
Microchip Technology - PIC18F26K83-I/ML Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity CANbus, I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 25

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-VQFN Exposed Pad

Supplier Device Package 28-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k83-i-ml

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18f26k83-i-ml-4385490
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F25/26K83
3.1.1 PRIORITY LOCK

The System arbiter grants memory access to the
peripheral selections (DMAx, Scanner) when the
PRLOCKED bit (PRLOCK Register) is set.

Priority selections are locked by setting the
PRLOCKED bit of the PRLOCK register. Setting and
clearing this bit requires a special sequence as an extra
precaution against inadvertent changes. Examples of
setting and clearing the PRLOCKED bit are shown in
Example 3-1 and Example 3-2.

EXAMPLE 3-1: PRIORITY LOCK
SEQUENCE

EXAMPLE 3-2: PRIORITY UNLOCK
SEQUENCE

3.2 Memory Access Scheme

The user can assign priorities to both system level and
peripheral selections based on which the system
arbiter grants memory access. Let us consider the
following priority scenarios between ISR, MAIN, and
Peripherals.

3.2.1 ISR PRIORITY > MAIN PRIORITY >
PERIPHERAL PRIORITY

When the Peripheral Priority (DMAx, Scanner) is lower
than ISR and MAIN Priority, and the peripheral
requires:

1. Access to the Program Flash Memory, then the
peripheral waits for an instruction cycle in which
the CPU does not need to access the PFM
(such as a branch instruction) and uses that
cycle to do its own Program Flash Memory
access, unless a PFM Read/Write operation is
in progress.

2. Access to the SFR/GPR, then the peripheral
waits for an instruction cycle in which the CPU
does not need to access the SFR/GPR (such as
MOVLW, CALL, NOP) and uses that cycle to do its
own SFR/GPR access.

3. Access to the Data EEPROM, then the
peripheral has access to Data EEPROM unless
a Data EEPROM Read/Write operation is being
performed.

This results in the lowest throughput for the peripheral
to access the memory, and does so without any impact
on execution times.

3.2.2 PERIPHERAL PRIORITY > ISR
PRIORITY > MAIN PRIORITY

When the Peripheral Priority (DMAx, Scanner) is higher
than ISR and MAIN Priority, the CPU operation is
stalled when the peripheral requests memory.

The CPU is held in its current state until the peripheral
completes its operation. Since the peripheral requests
access to the bus, the peripheral cannot be disabled
until it completes its operation.

This results in the highest throughput for the peripheral
to access the memory, but has the cost of stalling other
execution while it occurs.

; Disable interrupts
BCF INTCON0,GIE

; Bank to PRLOCK register
BANKSEL PRLOCK
MOVLW 55h

; Required sequence, next 4
instructions
MOVWF PRLOCK
MOVLW AAh
MOVWF PRLOCK
; Set PRLOCKED bit to grant memory
access to peripherals
BSF PRLOCK,0

; Enable Interrupts
BSF INTCON0,GIE

; Disable interrupts
BCF INTCON0,GIE

; Bank to PRLOCK register
BANKSEL PRLOCK
MOVLW 55h

; Required sequence, next 4
instructions
MOVWF PRLOCK
MOVLW AAh
MOVWF PRLOCK
; Clear PRLOCKED bit to allow changing
priority settings
BCF PRLOCK,0

; Enable Interrupts
BSF INTCON0,GIE

Note: It is always required that the ISR priority
be higher than Main priority.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 19

PIC18(L)F25/26K83
4.8.3 MAPPING THE ACCESS BANK IN
INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode
effectively changes how the first 96 locations of Access
RAM (00h to 5Fh) are mapped. Rather than containing
just the contents of the bottom section of Bank 0, this
mode maps the contents from a user defined “window”
that can be located anywhere in the data memory
space. The value of FSR2 establishes the lower bound-
ary of the addresses mapped into the window, while the
upper boundary is defined by FSR2 plus 95 (5Fh).
Addresses in the Access RAM above 5Fh are mapped
as previously described (see Section 4.5.4 “Access
Bank”). An example of Access Bank remapping in this
addressing mode is shown in Figure 4-8.

