

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26k83-i-sp

Email: info@E-XFL.COM

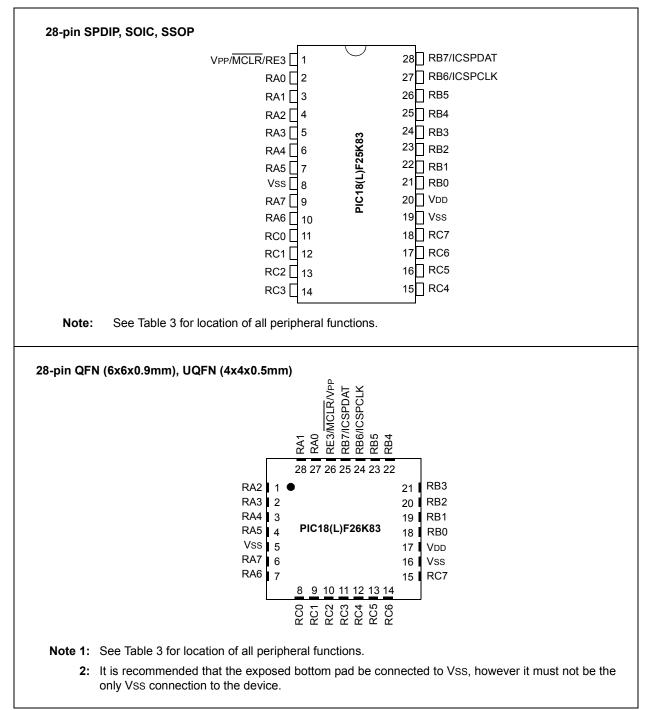

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: PACKAGES

Device	SPDIP	SOIC	SSOP	UQFN	QFN
PIC18(L)F25K83	•	•	•	•	•
PIC18(L)F26K83	•	•	•	•	•

Note 1: Pin details are subject to change.

Pin Diagrams

4.5.5 STATUS REGISTER

The STATUS register, shown in Register 4-2, contains the arithmetic status of the ALU. As with any other SFR, it can be the operand for any instruction.

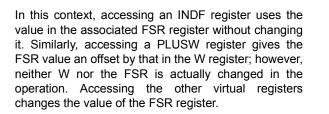
If the STATUS register is the destination for an instruction that affects the Z, DC, C, OV or N bits, the results of the instruction are not written; instead, the STATUS register is updated according to the instruction performed. Therefore, the result of an instruction with the STATUS register as its destination may be different than intended. As an example, CLRF STATUS will set the Z bit and leave the remaining Status bits unchanged ('0uuu u1uu').

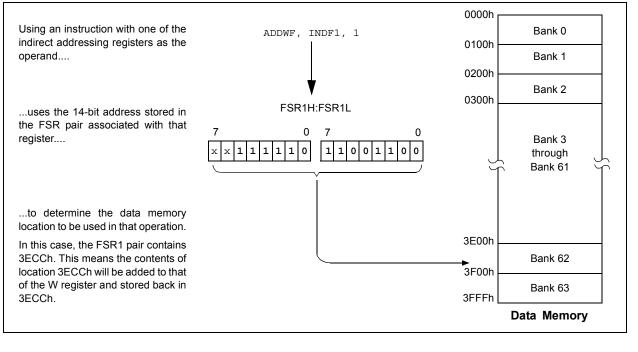
It is recommended that only BCF, BSF, SWAPF, MOVFF, MOVWF and MOVFFL instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, DC, OV or N bits in the STATUS register.

For other instructions that do not affect Status bits, see the instruction set summaries in **Section 42.2 "Extended Instruction Set**" and Table 42-3.

Note: The C and DC bits operate as the borrow and digit borrow bits, respectively, in subtraction.

4.5.6 CALL SHADOW REGISTER


When CALL, CALLW, RCALL instructions are used, the WREG, BSR and STATUS are automatically saved in hardware and can be accessed using the WREG_C-SHAD, BSR_CSHAD and STATUS_CSHAD registers.


