Microchip Technology - PIC18F26K83-1/ML Datasheet

Details

Product Status

Core Processor

Core Size

Speed

Connectivity

Peripherals

Number of I/O

Program Memory Size
Program Memory Type
EEPROM Size

RAM Size

Voltage - Supply (Vcc/Vdd)
Data Converters
Oscillator Type
Operating Temperature
Mounting Type

Package / Case

Supplier Device Package

Purchase URL

Email: info@E-XFL.COM

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Active

PIC

8-Bit

64MHz

CANbus, I2C, LINbus, SPI, UART/USART
Brown-out Detect/Reset, DMA, POR, PWM, WDT
25

64KB (32K x 16)

FLASH

1K x 8

4K x 8

2.3V ~ 5.5V

A/D 24x12b; D/A 1x5b

Internal

-40°C ~ 85°C (TA)

Surface Mount

28-VQFN Exposed Pad

28-QFN (6x6)

https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k83-i-ml

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f26k83-i-ml-4385490
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F25/26K83

3.1.1 PRIORITY LOCK

The System arbiter grants memory access to the
peripheral selections (DMAXx, Scanner) when the
PRLOCKED bit (PRLOCK Register) is set.

Priority selections are locked by setting the
PRLOCKED bit of the PRLOCK register. Setting and
clearing this bit requires a special sequence as an extra
precaution against inadvertent changes. Examples of
setting and clearing the PRLOCKED bit are shown in
Example 3-1 and Example 3-2.

EXAMPLE 3-1: PRIORITY LOCK
SEQUENCE

; Disable interrupts

BCF | NTCONO, G E

; Bank to PRLOCK register
BANKSEL PRLOCK
MOVLW 55h

; Required sequence, next 4

i nstructions

MOWAF PRLOCK

MOVLW AAh

MOWAF PRLOCK

; Set PRLOCKED bit to grant nenory
access to peripherals

BSF PRLOCK, 0

; Enable Interrupts
BSF | NTCONO, G E

EXAMPLE 3-2: PRIORITY UNLOCK
SEQUENCE
; Disable interrupts

BCF | NTCONO, G E

; Bank to PRLOCK register
BANKSEL PRLOCK
MOVLW 55h

; Required sequence, next 4

i nstructions

MOWWAF PRLOCK

MOVLW AAh

MOVWF PRLOCK

; Cear PRLOCKED bit to all ow changi ng
priority settings

BCF PRLOCK, 0

; Enable Interrupts
BSF | NTCONO, G E

3.2 Memory Access Scheme

The user can assign priorities to both system level and
peripheral selections based on which the system
arbiter grants memory access. Let us consider the
following priority scenarios between ISR, MAIN, and
Peripherals.

Note: It is always required that the ISR priority
be higher than Main priority.

3.2.1 ISR PRIORITY > MAIN PRIORITY >
PERIPHERAL PRIORITY

When the Peripheral Priority (DMAX, Scanner) is lower
than ISR and MAIN Priority, and the peripheral
requires:

1. Access to the Program Flash Memory, then the
peripheral waits for an instruction cycle in which
the CPU does not need to access the PFM
(such as a branch instruction) and uses that
cycle to do its own Program Flash Memory
access, unless a PFM Read/Write operation is
in progress.

2. Access to the SFR/GPR, then the peripheral
waits for an instruction cycle in which the CPU
does not need to access the SFR/GPR (such as
MOVLW CALL, NOP) and uses that cycle to do its
own SFR/GPR access.

3. Access to the Data EEPROM, then the
peripheral has access to Data EEPROM unless
a Data EEPROM Read/Write operation is being
performed.

This results in the lowest throughput for the peripheral
to access the memory, and does so without any impact
on execution times.

3.2.2 PERIPHERAL PRIORITY > ISR
PRIORITY > MAIN PRIORITY

When the Peripheral Priority (DMAX, Scanner) is higher
than ISR and MAIN Priority, the CPU operation is
stalled when the peripheral requests memory.

The CPU is held in its current state until the peripheral
completes its operation. Since the peripheral requests
access to the bus, the peripheral cannot be disabled
until it completes its operation.

This results in the highest throughput for the peripheral
to access the memory, but has the cost of stalling other
execution while it occurs.