Remapping of the Access Bank applies only to
operations using the Indexed Literal Offset mode.
Operations that use the BSR (Access RAM bit is ‘1’) will
continue to use direct addressing as before.

4.9 PIC18 Instruction Execution and
the Extended Instruction Set

Enabling the extended instruction set adds eight
additional commands to the existing PIC18 instruction
set. These instructions are executed as described in
Section 42.2 “Extended Instruction Set”.

FIGURE 4-8: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET
ADDRESSING

Data Memory

0000h

0100h

0200h

3F60h

3F00h

3FFFh

Bank 1

Bank 63

Bank 2
through
Bank 62

SFRs

ADDWF f, d, a

FSR2H:FSR2L = 120h

Locations in the region
from the FSR2 pointer
(0120h) to the pointer plus
05Fh (017Fh) are mapped
to the bottom of the
Access RAM (000h-05Fh).

Special File Registers at
3F60h through 3FFFh are
mapped to 60h through
FFh, as usual.

Bank 0 addresses below
5Fh can still be addressed
by using the BSR. Access Bank

00h

60h

FFh

SFRs

Bank 1 “Window”

Bank 0

Window

Example Situation:

0120h
017Fh

5Fh

Bank 1
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 54

PIC18(L)F25/26K83
9.3.2 NATURAL ORDER (HARDWARE)
PRIORITY

When more than one interrupt with the same user
specified priority level are requested, the priority
conflict is resolved by using a method called “Natural
Order Priority”. Natural order priority is a fixed priority
scheme that is based on the Interrupt Vector Table.
Table 9-2 shows the natural order priority and the
interrupt vector number assigned for each source.

TABLE 9-2: INTERRUPT VECTOR
PRIORITY TABLE

The natural order priority scheme has vector interrupt 0
as the highest priority and vector interrupt 81 as the
lowest priority.

For example, when two concurrently occurring interrupt
sources that are both designated high priority using the
IPRx register will be resolved using the natural order
priority (i.e., the interrupt with a lower corresponding
vector number will preempt the interrupt with the higher
vector number).

The ability for the user to assign every interrupt source
to high or low priority levels means that the user
program can give an interrupt with a low natural order
priority a higher overall priority level.

9.4 Interrupt Operation

All pending interrupts are indicated by the flag bit being
equal to a ‘1’ in the PIRx register. All pending interrupts
are resolved using the priority scheme explained in
Section 9.3 “Interrupt Priority”.

Once the interrupt source to be serviced is resolved,
the program execution vectors to the resolved interrupt
vector addresses, as explained in Section
9.2 “Interrupt Vector Table (IVT)”. The vector number
is also stored in the WREG register. Most of the flag bits
are required to be cleared by the application software,
but in some cases, device hardware clears the interrupt
automatically. Some flag bits are read-only in the PIRx
registers, these flags are a summary of the source
interrupts and the corresponding interrupt flags of the
source must be cleared.

A valid interrupt can be either a high or low priority
interrupt when in main routine or a high priority interrupt
when in low priority Interrupt Service Routine.
Depending on order of interrupt requests received and
their relative timing, the CPU will be in the state of
execution indicated by the STAT bits of the INTCON1
register (Register 9-2).

The State machine shown in Figure 9-1 and the
subsequent sections detail the execution of interrupts
when received in different orders.