4.7.3.2 FSR Registers, POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers which cannot be directly read or written. Accessing these registers actually accesses the location to which the associated FSR register pair points, and also performs a specific action on the FSR value. They are:

- POSTDEC: accesses the location to which the FSR points, then automatically decrements the FSR by 1 afterwards
- POSTINC: accesses the location to which the FSR points, then automatically increments the FSR by 1 afterwards
- PREINC: automatically increments the FSR by 1, then uses the location to which the FSR points in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the location to which the result points in the operation.

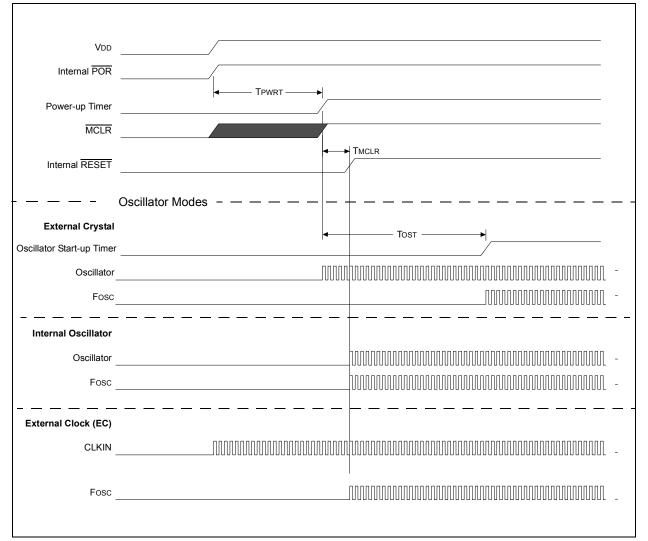
FIGURE 4-6: INDIRECT ADDRESSING

5.2 Register Definitions: Configuration Words

REGISTER	K 5-1: CONI	FIGURATION W	ORD 1L (3	30 0000h)							
U-1	R/W-1	R/W-1	R/W-1	U-1	R/W-1	R/W-1	R/W-1				
_		RSTOSC<2:0>				EXTOSC<2:0>	>				
bit 7	·						bit (
1											
Legend:			.,								
R = Readal	ble bit	W = Writable I	oit	•	mented bit, rea	id as '1'					
-n = Value f	for blank device	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 7	Unimpleme	ented: Read as '1'									
bit 6-4	RSTOSC<2	RSTOSC<2:0>: Power-up Default Value for COSC bits									
	111 = EXT (111 = EXTOSC operating per FEXTOSC<2:0> bits									
		110 = HFINTOSC with HFFRQ = 4 MHz and CDIV = 4:1									
	101 = LFIN	101 = LFINTOSC									
	100 = SOS	100 = SOSC									
	011 = Rese	011 = Reserved									
	010 = EXTO	010 = EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC<2:0> bits									
	001 = Rese	001 = Reserved									
	000 = HFIN	000 = HFINTOSC with HFFRQ = 64 MHz and CDIV = 1:1; resets COSC/NOSC to 3'b110									
bit 3	Unimpleme	ented: Read as '1'									
bit 2-0	FEXTOSC<2:0>: FEXTOSC External Oscillator Mode Selection bits										
	111 = EC (E	111 = EC (External Clock) above 8 MHz; PFM set to high power									
	· · ·	110 = EC (External Clock) for 500 kHz to 8 MHz; PFM set to medium power									
	101 = EC (E	101 = EC (External Clock) below 500 kHz; PFM set to low power									
	100 = Oscil	lator is not enable	d								
	011 = Rese	erved (do not use)									
		crystal oscillator) a									
		crystal oscillator) a									
	000 = LP (c	rystal oscillator) o	ptimized for	32.768 kHz; PF	FM set to low p	ower					

REGISTER 5-1: CONFIGURATION WORD 1L (30 0000h)

 $\ensuremath{\textcircled{}^{\circ}}$ 2017 Microchip Technology Inc.


6.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for selected oscillator source).
- 3. MCLR must be released (if enabled).

The total time out will vary based on oscillator configuration and Power-up Timer configuration. See Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator Start-up Timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 6-4). This is useful for testing purposes or to synchronize more than one device operating in parallel.