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 19

PIC18(L)F25/26K83

4.8.3 MAPPING THE ACCESS BANK IN

INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower bound-
ary of the addresses mapped into the window, while the
upper boundary is defined by FSR2 plus 95 (5Fh).
Addresses in the Access RAM above 5Fh are mapped
as previously described (see Section 4.5.4 “Access
Bank”). An example of Access Bank remapping in this
addressing mode is shown in Figure 4-8.

Remapping of the Access Bank applies only to
operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bitis ‘1) will
continue to use direct addressing as before.

4.9 PIC18 Instruction Execution and

the Extended Instruction Set

Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 42.2 “Extended Instruction Set”.

FIGURE 4-8: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET
ADDRESSING
Example Situation:
ADDWF f, d, a 0000h
FSR2H:FSR2L = 120h
Bank 0
Locations in the region
from the FSR2 pointer 400n
(0120h) to the pointer plus g4o0n1- — B__a”'ﬂ _
05Fh (017Fh) are mapped 47gp Window } ooh
to the bottom of the T _Ba;(1_ - 7 \
Access RAM (000h-05Fh). 0200h Bank 1 “Window”
Special File Registers a8 | (F — — — — — 7 252
3F60h through 3FFFh are J
mapped to 60h through b Bank 2 NN
FFh, as usual. through SFRs
Bank 0 addresses below Bank 62
5Fh can still be addressed FFh
by using the BSR. Access Bank
3F00h
Bank 63
3F60h| — — — — — 4
SFRs
3FFFh
Data Memory

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 54

PIC18(L)F25/26K83

9.3.2 NATURAL ORDER (HARDWARE)
PRIORITY

When more than one interrupt with the same user
specified priority level are requested, the priority
conflict is resolved by using a method called “Natural
Order Priority”. Natural order priority is a fixed priority
scheme that is based on the Interrupt Vector Table.
Table 9-2 shows the natural order priority and the
interrupt vector number assigned for each source.

The natural order priority scheme has vector interrupt 0
as the highest priority and vector interrupt 81 as the
lowest priority.

For example, when two concurrently occurring interrupt
sources that are both designated high priority using the
IPRx register will be resolved using the natural order
priority (i.e., the interrupt with a lower corresponding
vector number will preempt the interrupt with the higher
vector number).

The ability for the user to assign every interrupt source
to high or low priority levels means that the user
program can give an interrupt with a low natural order
priority a higher overall priority level.

9.4 Interrupt Operation

All pending interrupts are indicated by the flag bit being
equal to a ‘1’ in the PIRXx register. All pending interrupts
are resolved using the priority scheme explained in
Section 9.3 “Interrupt Priority”.

Once the interrupt source to be serviced is resolved,
the program execution vectors to the resolved interrupt
vector addresses, as explained in Section
9.2 “Interrupt Vector Table (IVT)”. The vector number
is also stored in the WREG register. Most of the flag bits
are required to be cleared by the application software,
but in some cases, device hardware clears the interrupt
automatically. Some flag bits are read-only in the PIRx
registers, these flags are a summary of the source
interrupts and the corresponding interrupt flags of the
source must be cleared.

A valid interrupt can be either a high or low priority
interrupt when in main routine or a high priority interrupt
when in low priority Interrupt Service Routine.
Depending on order of interrupt requests received and
their relative timing, the CPU will be in the state of
execution indicated by the STAT bits of the INTCON1
register (Register 9-2).

The State machine shown in Figure 9-1 and the
subsequent sections detail the execution of interrupts
when received in different orders.

Note: The state of GIEH/L is not changed by the
hardware when servicing an interrupt. The
internal state machine is used to keep
track of execution states. These bits can
be manipulated in the user code resulting
in transferring execution to the main

routine and ignoring existing interrupts.

TABLE 9-2: INTERRUPT VECTOR
PRIORITY TABLE
Vector Interrupt Vector Interrupt
Number Source Number Source