Vector
Number

Interrupt
Source

Vector
Number

Interrupt
Source

0 Software Interrupt 42 TXB0IF

1 HLVD 43 TXB1IF

2 OSF 44 TXB2IF/TXBnIF

3 CSW 45 ERRIF

4 NVM 46 WAKIF

5 SCAN 47 IRXIF

6 CRC 48 C2

7 IOC 49 SMT2

8 INT0 50 SMT2PRA

9 ZCD 51 SMT2PWA

10 AD 52 DMA2SCNT

11 ADT 53 DMA2DCNT

12 C1 54 DMA2OR

13 SMT1 55 DMA2A

14 SMT1PRA 56 I2C2RX

15 SMT1PWA 57 I2C2TX

16 DMA1SCNT 58 I2C2

17 DMA1DCNT 59 I2C2E

18 DMA1OR 60 U2RX

19 DMA1A 61 U2TX

20 SPI1RX 62 U2E

21 SPI1TX 63 U2

22 SPI1 64 TMR3

23 I2C1RX 65 TMR3G

24 I2C1TX 66 TMR4

25 I2C1 67 CCP2

26 I2C1E 68 CWG2

27 U1RX 69 CLC2

28 U1TX 70 INT2

29 U1E 71 TMR5

30 U1 72 TMR5G

31 TMR0 73 TMR6

32 TMR1 74 CCP3

33 TMR1G 75 CWG3

34 TMR2 76 CLC3

35 CCP1 77 CCP4

36 NCO 78 CLC4

37 CWG1 79 —

38 CLC1 80 —

39 INT1 81 —

40 RXB0IF/FIFOIF

41 RXB1IF/RXBnIF

Note: The state of GIEH/L is not changed by the
hardware when servicing an interrupt. The
internal state machine is used to keep
track of execution states. These bits can
be manipulated in the user code resulting
in transferring execution to the main
routine and ignoring existing interrupts.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 109

PIC18(L)F25/26K83
FIGURE 11-1: WINDOWED WATCHDOG TIMER BLOCK DIAGRAM

Rev. 10-000162D
1/27/2017

WINDOW

CLRWDT

RESET

WDT Time-out

WDT
Window
Violation

PS

5-bit
WDT Counter

Overflow
Latch

18-bit Prescale
Counter

000

011

010

001

100

101

110

111Reserved

Reserved

Reserved

Reserved

Reserved

SOSC

MFINTOSC 31.25 kHz

LFINTOSC

R

R

CS

WWDT
Armed

Window
Sizes Comparator

Window Closed

E

WDTE<1:0> = 01

WDTE<1:0> = 11

WDTE<1:0> = 10

SEN

Sleep
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 169

PIC18(L)F25/26K83
EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY (CONTINUED)
WRITE_BYTE_TO_HREGS

MOVF POSTINC0, W ; get low byte of buffer data
MOVWF TABLAT ; present data to table latch
TBLWT+* ; write data, perform a short write

; to internal TBLWT holding register.
DECFSZ COUNTER ; loop until holding registers are full
BRA WRITE_WORD_TO_HREGS

PROGRAM_MEMORY
BCF NVMCON1, REG0 ; point to Program Flash Memory
BSF NVMCON1, REG1 ; point to Program Flash Memory
BSF NVMCON1, WREN ; enable write to memory
BCF NVMCON1, FREE ; enable write to memory
BCF INTCON0, GIE ; disable interrupts
MOVLW 55h

Required MOVWF NVMCON2 ; write 55h
Sequence MOVLW 0AAh

MOVWF NVMCON2 ; write 0AAh
BSF NVMCON1, WR ; start program (CPU stall)
DCFSZ COUNTER2 ; repeat for remaining write blocks
BRA WRITE_BYTE_TO_HREGS
BSF INTCON0, GIE ; re-enable interrupts
BCF NVMCON1, WREN ; disable write to memory
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 192

PIC18(L)F25/26K83
13.3.3 READING THE DATA EEPROM
MEMORY

To read a data memory location, the user must write the
address to the NVMADRL and NVMADRH register
pair, clear REG<1:0> control bit in NVMCON1 register
to access Data EEPROM locations and then set control
bit, RD. The data is available on the very next
instruction cycle; therefore, the NVMDAT register can
be read by the next instruction. NVMDAT will hold this
value until another read operation, or until it is written to
by the user (during a write operation).

The basic process is shown in Example 13-5.