FIGURE 6-4: RESET START-UP SEQUENCE

12.0 8x8 HARDWARE MULTIPLIER

12.1 Introduction

All PIC18 devices include an 8x8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. A comparison of various hardware and software multiply operations, along with the savings in memory and execution time, is shown in Table 12-1.

12.2 Operation

Example 12-1 shows the instruction sequence for an 8x8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 12-2 shows the sequence to do an 8x8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 12-1: 8x8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;				
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRODE	1:1	PRODL	

EXAMPLE 12-2: 8x8 SIGNED MULTIPLY

		1.	JOHNE
MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time				
Routine	Multiply Method	Memory (Words)	(Max)	@ 64 MHz	@ 40 MHz	@ 10 MHz	@ 4 MHz	
9v9 unsigned	Without hardware multiply	13	69	4.3 μs	6.9 μs	27.6 μs	69 μs	
8x8 unsigned	Hardware multiply	1	1	62.5 ns	100 ns	400 ns	1 μs	
9v9 signed	Without hardware multiply	33	91	5.7 μs	9.1 μs	36.4 μs	91 μs	
8x8 signed	Hardware multiply	6	6	375 ns	600 ns	2.4 μs	6 μs	
16v16 unsigned	Without hardware multiply	21	242	15.1 μs	24.2 μs	96.8 μs	242 μs	
16x16 unsigned	Hardware multiply	28	28	1.8 μs	2.8 μs	11.2 μs	28 μs	
16x16 aignod	Without hardware multiply	52	254	15.9 μs	25.4 μs	102.6 μs	254 μs	
16x16 signed	Hardware multiply	35	40	2.5 μs	4.0 μs	16.0 μs	40 μs	

TABLE 12-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

WRITING TO PROGRAM FLASH MEMORY MOVLW D'64′ ; number of bytes in erase block MOVWF COUNTER MOVIW BUFFER_ADDR_HIGH ; point to buffer MOVWF FSR0H BUFFER_ADDR_LOW MOVLW MOVWF FSR0L MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base MOVWF TBLPTRU ; address of the memory block MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH CODE_ADDR_LOW MOVLW MOVWF TBLPTRL READ_BLOCK TBLRD*+ ; read into TABLAT, and inc TABLAT, W MOVF ; get data MOVWF POSTINCO ; store data DECFSZ COUNTER ; done? READ_BLOCK BRA ; repeat MODIFY WORD MOVLW BUFFER_ADDR_HIGH ; point to buffer MOVWF FSR0H MOVLW BUFFER_ADDR_LOW MOVWF FSR0L MOVLW NEW_DATA_LOW ; update buffer word MOVWF POSTINC0 MOVLW NEW_DATA_HIGH MOVWE INDF0 ERASE BLOCK MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base MOVWF TBLPTRU ; address of the memory block MOVLW CODE_ADDR_HIGH MOVWE TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL BCF NVMCON1, REG0 ; point to Program Flash Memory NVMCON1, REG1 ; point to Program Flash Memory BSF NVMCON1, WREN BSF ; enable write to memory NVMCON1, FREE ; enable Erase operation BSF INTCON0, GIE ; disable interrupts BCF MOVLW 55h Required MOVWF NVMCON2 ; write 55h Sequence MOVLW AAh MOVWF NVMCON2 ; write OAAh NVMCON1, WR ; start erase (CPU stall) BSF INTCON0, GIE BSF ; re-enable interrupts TBLRD*-; dummy read decrement BUFFER_ADDR_HIGH ; point to buffer MOVLW MOVWF FSR0H MOVLW BUFFER_ADDR_LOW MOVWF FSROL WRITE_BUFFER_BACK MOVLW BlockSize ; number of bytes in holding register MOVWF COUNTER MOVLW D'64'/BlockSize ; number of write blocks in 64 bytes MOVWF COUNTER2

EXAMPLE 13-4:

20.8 Register Definitions: Timer0 Control

R/W-0/0	U-0	R-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
EN	—	OUT	MD16		OUTP	S<3:0>			
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7		able bit ule is enabled a ule is disabled			de				
bit 6	Unimplement	ted: Read as ')'						
bit 5		OUT: TMR0 Output bit (read-only) TMR0 output bit							
bit 4	MD16: TMR0 1 = TMR0 is 0 = TMR0 is		I6-Bit Timer S	elect bit					
bit 3-0	OUTPS<3:0> 1111 = 1:16 F 1110 = 1:15 F 1101 = 1:14 F 1001 = 1:12 F 1011 = 1:12 F 1001 = 1:10 F 1000 = 1:9 Pc 0111 = 1:8 Pc 0110 = 1:7 Pc 0101 = 1:6 Pc 0101 = 1:4 Pc 0011 = 1:3 Pc 0011 = 1:2 Pc 0001 = 1:2 Pc	Postscaler Postscaler Postscaler Postscaler Postscaler Postscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler Dostscaler	Postscaler (I	Divider) Select	bits				

REGISTER 20-1: T0CON0: TIMER0 CONTROL REGISTER 0

PIC18(L)F25/26K83

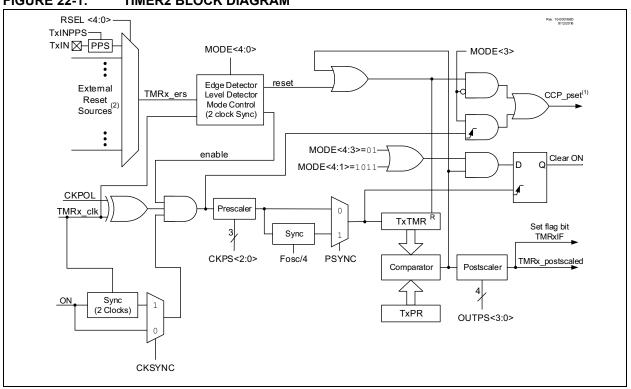
REGISTER 20-2: T0CON1: TIMER0 CONTROL REGISTER 1

Lanandı							
bit 7							bit 0
	CS<2:0>		ASYNC		CKPS	<3:0>	
R/W-0/0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	CS<2:0>:Timer0 Clock Source Select bits 111 = CLC1 110 = SOSC 101 = MFINTOSC (500 kHz) 100 = LFINTOSC 011 = HFINTOSC 010 = Fosc/4 001 = Pin selected by T0CKIPPS (Inverted) 000 = Pin selected by T0CKIPPS (Non-inverted)
bit 4	 ASYNC: TMR0 Input Asynchronization Enable bit 1 = The input to the TMR0 counter is not synchronized to system clocks 0 = The input to the TMR0 counter is synchronized to Fosc/4
bit 3-0	CKPS<3:0>: Prescaler Rate Select bit 1111 = 1:32768 1110 = 1:16384 1101 = 1:8192 1100 = 1:4096 1011 = 1:2048 1010 = 1:1024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1

22.0 TIMER2/4/6 MODULE


The Timer2/4/6 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

- 8-bit timer register
- 8-bit period register
- · Selectable external hardware timer resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- Selectable synchronous/asynchronous operation
- · Alternate clock sources
- Interrupt on period

- Three modes of operation:
 - Free Running Period
 - One-Shot
 - Monostable

See Figure 22-1 for a block diagram of Timer2. See Figure 22-2 for the clock source block diagram.

Note: Three identical Timer2 modules are implemented on this device. The timers are named Timer2, Timer4, and Timer6. All references to Timer2 apply as well to Timer4 and Timer6. All references to T2PR apply as well to T4PR and T6PR.