0 Software Interrupt 42 TXBOIF
1 HLVD 43 TXB1IF
2 OSF 44 TXB2IF/TXBnIF
3 CSwW 45 ERRIF
4 NVM 46 WAKIF
5 SCAN 47 IRXIF
6 CRC 48 Cc2
7 10C 49 SMT2
8 INTO 50 SMT2PRA
9 ZCD 51 SMT2PWA
10 AD 52 DMA2SCNT
11 ADT 53 DMA2DCNT
12 C1 54 DMA20R
13 SMT1 55 DMA2A
14 SMT1PRA 56 12C2RX
15 SMT1PWA 57 12C2TX
16 DMA1SCNT 58 12C2
17 DMA1DCNT 59 12C2E
18 DMA10R 60 U2RX
19 DMA1A 61 U2TX
20 SPIMRX 62 U2E
21 SPIMTX 63 u2
22 SPI1 64 TMR3
23 I2C1RX 65 TMR3G
24 12C1TX 66 TMR4
25 12C1 67 CCP2
26 I12C1E 68 CWG2
27 U1RX 69 CLC2
28 U1TX 70 INT2
29 U1E 71 TMR5
30 U1 72 TMR5G
31 TMRO 73 TMR6
32 TMR1 74 CCP3
33 TMR1G 75 CWG3
34 TMR2 76 CLC3
35 CCP1 77 CCP4
36 NCO 78 CLC4
37 CWG1 79 —
38 CLC1 80 —
39 INT1 81 —
40 RXBOIF/FIFOIF
41 RXB1IF/RXBnIF

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 109

PIC18(L)F25/26K83

WDTE<1:0> = 01 —

SEN —

WDTE<1:0> =11

WDTE<1:0> =10 —

Sleep —

D,

D,

FIGURE 11-1: WINDOWED WATCHDOG TIMER BLOCK DIAGRAM
WWDT
Armed
WDT
Window
Violation
Window Closed
Window
o
CLRWDT Sizes
WINDOW
RESET ;>
Reserved 111
Reserved 110
Reserved 101 R
Reserved 100 18-bit Prescale
Reserved 011 c Counter
SOSC—— 010
MFINTOSC 31.25 kHz 001
LFINTOSC—— 000
LT
Ps %

R

WDT Counter

5-bit

Overflow
Latch

—— WDT Time-out

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 169

PIC18(L)F25/26K83

EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)

VRl TE_BYTE_TO_HREGS
MOVF PCSTI NCO, W ; get low byte of buffer data
MOVWF TABLAT ; present data to table latch
TBLWI+* ; wite data, performa short wite
; to internal TBLWI hol di ng register.
DECFSZ COUNTER ; loop until holding registers are full
BRA WRI TE_WORD_TO_HREGS
PROGRAM_MEMORY
BCF NVMCONL, REQD ; point to Program Flash Menory
BSF NVMCON1, REGL ; point to Program Fl ash Menory
BSF NVMCON1, WREN ; enable wite to nenory
BCF NVMCON1, FREE ; enable wite to nmenory
BCF I NTCONO, G E ; disable interrupts
MOVLW 55h
Requi red MOVWF NVMCON2 ; write 55h
Sequence MOVLW 0AAh
MOVWF NVMCON2 ; wite OAAh
BSF NVMCONL, WR ; start program (CPU stall)
DCFSz COUNTER2 ; repeat for remaining wite bl ocks
BRA WRI TE_BYTE_TO_HREGS
BSF I NTCONO, G E ; re-enable interrupts
BCF NVMCON1, WREN ; disable wite to nenory

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 192

PIC18(L)F25/26K83

13.3.3 READING THE DATA EEPROM
MEMORY

To read a data memory location, the user must write the
address to the NVMADRL and NVMADRH register
pair, clear REG<1:0> control bit in NVMCON1 register
to access Data EEPROM locations and then set control
bit, RD. The data is available on the very next
instruction cycle; therefore, the NVMDAT register can
be read by the next instruction. NVMDAT will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

The basic process is shown in Example 13-5.

FIGURE 13-11: DATA EEPROM READ

FLOWCHART

< Start Read Operation)

v

| Select EEPROM Memory (REG) |

v

Select Word Address
(NVMADRH:NVMADRL)

v

Initiate Read Operation
(RD=1)

v

Data read now in
NVMDAT

v

(End Read Operation)

13.3.4 WRITING TO THE DATA EEPROM
MEMORY

To write an EEPROM data location, the address must
first be written to the NVMADRL and NVMADRH
register pair and the data written to the NVMDAT
register. The sequence in Example 13-6 must be
followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence,
described in Section 13.1.4 “NVM Unlock
Sequence”, is not exactly followed for each byte. It is
strongly recommended that interrupts be disabled
during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit
should be kept clear at all times, except when updating
the EEPROM. The WREN bit is not cleared by
hardware.