FIGURE 13-11: DATA EEPROM READ
FLOWCHART

13.3.4 WRITING TO THE DATA EEPROM
MEMORY

To write an EEPROM data location, the address must
first be written to the NVMADRL and NVMADRH
register pair and the data written to the NVMDAT
register. The sequence in Example 13-6 must be
followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence,
described in Section 13.1.4 “NVM Unlock
Sequence”, is not exactly followed for each byte. It is
strongly recommended that interrupts be disabled
during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to
enable writes. This mechanism prevents accidental
writes to data EEPROM due to unexpected code
execution (i.e., runaway programs). The WREN bit
should be kept clear at all times, except when updating
the EEPROM. The WREN bit is not cleared by
hardware.

After a write sequence has been initiated, NVMCON1,
NVMADRL, NVMADRH and NVMDAT cannot be
modified. The WR bit will be inhibited from being set
unless the WREN bit is set. Both WR and WREN
cannot be set with the same instruction.

After a write sequence has been initiated, clearing the
WREN bit will not affect this write cycle. A single Data
EEPROM word is written and the operation includes an
implicit erase cycle for that word (it is not necessary to
set FREE). CPU execution continues in parallel and at
the completion of the write cycle, the WR bit is cleared
in hardware and the NVM Interrupt Flag bit (NVMIF) is
set. The user can either enable this interrupt or poll this
bit. NVMIF must be cleared by software.

End Read Operation

Select EEPROM Memory (REG)

Select Word Address

(NVMADRH:NVMADRL)

Start Read Operation

Initiate Read Operation

(RD = 1)

Data read now in

NVMDAT
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 197

PIC18(L)F25/26K83
EXAMPLE 15-1: SETUP DMA1 TO MOVE DATA FROM PROGRAM FLASH MEMORY TO UART1
TRANSMIT BUFFER USING HARDWARE TRIGGERS

15.13 Register definitions: DMA

Long bit name prefixes for the DMA peripherals are
shown in Table 15-7. Refer to Section 1.3 “Register
and Bit naming conventions” for more information.

//This code example illustrates using DMA1 to transfer
//10 bytes of data from 0x1000 in PFM to U1TXB 0x3DEA

void main() {
 //System Initialize
 initializeSystem();

 //Setup UART1
 initializeUART1();

 //Setup DMA1
 //DMA1CON1 - DPTR remains, Source Memory Region PFM, SPTR increments, SSTP
 DMA1CON1 = 0x0B;

 //Source registers
 //Source size
 DMA1SSZH = 0x00;
 DMA1SSZL = 0x0A;

 //Source start address, 0x1000
 DMA1SSAU = 0x00;
 DMA1SSAH = 0x10;
 DMA1SSAL = 0x00;

 //Destination registers
 //Destination size
 DMA1DSZH = 0x00;
 DMA1DSZL = 0x01;

 //Destination start address, 0x3DEA
 DMA1DSAH = 0x3D;
 DMA1DSAL = 0xEA;

 //Start trigger source U1TX
 DMA1SIRQ = 0x1C;

 //Enable & Start DMA transfer
 DMA1CON0 = 0xC0;

 while (1) {
 doSomething();
 }
}

TABLE 15-7: REGISTER AND BIT NAMING

Peripheral Bit Name Prefix

DMA 1 DMA1

DMA 2 DMA2
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 237

PIC18(L)F25/26K83
REGISTER 15-18: DMAxDSZL: DMAx DESTINATION SIZE LOW REGISTER

REGISTER 15-19: DMAxDSZH: DMAx DESTINATION SIZE HIGH REGISTER

REGISTER 15-20: DMAxDCNTL: DMAx DESTINATION COUNT LOW REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

DSZ<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-0 DSZ<7:0>: Destination Message Size bits

U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — DSZ<11:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 DSZ<11:8>: Destination Message Size bits

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

DCNT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n/n = Value at POR and
BOR/Value at all other
Resets

1 = bit is set 0 = bit is cleared x = bit is unknown
 u = bit is unchanged

bit 7-0 DCNT<7:0>: Current Destination Byte Count
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 245

PIC18(L)F25/26K83
24.2 Register Definitions: PWM Control

Long bit name prefixes for the PWM peripherals are
shown below. Refer to Section 1.3.2.2 “Long Bit
Names” for more information.

