause the input buffer to conduct excess current.

37.1.2 CHANNEL SELECTION

There are several channel selections available:

- Eight PORTA pins (RA<7:0>)
- Eight PORTB pins (RB<7:0>)
- Eight PORTC pins (RC<7:0>)
- Temperature Indicator
- DAC output
- Fixed Voltage Reference (FVR)
- · Vss (ground)

The ADPCH register determines which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion.

Refer to **Section 37.2 "ADC Operation**" for more information.

37.1.3 ADC VOLTAGE REFERENCE

The ADPREF<1:0> bits of the ADREF register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- VDD
- FVR outputs

The ADNREF bit of the ADREF register provides control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 35.0 "Fixed Voltage Reference (FVR)"** for more details on the Fixed Voltage Reference.

37.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCLK register and the CS bits of the ADCON0 register. If Fosc is selected as the ADC clock, there is a prescaler available to divide the clock so that it meets the ADC clock period specification. The ADC clock source options are the following:

- Fosc/(2*n)(where n is from 1 to 128)
- · FRC (dedicated RC oscillator)

The time to complete one bit conversion is defined as TAD. Refer Figure 37-2 for the complete timing details of the ADC conversion.

For correct conversion, the appropriate TAD specification must be met. Refer to Table 45-14 for more information. Table 37-1 gives examples of appropriate ADC clock selections.

- Note 1: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.
 - 2: The internal control logic of the ADC runs off of the clock selected by the CS bit of ADCON0. What this can mean is when the CS bit of ADCON0 is set to '1' (ADC runs on FRC), there may be unexpected delays in operation when setting ADC control bits.

U-0 U-0 U-0 U-0 R/W-x/u R/W-x/u R/W-x/u R/W-x/u ADRES<11:8> ___ _ ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets u = Bit is unchanged x = Bit is unknown

REGISTER 37-20: ADRESH: ADC RESULT REGISTER HIGH, FM = 1

bit 7-4 Reserved

'1' = Bit is set

bit 3-0 ADRES<11:8>: ADC Sample Result bits. Upper four bits of 12-bit conversion result.

REGISTER 37-21: ADRESL: ADC RESULT REGISTER LOW, FM = 1

'0' = Bit is cleared

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<7:0>							
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits. Lower eight bits of 12-bit conversion result.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3D73h	I2C1CON0	EN	RSEN	RSEN S CSTR MDR MODE					562	
3D72h	I2C1ADR3				ADR				—	577
3D71h	I2C1ADR2				ADI	२				576
3D70h	I2C1ADR1				ADR				—	575
3D6Fh	I2C1ADR0				ADI	२				574
3D6Eh	I2C1ADB1				ADI	3				579
3D6Dh	I2C1ADB0				ADI	3				578
3D6Ch	I2C1CNT				CN.	Г				571
3D6Bh	I2C1TXB				TXE	3				-
3D6Ah	I2C1RXB				RXI	3				_
3D69h - 3D67h	—				Unimpler	nented				_
3D66h	I2C2BTO				BTO)				567
3D65h	I2C2CLK				CLł	K				566
3D64h	I2C2PIE	CNTIE	ACKTIE	—	WRIE	ADRIE	PCIE	RSCIE	SCIE	573
3D63h	I2C2PIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	572
3D62h	I2C2STAT1	TXWE	—	TXBE	—	RXRE	CLRBF	—	RXBF	569
3D61h	I2C2STAT0	BFRE	SMA	MMA	R	D	—	_	_	568
3D60h	I2C2ERR	—	BTOIF	BCLIF	NACKIF	_	BTOIE	BCLIE	NACKIE	570
3D5Fh	I2C2CON2	ACNT	GCEN	FME	ABD	SD	DAHT BFRET			565
3D5Eh	I2C2CON1	ACKCNT	ACKDT	ACKSTAT	ACKT	_	RXO	TXU	CSD	564
3D5Dh	12C2CON0	EN	RSEN	S	CSTR	MDR		MODE		562
3D5Ch	I2C2ADR3				ADR				_	577
3D5Bh	I2C2ADR2	ADR						576		
3D5Ah	I2C2ADR1				ADR				—	575
3D59h	I2C2ADR0	ADR						574		
3D58h	I2C2ADB1	ADB						579		
3D57h	I2C2ADB0	ADB							578	
3D56h	I2C2CNT	CNT 5							571	
3D55h	I2C2TXB	ТХВ							—	
3D54h	I2C2RXB	RXB -						—		
3D53h -	_	Unimplemented							_	
3D1Dh								507		
3D1Ch	SPIICLK	ODME	70715	00015	CLKS	EL	DVOIE	T)(1.115		527
3D1Bh	SPITINTE	SRMTIE	TCZIE	SUSIE	EUSIE	_	RXUE	TXUIE		521
3D1Ah	SPITINTE	SKIVIIIF	TUZIF	SUSIF	EUSIF	— D	KAUIF	TXUIF	—	520
3D19h	SPIIBAUD	BAUD							523	
30180	SPITIWIDIH		_		_				פעטר	522
3D17h	SPIISTATUS	TXWE		TABE		RARE	CLRBF		RXBF	526
30100	SPITCON2	BUST SMD	OVE			_	SOFI		KXK SDOD	525
3D15h	SPITCONT	SIMP	CKE	CKP	F51		55P	SDIP	SDOP	524
3D14n	SPITCONU	EN					LSBF	MST	BMODE	523
30130	SPITICNIH	_	_	_	-	— TI		ICNIH		522
3D12N						1L >				521
30110	SPILIAB	TXB 5						527		
30100	SPIIKAB	RXB 55						520		
3CFFh	-	Unimplemented -					-			
3CFEh	MD1CARH	CH 4					457			
3CFDh	MD1CARL	—	_	—	CL				457	

TABLE 43-1:	REGISTER FILE SUMMARY FOR PIC18(L)F25/26K83 DEVICES (C	CONTINUED)
-------------	--	------------

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not present in LF devices.

Standard Operating Conditions (unless otherwise stated)						
Param No.	Sym.	Characteristic	Тур.	Units	Conditions	
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package	
			80	°C/W	28-pin SOIC package	
			90	°C/W	28-pin SSOP package	
			27.5	°C/W	28-pin UQEN 4x4 mm package	
			27.5	°C/W	28-pin QFN 6x6mm package	
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package	
			24	°C/W	28-pin SOIC package	
			24	°C/W	28-pin SSOP package	
			24	°C/W	28-pin UQFN 4x4mm package	
			24	°ÇAW	28-pin QFN 6x6mm package	
TH03	TJMAX	Maximum Junction Temperature	150) De	$\langle \rangle$	
TH04	PD	Power Dissipation	- /	W	PD = PINTERNAL + PI/0 ⁽³⁾	
TH05	PINTERNAL	Internal Power Dissipation	- <	W	PINTERNAL = IDD x VDD ⁽¹⁾	
TH06	Pi/o	I/O Power Dissipation	\wedge	XW /	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$	
TH07	Pder	Derated Power	\mathcal{F}	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾	

TABLE 45-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

3: See absolute maximum ratings for total power dissipation

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Units MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	А	28			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.50	0.55	0.70	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2