After a write sequence has been initiated, NVMCON1,
NVMADRL, NVMADRH and NVMDAT cannot be
modified. The WR bit will be inhibited from being set
unless the WREN bit is set. Both WR and WREN
cannot be set with the same instruction.

After a write sequence has been initiated, clearing the
WREN bit will not affect this write cycle. A single Data
EEPROM word is written and the operation includes an
implicit erase cycle for that word (it is not necessary to
set FREE). CPU execution continues in parallel and at
the completion of the write cycle, the WR bit is cleared
in hardware and the NVM Interrupt Flag bit (NVMIF) is
set. The user can either enable this interrupt or poll this
bit. NVMIF must be cleared by software.

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 197

PIC18(L)F25/26K83

EXAMPLE 15-1:

SETUP DMA1 TO MOVE DATA FROM PROGRAM FLASH MEMORY TO UART1

TRANSMIT BUFFER USING HARDWARE TRIGGERS

/1 This code exanple illustrates using DVAL to transfer
/110 bytes of data from 0x1000 in PFMto ULTXB Ox3DEA
void main() {
//SystemInitialize
initializeSysten();
/] Setup UART1
initializeUARTL();
/] Setup DVA1
// DVAICON1 - DPTR rensins,
DVALICONL = 0xO0B;
/] Source registers
/] Source size
DVA1SSZH = 0x00;
DVALSSZL = 0xO0A;
// Source start address, 0x1000
DVALSSAU = 0x00;
DMA1SSAH = 0x10;
DVALSSAL = 0x00;
/I Destination registers
// Destination size
DVA1DSZH = 0x00;
DVALDSZL = 0x01;
/I Destination start address, Ox3DEA
DVALDSAH = 0x3D;
DVALDSAL = OxEA;
//Start trigger source ULTX
DVALSI RQ = 0x1C;
//Enable & Start DMA transfer
DVALCONO = 0xCO;
while (1) {
doSonet hi ng();
}
}

Source Menory Region PFM SPTR increnents,

SSTP

15.13 Register definitions: DMA

Long bit name prefixes for the DMA peripherals are
shown in Table 15-7. Refer to Section 1.3 “Register

and Bit naming ¢

onventions” for more information.

TABLE 15-7: REGISTER AND BIT NAMING
Peripheral Bit Name Prefix
DMA 1 DMA1
DMA 2 DMA2

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 237

PIC18(L)F25/26K83

REGISTER 15-18: DMAxDSZL: DMAx DESTINATION SIZE LOW REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
DSz<7:0>

bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and 1 = bit is set 0 = bit is cleared X = bit is unknown
BOR/Value at all other u = bit is unchanged
Resets
bit 7-0 DSZ<7:0>: Destination Message Size bits

REGISTER 15-19: DMAxDSZH: DMAx DESTINATION SIZE HIGH REGISTER

uU-0 u-0 uU-0 uU-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
— — — — DSZ<11:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and 1 = bit is set 0 = bit is cleared X = bit is unknown
BOR/Value at all other u = bit is unchanged
Resets
bit 7-4 Unimplemented: Read as ‘0’
bit 3-0 DSZ<11:8>: Destination Message Size bits

REGISTER 15-20: DMAXDCNTL: DMAx DESTINATION COUNT LOW REGISTER

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DCNT<7:0>

bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n/n = Value at POR and 1 = bit is set 0 = bit is cleared X = bit is unknown
BOR/Value at all other u = bit is unchanged
Resets
bit 7-0 DCNT<7:0>: Current Destination Byte Count

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 245

PIC18(L)F25/26K83

24.2 Register Definitions: PWM Control

Long bit name prefixes for the PWM peripherals are
shown below. Refer to Section 1.3.2.2 “Long Bit
Names” for more information.