Peripheral Bit Name Prefix

PWM3 PWM3

PWM4 PWM4

REGISTER 24-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0 U-0 R-0/0 R/W-0/0 U-0 U-0 U-0 U-0

EN — OUT POL — — — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 EN: PWM Module Enable bit

1 = PWM module is enabled
0 = PWM module is disabled

bit 6 Unimplemented: Read as ‘0’

bit 5 OUT: PWM Module Output Level When Bit is Read

bit 4 POL: PWM Output Polarity Select bit

1 = PWM output is inverted
0 = PWM output is normal

bit 3-0 Unimplemented: Read as ‘0’
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 344


 2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
9

4
3

A
-p

a
g

e
 3

5
9

P
IC

18(L
)F

25/26K
83

FIG

Rev. 10-000 180A
12/19/201 3

3

2

2

6

1 2
URE 25-8: HIGH AND LOW MEASURE MODE REPEAT ACQUISITION TIMING DIAGRAM

0 1 2 3 4 5 1 2 3 4 5 6 1

5

SMTx Clock

SMTxEN

SMTxGO

SMTxTMR

SMTxGO_sync

SMTx_signal

SMTx_signalsync

SMTxCPW

SMTxPWAIF

SMTxPRAIF

SMTxCPR

PIC18(L)F25/26K83

REGISTER 25-13: SMTxCPWL: SMT CAPTURED PULSE WIDTH REGISTER – LOW BYTE

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x

SMTxCPW<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SMTxCPW<7:0>: Significant bits of the SMT PW Latch – Low Byte

REGISTER 25-14: SMTxCPWH: SMT CAPTURED PULSE WIDTH REGISTER – HIGH BYTE

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x

SMTxCPW<15:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SMTxCPW<15:8>: Significant bits of the SMT PW Latch – High Byte

REGISTER 25-15: SMTxCPWU: SMT CAPTURED PULSE WIDTH REGISTER – UPPER BYTE

R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x R-x/x

SMTxCPW<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 SMTxCPW<23:16>: Significant bits of the SMT PW Latch – Upper Byte
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 388

PIC18(L)F25/26K83
31.11 Receive and Transmit Buffers

The UART uses small buffer areas to transmit and
receive data. These are sometimes referred to as
FIFOs.

The receiver has a Receive Shift Register (RSR) and
two buffer registers. The buffer at the top of the FIFO
(earliest byte to enter the FIFO) is by retrieved by read-
ing the UxRXB register.

The transmitter has one Transmit Shift Register (TSR)
and one buffer register. Writes to UxTXB go to the
transmit buffer then immediately to the TSR, if it is
empty. When the TSR is not empty, writes to UxTXB
are held then transferred to the TSR when it becomes
available.

31.11.1 FIFO STATUS

The UxFIFO register contains several Status bits for
determining the state of the receive and transmit buf-
fers.

The RXBE bit indicates that the receive FIFO is empty.
This bit is essentially the inverse of UxRXIF. The RXBF
bit indicates that the receive FIFO is full.

The transmitter has only one buffer register so the
Status bits are essentially a copy and inverse of the
UxTXIF bit. The TXBE bit indicates that the buffer is
empty (same as UxTXIF) and the TXBF bit indicates
that the buffer is full (UxTXIF inverse). A third transmit-
ter Status bit, TXWRE (transmit write error), is set
whenever a UxTXB write is performed when the TXBF
bit is set. This indicates that the write was unsuccess-
ful.

31.11.2 FIFO RESET

All modes support resetting the receive and transmit
buffers.

The receive buffer is flushed and all unread data dis-
carded when the RXBE bit in the UxFIFO register is
written to ‘1’. The MOVWF instruction with the TXBE bit
cleared should be used to avoid inadvertently clearing
a byte pending in the TSR when UxTXB is empty.

Data written to UxTXB when TXEN is low will be held in
the Transmit Shift Register (TSR) then sent when
TXEN is set. The transmit buffer and inactive TSR are
flushed by setting the TXBE bit in the UxFIFO register.
Setting TXBE while a character is actively transmitting
from the TSR will complete the transmission without
being flushed.

Clearing the ON bit will discard all received data and
transmit data pending in the TSR and UxTXB.