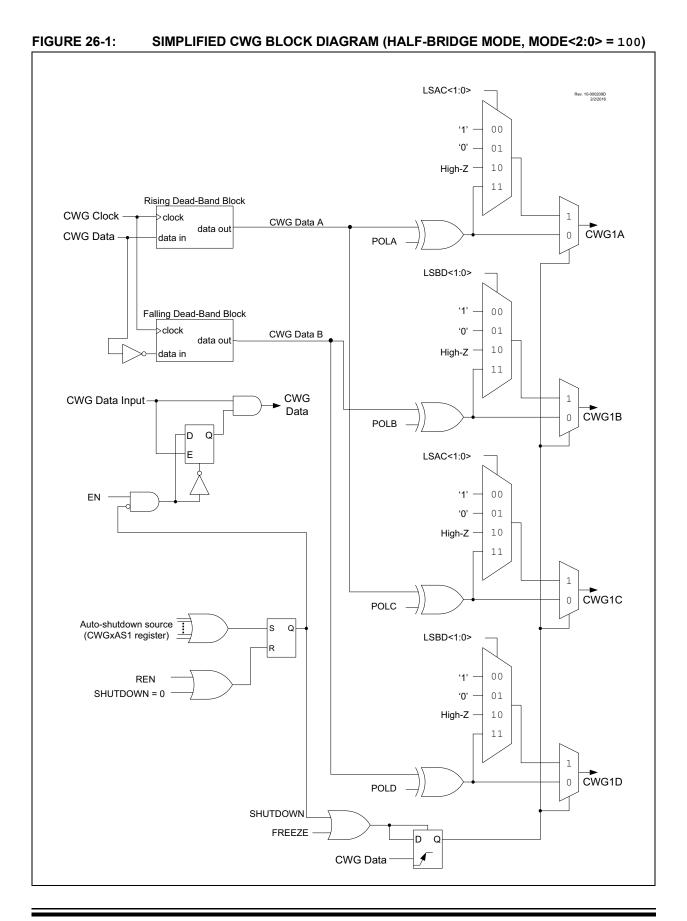
FIGURE 22-1: TIMER2 BLOCK DIAGRAM

22.5.4 LEVEL-TRIGGERED HARDWARE LIMIT MODE

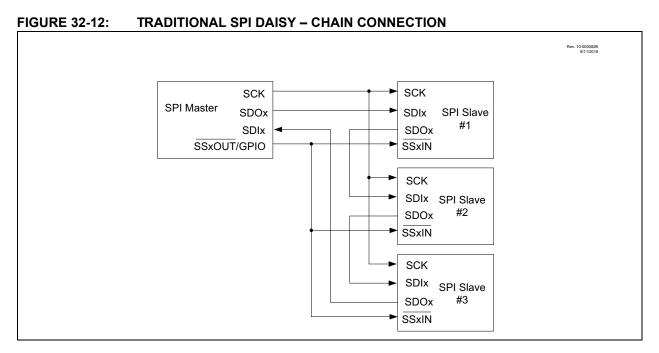
In the level triggered Hardware Limit Timer modes the counter is reset by high or low levels of the external signal TMR2_ers, as shown in Figure 22-7. Selecting MODE<4:0> = 00110 will cause the timer to reset on a low level external signal. Selecting MODE<4:0> = 00111 will cause the timer to reset on a high level external signal. In the example, the counter is reset while TMR2_ers = 1. ON is controlled by BSF and BCF instructions. When ON=0 the external signal is ignored.

When the CCP uses the timer as the PWM time base then the PWM output will be set high when the timer starts counting and then set low only when the timer count matches the CCPRx value. The timer is reset when either the timer count matches the T2PR value or two clock periods after the external Reset signal goes true and stays true.

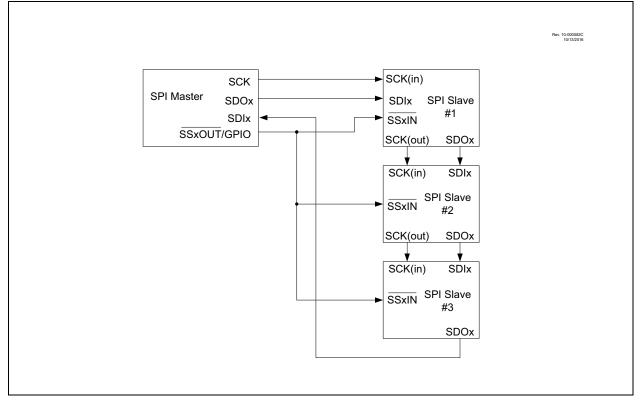
The timer starts counting, and the PWM output is set high, on either the clock following the T2PR match or two clocks after the external Reset signal relinquishes the Reset. The PWM output will remain high until the timer counts up to match the CCPRx pulse width value. If the external Reset signal goes true while the PWM output is high then the PWM output will remain high until the Reset signal is released allowing the timer to count up to match the CCPRx value.