Peripheral Bit Name Prefix
PWM3 PWM3
PWM4 PWM4

REGISTER 24-1:

PWMxCON: PWM CONTROL REGISTER

R/W-0/0 u-0 R-0/0 R/W-0/0 uU-0 uU-0 uU-0 uU-0
EN — ouT POL — — — —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7 EN: PWM Module Enable bit
1= PWM module is enabled
0 = PWM module is disabled
bit 6 Unimplemented: Read as ‘0’
bit 5 OUT: PWM Module Output Level When Bit is Read
bit 4 POL: PWM Output Polarity Select bit
1= PWM output is inverted
0 = PWM output is normal
bit 3-0 Unimplemented: Read as ‘0’

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 344

-ou| ABojouyosa | diyoosoiN /102 ©®

Areuiwnjaug

65¢ 9bed-vepy610007SA

FIGURE 25-8: HIGH AND LOW MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

Rev. 10-000 180A
12119/2013

SMTx_signal | I—I
SMTx_signalsync I—I—l | |—|
SMTXEN :

f

|

SMTXGO |

SMTxGO_sync

SMTXTMR | 0

SMTxCPW|

SMTXCPR| \ 6 |

SMTXPWAIF [] []

SMTxPRAIF

egM9z/sz4(1)8Lold

PIC18(L)F25/26K83

REGISTER 25-13: SMTxCPWL: SMT CAPTURED PULSE WIDTH REGISTER - LOW BYTE

u = Bit is unchanged
‘1’ = Bit is set

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x
SMTxCPW<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown
‘0’ = Bit is cleared

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0

SMTxCPW-<7:0>: Significant bits of the SMT PW Latch — Low Byte

REGISTER 25-14: SMTxCPWH: SMT CAPTURED PULSE WIDTH REGISTER - HIGH BYTE

u = Bit is unchanged
‘1’ = Bitis set

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x
SMTxCPW<15:8>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

x = Bit is unknown
‘0’ = Bit is cleared

-n/n = Value at POR and BOR/Value at all other Resets

bit 7-0

SMTxCPW<15:8>: Significant bits of the SMT PW Latch — High Byte

REGISTER 25-15: SMTxCPWU: SMT CAPTURED PULSE WIDTH REGISTER - UPPER BYTE

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x
SMTxCPW<23:16>

bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 SMTxCPW<23:16>: Significant bits of the SMT PW Latch — Upper Byte

© 2017 Microchip Technology Inc.

Preliminary DS40001943A-page 388

PIC18(L)F25/26K83

31.11 Receive and Transmit Buffers

The UART uses small buffer areas to transmit and
receive data. These are sometimes referred to as
FIFOs.

The receiver has a Receive Shift Register (RSR) and
two buffer registers. The buffer at the top of the FIFO
(earliest byte to enter the FIFO) is by retrieved by read-
ing the UXRXB register.

The transmitter has one Transmit Shift Register (TSR)
and one buffer register. Writes to UxTXB go to the
transmit buffer then immediately to the TSR, if it is
empty. When the TSR is not empty, writes to UxTXB
are held then transferred to the TSR when it becomes
available.

31.11.1 FIFO STATUS

The UxFIFO register contains several Status bits for
determining the state of the receive and transmit buf-
fers.

The RXBE bit indicates that the receive FIFO is empty.
This bit is essentially the inverse of UXRXIF. The RXBF
bit indicates that the receive FIFO is full.

The transmitter has only one buffer register so the
Status bits are essentially a copy and inverse of the
UxXTXIF bit. The TXBE bit indicates that the buffer is
empty (same as UxTXIF) and the TXBF bit indicates
that the buffer is full (UXTXIF inverse). A third transmit-
ter Status bit, TXWRE (transmit write error), is set
whenever a UxTXB write is performed when the TXBF
bit is set. This indicates that the write was unsuccess-
ful.

31.11.2 FIFO RESET

All modes support resetting the receive and transmit
buffers.

The receive buffer is flushed and all unread data dis-
carded when the RXBE bit in the UxFIFO register is
written to ‘1’. The MOWF instruction with the TXBE bit
cleared should be used to avoid inadvertently clearing
a byte pending in the TSR when UxTXB is empty.

Data written to UxTXB when TXEN is low will be held in
the Transmit Shift Register (TSR) then sent when
TXEN is set. The transmit buffer and inactive TSR are
flushed by setting the TXBE bit in the UxFIFO register.
Setting TXBE while a character is actively transmitting
from the TSR will complete the transmission without
being flushed.

Clearing the ON bit will discard all received data and
transmit data pending in the TSR and UxTXB.

31.12 Flow Control

This section does not apply to the LIN, DALI, or DMX
modes.

Flow control is the means by which a sending UART
data stream can be suspended by a receiving UART.
Flow control prevents input buffers from overflowing
without software intervention. The UART supports both
hardware and XON/XOFF methods of flow control.

The flow control method is selected with the FLO<1:0>
bits in the UXCON2 register. Flow control is disabled
when are both bits are cleared.