31.12 Flow Control

This section does not apply to the LIN, DALI, or DMX
modes.

Flow control is the means by which a sending UART
data stream can be suspended by a receiving UART.
Flow control prevents input buffers from overflowing
without software intervention. The UART supports both
hardware and XON/XOFF methods of flow control.

The flow control method is selected with the FLO<1:0>
bits in the UxCON2 register. Flow control is disabled
when are both bits are cleared.

31.12.1 HARDWARE FLOW CONTROL

Hardware flow control is selected by setting the
FLO<1:0> bits to ‘10’.

Hardware flow control consists of three lines. The RS-
232 signal names for two of these are RTS, and CTS.
Both are low true. The third line may be used to control
an RS-485 transceiver. The signal name for this is
TXDE for transmit drive enable. This output is high
when the TX output is actively sending a character and
low at all other times. The UART is configured as DTE
(computer) equipment which means RTS is an output
and CTS is an input.

The RTS and CTS signals work as a pair to control the
transmission flow. A DTE-to-DTE configuration
connects the RTS output of the receiving UART to the
CTS input of the sending UART. Refer to Figure 31-10.

The UART receiving data asserts the RTS output low
when the input FIFO is empty. When a character is
received, the RTS output goes high until the UxRXB is
read to free up both FIFO locations.

When the CTS input goes high after a byte has started
to transmit, the transmission will complete normally.
The receiver accommodates this by accepting the
character in the second FIFO location even when the
CTS input is high.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 475

PIC18(L)F25/26K83
REGISTER 31-18: UxTXCHK: UART TRANSMIT CHECKSUM RESULT REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

TXCHK<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 TXCHK<7:0>: Checksum calculated from TX bytes

LIN mode and C0EN = 1:
Sum of all transmitted bytes including PID

LIN mode and C0EN = 0:
Sum of all transmitted bytes except PID

All other modes and C0EN = 1:
Sum of all transmitted bytes since last clear

All other modes and C0EN = 0:
Not used

REGISTER 31-19: UxRXCHK: UART RECEIVE CHECKSUM RESULT REGISTER

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

RXCHK<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 RXCHK<7:0>: Checksum calculated from RX bytes

LIN mode and C0EN = 1:
Sum of all received bytes including PID

LIN mode and C0EN = 0:
Sum of all received bytes except PID

All other modes and C0EN = 1:
Sum of all received bytes since last clear

All other modes and C0EN = 0:
Not used
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 495

PIC18(L)F25/26K83
FIGURE 33-13: CLOCK SYNTHESIS TIMING (FME = 0)

33.5.4.2 Clock Timing with FME = 1

One TSCL, consists of four clocks of the I2C clock input.
The first clock is used to drive SCL low, the third
releases SCL high, and the fourth is used to detect if
the clock is, in fact, high or being stretched by a slave.

If a slave is clock stretching, the hardware waits; check-
ing SCL on each successive I2C clock, proceeding only
after detecting SCL high. Figure 33-14 shows the clock
synthesis timing when FME = 1.

FIGURE 33-14: CLOCK SYNTHESIS TIMING (FME = 1)

Rev. 10-000 305A
8/16/201 6

SDA

SCL

Master device
releases clock

Master drives
SCL low

I2C_clk

SDA delay time

Master device
detects clock high twice Master waits to

detect SCL twice

TSCL

Slave releases bus
SCL is shortened but

is 2*TCLK, min

TSCL

Rev. 10-000 306A
8/16/201 6

SDA

SCL

Master device
releases clock

Master drives
SCL low

I2C_clk

SDA delay time

Master device
detects clock high Master waits to detect

SCL no longer held low

Slave releases
bus, a shortened
SCL clock appears

TSCL TSCL TSCL
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 549

PIC18(L)F25/26K83
Additionally, there is an Error State Warning flag bit,
EWARN, which is set if at least one of the error count-
ers equals or exceeds the error warning limit of 96.
EWARN is reset if both error counters are less than the
error warning limit.