31.12.1 HARDWARE FLOW CONTROL

Hardware flow control is selected by setting the
FLO<1:0> bits to ‘10’

Hardware flow control consists of three lines. The RS-
232 signal names for two of these are RTS, and CTS.
Both are low true. The third line may be used to control
an RS-485 transceiver. The signal name for this is
TXDE for transmit drive enable. This output is high
when the TX output is actively sending a character and
low at all other times. The UART is configured as DTE
(computer) equipment which means RTS is an output
and CTS is an input.

The RTS and CTS signals work as a pair to control the
transmission flow. A DTE-to-DTE configuration
connects the RTS output of the receiving UART to the
CTS input of the sending UART. Refer to Figure 31-10.

The UART receiving data asserts the RTS output low
when the input FIFO is empty. When a character is
received, the RTS output goes high until the UXRXB is
read to free up both FIFO locations.

When the CTS input goes high after a byte has started
to transmit, the transmission will complete normally.
The receiver accommodates this by accepting the
character in the second FIFO location even when the
CTS input is high.

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 475

PIC18(L)F25/26K83

REGISTER 31-18: UxTXCHK: UART TRANSMIT CHECKSUM RESULT REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
TXCHK<7:0>

bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 TXCHK<7:0>: Checksum calculated from TX bytes

LIN mode and COEN = 1:

Sum of all transmitted bytes including PID
LIN mode and COEN = 0:

Sum of all transmitted bytes except PID

All other modes and COEN = 1:

Sum of all transmitted bytes since last clear
All other modes and COEN = 0:

Not used

REGISTER 31-19: UxRXCHK: UART RECEIVE CHECKSUM RESULT REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0
RXCHK<7:0>

bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared
bit 7-0 RXCHK<7:0>: Checksum calculated from RX bytes

LIN mode and COEN = 1:

Sum of all received bytes including PID
LIN mode and COEN = 0:

Sum of all received bytes except PID

All other modes and COEN = 1:

Sum of all received bytes since last clear
All other modes and COEN = 0:

Not used

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 495

PIC18(L)F25/26K83

FIGURE 33-13:

CLOCK SYNTHESIS TIMING (FME = 0)

Rev. 10-000 305A
811612016

| |
SDA X |
|

|

I

I

I
SDQ delay tirlne

I
i
\

I
i
s | ‘ / /I_:_:_I_L
I |
| Master device_T Slave releases bus | l ! | |
releases clock

SCL is shortened but—T
Master drives Master device _ 's 2°TGLK, min
SCL low | detects clock high twice — Master waits to
detect SCL twice

33.54.2 Clock Timing with FME =1

One TscL, consists of four clocks of the 12C clock input.
The first clock is used to drive SCL low, the third
releases SCL high, and the fourth is used to detect if
the clock is, in fact, high or being stretched by a slave.

If a slave is clock stretching, the hardware waits; check-
ing SCL on each successive 12C clock, proceeding only
after detecting SCL high. Figure 33-14 shows the clock
synthesis timing when FME = 1.

FIGURE 33-14: CLOCK SYNTHESIS TIMING (FME = 1)

Rev. 10-000 306A
8/16/2016

I

I

_I
SDA|deIay t|r‘1e
I

SCL

I
Master dev ice_T

lave releases
releases clock S

I
I
I
I
1
T Master device

Master driveS jotects clock high

SCL low Master waits to detect

bus, a shortened
SCL clock appears

|

SCL nolonger held low

© 2017 Microchip Technology Inc. Preliminary

DS40001943A-page 549

PIC18(L)F25/26K83

Additionally, there is an Error State Warning flag bit,
EWARN, which is set if at least one of the error count-
ers equals or exceeds the error warning limit of 96.
EWARN is reset if both error counters are less than the
error warning limit.

FIGURE 34-8: ERROR MODES STATE DIAGRAM
RXERRCNT < 128 or Error-
TXERRCNT < 128 Active

128 occurrences of
11 consecutive
RXERRCNT > 128 or ‘recessive” bits
TXERRCNT > 128
Error-
Passive

TXERRCNT > 255 .

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 599

PIC18(L)F25/26K83

REGISTER 34-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 7-0 REC<7:0>: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When
RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the
ability to put the module in “bus-off” state.

EXAMPLE 34-5: READING A CAN MESSAGE

; Need to read a pending nessage from RXBO buffer.
To receive any nessage, filter, mask and RXML: RXMD bits in RXBOCON registers must be
programed correctly.

Make sure that there is a nessage pending in RXBO.
BTFSS RXBOCON, RXFUL ; Does RXBO contain a nessage?
BRA NoMessage ; No. Handle this situation...
; We have verified that a nmessage is pending in RXBO buffer.
If this buffer can receive both Standard or Extended ldentifier nmessages,
; identify type of message received.
BTFSS RXBOSI DL, EXID ; Is this Extended Identifier?
BRA St andar dMessage ; No. This is Standard Identifier nessage.
; Yes. This is Extended |dentifier nessage.
; Read all 29-bits of Extended |dentifier nessage.

; Now read all data bytes
MOVFF RXBODO, MY_DATA_BYTEl

; Once entire nessage is read, mark the RXBO that it is read and no |onger FULL.
BCF RXBOCON, RXFUL ; This will allow CAN Mddule to | oad new nessages
into this buffer.

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 621

PIC18(L)F25/26K83

REGISTER 34-58: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5 (CONTINUED)

bit 0 When CAN is in Mode 0:
RXBOIP: CAN Receive Buffer O Interrupt Priority bit
1 = High priority
0 = Low priority
When CAN is in Mode 1:
Unimplemented: Read as ‘0’

When CAN is in Mode 2:

FIFOWMIP: FIFO Watermark Interrupt Priority bit
1 = High priority

0 = Low priority

Note 1: In CAN Mode 1 and 2, these bits are forced to ‘0’.

REGISTER 34-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER!"

uU-0 uU-0 uU-0 R/W-0 R/W-0 R/W-0 u-0 u-0
— — — TxB2IE®@ | TXB1E® | TXBOE® | — [—
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared x = Bit is unknown
bit 7-5 Unimplemented: Read as ‘0’
bit 4-2 TXB2IE:TXBOIE: Transmit Buffer 2-0 Interrupt Enable bits(2)

1 = Transmit buffer interrupt is enabled
0 = Transmit buffer interrupt is disabled

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This register is available in Mode 1 and 2 only.
2: TXBnIE in PIE5 register must be set to get an interrupt.

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 647

PIC18(L)F25/26K83

37.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC
measurements without software intervention. When a
rising edge of the selected source occurs, the GO bit is
set by hardware.

The auto-conversion trigger source is selected by the
ADACT register.

Using the auto-conversion trigger does not assure
proper ADC timing. It is the user’s responsibility to
ensure that the ADC timing requirements are met. See
Register 37-33 for auto-conversion sources.

37.2.6 ADC CONVERSION PROCEDURE
(BASIC MODE)
This is an example procedure for using the ADC to
perform an analog-to-digital conversion:
1. Configure Port:
» Disable pin output driver (Refer to the TRISx
register)
» Configure pin as analog (Refer to the
ANSELX register)
2. Configure the ADC module:
» Select ADC conversion clock
» Select voltage reference
» Select ADC input channel

EXAMPLE 37-1: ADC CONVERSION

* Precharge and acquisition

* Turn on ADC module

Configure ADC interrupt (optional):

» Clear ADC interrupt flag

» Enable ADC interrupt

« Enable global interrupt (GIEL bit)(")

If ADACQ = 0, software must wait the required
acquisition time(@.

Start conversion by setting the GO bit.

Wait for ADC conversion to complete by one of
the following:

» Polling the GO bit

+ Polling the ADIF bit

» Waiting for the ADC interrupt (interrupts
enabled)

Read ADC Result.

Clear the ADC interrupt flag (required if interrupt

is enabled).

Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.

2: Refer to Section 37.3 “ADC Acquisi-
tion Requirements”.

/*This code bl ock configures the ADC

for polling, VDD and VSS references, FRC

oscillator and ANO input.

Conversion start & polling for conpletion

are included.

*/

void main() {
//Systemlnitialize
initializeSystem();

/] Setup ADC

ADCONObits. FM = 1; //right justify
ADCONObits. CS = 1; //FRC O ock

ADPCH = 0x00; //RAO is Anal og channel
TRI SAbits. TRISAO = 1; //Set RAO to input

ADCONObits. ON = 1; //Turn ADC On

while (1) {

resultHi gh = ADRESH, //Read result
resultLow = ADRESL; //Read result

ANSELADbi ts. ANSELAO = 1; //Set RAO to anal og

ADCONObi ts. GO = 1; //Start conversion
whil e (ADCONObits. GO); //Wait for conversion done

© 2017 Microchip Technology Inc.