FIGURE 34-8: ERROR MODES STATE DIAGRAM

Bus-
Off

Error-
Active

Error-

Passive

RXERRCNT < 128 or
TXERRCNT < 128

RXERRCNT  128 or
TXERRCNT  128

TXERRCNT > 255

128 occurrences of
11 consecutive
“recessive” bits

Reset
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 599

PIC18(L)F25/26K83

EXAMPLE 34-5: READING A CAN MESSAGE

REGISTER 34-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

REC7 REC6 REC5 REC4 REC3 REC2 REC1 REC0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 REC<7:0>: Receive Error Counter bits

This register contains the receive error value as defined by the CAN specifications. When
RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not have the
ability to put the module in “bus-off” state.

; Need to read a pending message from RXB0 buffer.
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be
; programmed correctly.
;
; Make sure that there is a message pending in RXB0.
BTFSS RXB0CON, RXFUL ; Does RXB0 contain a message?
BRA NoMessage ; No. Handle this situation...
; We have verified that a message is pending in RXB0 buffer.
; If this buffer can receive both Standard or Extended Identifier messages,
; identify type of message received.
BTFSS RXB0SIDL, EXID ; Is this Extended Identifier?
BRA StandardMessage ; No. This is Standard Identifier message.

; Yes. This is Extended Identifier message.
; Read all 29-bits of Extended Identifier message.
...
; Now read all data bytes
MOVFF RXB0DO, MY_DATA_BYTE1
...
; Once entire message is read, mark the RXB0 that it is read and no longer FULL.
BCF RXB0CON, RXFUL ; This will allow CAN Module to load new messages

; into this buffer.
...
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 621

PIC18(L)F25/26K83

bit 0 When CAN is in Mode 0:
RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit
1 = High priority
0 = Low priority
When CAN is in Mode 1:
Unimplemented: Read as ‘0’
When CAN is in Mode 2:
FIFOWMIP: FIFO Watermark Interrupt Priority bit
1 = High priority
0 = Low priority

REGISTER 34-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER(1)

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 U-0 U-0

— — — TXB2IE(2) TXB1IE(2) TXB0IE(2) — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-5 Unimplemented: Read as ‘0’

bit 4-2 TXB2IE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bits(2)

1 = Transmit buffer interrupt is enabled
0 = Transmit buffer interrupt is disabled

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This register is available in Mode 1 and 2 only.

2: TXBnIE in PIE5 register must be set to get an interrupt.

REGISTER 34-58: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5 (CONTINUED)

Note 1: In CAN Mode 1 and 2, these bits are forced to ‘0’.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 647

PIC18(L)F25/26K83
37.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC
measurements without software intervention. When a
rising edge of the selected source occurs, the GO bit is
set by hardware.

The auto-conversion trigger source is selected by the
ADACT register.

Using the auto-conversion trigger does not assure
proper ADC timing. It is the user’s responsibility to
ensure that the ADC timing requirements are met. See
Register 37-33 for auto-conversion sources.

37.2.6 ADC CONVERSION PROCEDURE
(BASIC MODE)

This is an example procedure for using the ADC to
perform an analog-to-digital conversion:

1. Configure Port:

• Disable pin output driver (Refer to the TRISx
register)

• Configure pin as analog (Refer to the
ANSELx register)

2. Configure the ADC module:

• Select ADC conversion clock

• Select voltage reference

• Select ADC input channel

• Precharge and acquisition

• Turn on ADC module

3. Configure ADC interrupt (optional):

• Clear ADC interrupt flag

• Enable ADC interrupt

• Enable global interrupt (GIEL bit)(1)

4. If ADACQ = 0, software must wait the required
acquisition time(2).

5. Start conversion by setting the GO bit.

6. Wait for ADC conversion to complete by one of
the following:

• Polling the GO bit

• Polling the ADIF bit

• Waiting for the ADC interrupt (interrupts
enabled)

7. Read ADC Result.

8. Clear the ADC interrupt flag (required if interrupt
is enabled).

EXAMPLE 37-1: ADC CONVERSION

Note 1: The global interrupt can be disabled if the
user is attempting to wake-up from Sleep
and resume in-line code execution.