Preliminary

DS40001943A-page 658

PIC18(L)F25/26K83

39.9 CWG1 Auto-Shutdown Source

The output of the comparator module can be used as
an auto-shutdown source for the CWG1 module. When
the output of the comparator is active and the
corresponding WGASXE is enabled, the CWG
operation will be suspended immediately (see Section
26.10.1.2 “External Input Source”).

39.10 ADC Auto-Trigger Source

The output of the comparator module can be used to
trigger an ADC conversion. When the ADACT register
is set to trigger on a comparator output, an ADC
conversion will trigger when the Comparator output
goes high.

39.11 TMR2/4/6 Reset

The output of the comparator module can be used to
reset Timer2. When the TxERS register is
appropriately set, the timer will reset when the
Comparator output goes high.

39.12 Operation in Sleep Mode

The comparator module can operate during Sleep. The
comparator clock source is based on the Timer1 clock
source. If the Timer1 clock source is either the system
clock (Fosc) or the instruction clock (Fosc/4), Timer1
will not operate during Sleep, and synchronized
comparator outputs will not operate.

A comparator interrupt will wake the device from
Sleep. The CxIE bits of the respective PIE register
must be set to enable comparator interrupts.

© 2017 Microchip Technology Inc. Preliminary

DS40001943A-page 699

PIC18(L)F25/26K83

SUBFWB Subtract f from W with borrow SUBLW Subtract W from literal
Syntax: SUBFWB f{d{,a}} Syntax: SUBLW k
Operands: 0<f<255 Operands: 0<k<255

de[01] Operation: k— (W) > W

a e [0,1]

— Status Affected: N, QV, C,DC, Z
Operation: (W) = (f) = (C) > dest
Encoding: 0000 1000 kkkk kkkk
Status Affected: N, OV, C, DC, Z "9 | | | | |
. Description W is subtracted from the 8-bit

Encoding: ‘ o101 | Olda ‘ fref ‘ frff | literal ‘k’. The result is placed in W.
Description: Subtract register ‘f and CARRY flag Words: 1

(borrow) from W (2's complement '

method). If ‘d’ is ‘0’, the result is stored Cycles: 1

in W. If 'd"is ‘1", the result is stored in Q Cycle Activity:

register ‘f’ (default).

If ‘a’is ‘0’, the Access Bank is Q1 Q2 3 _Q4

selected. If ‘a’ is ‘1’, the BSR is used Decode Read Process | Write to W

to select the GPR bank. literal 'k’ Data

If ‘@’ is ‘0’ and the extended instruction Example 1: SUBLW 02h

set is enabled, this instruction
operates in Indexed Literal Offset BefOr\tlavlnstruction

Addressing mode whenever c _ 9”’
f <95 (5Fh). See Section After Instruction ’
42.2.3 “Byte-Oriented and Bit-Ori- W = 01h
ented Instructions in Indexed Literal C = 1 ; result is positive
Offset Mode” for details. ﬁ = 8
Words: 1
Example 2: SUBLW 02h
Cycles: 1
Before Instruction
Q Cycle Activity: = 02h
Q1 Q2 Q3 Q4 c =7
- After Instruction
Decode Read Process Write to W = 00h
register ‘f’ Data destination C = 1 ;resultiszero
Z = 1
Example 1: SUBFV\B REG 1, O N = 0
Before Instruction Example 3: SUBLW 02h
w = 2 Before Instruction
C = 1 w = 03h
After Instruction C = ?
REG = FF After Instruction
W = 2 w = FFh ;(2's complement)
C = 0 C = 0 ; result is negative
Z = 0 Z = 0
N = 1 ;resultis negative N = 1
Example 2: SUBFW\B REG 0, O
Before Instruction
= 2
w = 5
C = 1
After Instruction
REG = 2
w = 3
C = 1
z = 0
N = 0 ;resultis positive
Example 3: SUBFW\B REG 1, O
Before Instruction
= 1
w = 2
C = 0
After Instruction
REG = 0
w = 2
C = 1
Z = 1 ;resultis zero
N = 0

© 2017 Microchip Technology Inc. Preliminary DS40001943A-page 751