2: Refer to Section 37.3 “ADC Acquisi-
tion Requirements”.

/*This code block configures the ADC
for polling, VDD and VSS references, FRC
oscillator and AN0 input.
Conversion start & polling for completion
are included.
 */
void main() {
 //System Initialize
 initializeSystem();

 //Setup ADC
 ADCON0bits.FM = 1; //right justify
 ADCON0bits.CS = 1; //FRC Clock
 ADPCH = 0x00; //RA0 is Analog channel
 TRISAbits.TRISA0 = 1; //Set RA0 to input
 ANSELAbits.ANSELA0 = 1; //Set RA0 to analog
 ADCON0bits.ON = 1; //Turn ADC On

 while (1) {
 ADCON0bits.GO = 1; //Start conversion
 while (ADCON0bits.GO); //Wait for conversion done
 resultHigh = ADRESH; //Read result
 resultLow = ADRESL; //Read result
 }
}

 2017 Microchip Technology Inc. Preliminary DS40001943A-page 658

PIC18(L)F25/26K83
39.9 CWG1 Auto-Shutdown Source

The output of the comparator module can be used as
an auto-shutdown source for the CWG1 module. When
the output of the comparator is active and the
corresponding WGASxE is enabled, the CWG
operation will be suspended immediately (see Section
26.10.1.2 “External Input Source”).

39.10 ADC Auto-Trigger Source

The output of the comparator module can be used to
trigger an ADC conversion. When the ADACT register
is set to trigger on a comparator output, an ADC
conversion will trigger when the Comparator output
goes high.

39.11 TMR2/4/6 Reset

The output of the comparator module can be used to
reset Timer2. When the TxERS register is
appropriately set, the timer will reset when the
Comparator output goes high.

39.12 Operation in Sleep Mode

The comparator module can operate during Sleep. The
comparator clock source is based on the Timer1 clock
source. If the Timer1 clock source is either the system
clock (FOSC) or the instruction clock (FOSC/4), Timer1
will not operate during Sleep, and synchronized
comparator outputs will not operate.

A comparator interrupt will wake the device from
Sleep. The CxIE bits of the respective PIE register
must be set to enable comparator interrupts.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 699

PIC18(L)F25/26K83

SUBFWB Subtract f from W with borrow

Syntax: SUBFWB f {,d {,a}}

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (W) – (f) – (C) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 01da ffff ffff

Description: Subtract register ‘f’ and CARRY flag
(borrow) from W (2’s complement
method). If ‘d’ is ‘0’, the result is stored
in W. If ‘d’ is ‘1’, the result is stored in
register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section
42.2.3 “Byte-Oriented and Bit-Ori-
ented Instructions in Indexed Literal
Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: SUBFWB REG, 1, 0

Before Instruction
REG = 3
W = 2
C = 1

After Instruction
REG = FF
W = 2
C = 0
Z = 0
N = 1 ; result is negative

Example 2: SUBFWB REG, 0, 0

Before Instruction
REG = 2
W = 5
C = 1

After Instruction
REG = 2
W = 3
C = 1
Z = 0
N = 0 ; result is positive

Example 3: SUBFWB REG, 1, 0

Before Instruction
REG = 1
W = 2
C = 0

After Instruction
REG = 0
W = 2
C = 1
Z = 1 ; result is zero
N = 0

SUBLW Subtract W from literal

Syntax: SUBLW k

Operands: 0 k 255

Operation: k – (W) W

Status Affected: N, OV, C, DC, Z

Encoding: 0000 1000 kkkk kkkk

Description W is subtracted from the 8-bit
literal ‘k’. The result is placed in W.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
literal ‘k’

Process
Data

Write to W

Example 1: SUBLW 02h

Before Instruction
W = 01h
C = ?

After Instruction
W = 01h
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBLW 02h

Before Instruction
W = 02h
C = ?

After Instruction
W = 00h
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBLW 02h

Before Instruction
W = 03h
C = ?

After Instruction
W = FFh ; (2’s complement)
C = 0 ; result is negative
Z = 0
N = 1
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 751