	Re: 10.0001965 9122018
MODE	0b00111
TMRx_clk	
TxPR	5
Instruction ⁽¹⁾ -	(BSF) (BSF)
ON	
TMRx_ers	
TxTMR($0 \ 1 \ 2 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$
TMRx_postscaled	
PWM Duty Cycle	3
PWM Output	
	I: BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.


						-11	
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC	CKPOL	CKSYNC			MODE<4:0>		
bit 7	·		•				bit (
Legend:							
R = Reada	ble bit	W = Writable	hit	II – Unimpler	nented bit, rea	d as '0'	
		x = Bit is unkr				R/Value at all	othor Docote
u = Bit is u	•				at FOR and BC	r/value at all	
'1' = Bit is s	sel	'0' = Bit is cle	areo				
bit 7	1 = TxTMR 0 = TxTMR	erx Prescaler S Prescaler Outp Prescaler Outp	ut is synchroni ut is not synch	ized to Fosc/4 ironized to Foso			
bit 6	1 = Falling e	erx Clock Polar edge of input clo dge of input clo	ock clocks time	er/prescaler			
bit 5	1 = ON regis	merx Clock Syr ster bit is synch ster bit is not sy	ronized to T27	FMR_clk input	out		
bit 4-0		: Timerx Contro -1 for all operation		tion bits ^(6, 7)			
	Setting this bit er		•		data value.		
	When this bit is '	-	•	•			
	CKPOL should r	•					
4:	Setting this bit er	nsures glitch-fre	e operation w	hen the ON is e	enabled or disa	bled.	
5:	When this bit is set.	set then the time	er operation w	ill be delayed by	y two TxTMR ir	nput clocks afte	r the ON bit i
6:	Unless otherwise affecting the value		modes start u	upon ON = 1 a	nd stop upon	ON = 0 (stops	occur withou
7.	When TxTMR =	TxPR the next	clock clears T	xTMR regardle	ess of the oner	ating mode	

REGISTER 22-6: TxHLT: TIMERX HARDWARE LIMIT CONTROL REGISTER


7: When TxTMR = TxPR, the next clock clears TxTMR, regardless of the operating mode.

PIC18(L)F25/26K83

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
I2CxBTO	—		_		—		BTO<2:0>		567
I2CxCLK	_	_	—	_	—	CLK<2:0>			566
I2CxPIE	CNTIE	ACKTIE	—	WRIE	ADRIE	PCIE	RSCIE	SCIE	573
I2CxPIR	CNTIF	ACKTIF	—	WRIF	ADRIF	PCIF	RSCIF	SCIF	572
I2CxERR	_	BTOIF	BCLIF	NACKIF	—	BTOIE	BCLIE	NACKIE	570
I2CxSTAT0	BFRE	SMA	MMA	R	D	—	—	—	568
I2CxSTAT1	TXWE	_	TXBE	_	RXRE	CLRBF	—	RXBF	569
I2CxCON0	EN	RSEN	S	CSTR	MDR	MODE<2:0>			562
I2CxCON1	ACKCNT	ACKDT	ACKSTAT	ACKT	—	RXOV	TXU	CSD	564
I2CxCON2	ACNT	GCEN	FME	ADB	SDAHT	<3:2> BFRET<1:0>		565	
I2CxADR0				Al	DR<7:0>				574
I2CxADR1				A	DR<7:1>		575		
I2CxADR2	ADR<7:0>							576	
I2CxADR3	ADR<7:1> —							577	
I2CxADB0	ADB<7:0>							578	
I2CxADB1	ADB<7:0>								579
I2CxCNT	CNT<7:0>							571	
I2CxRXB	RXB<7:0>							—	
I2CxTXB	TXB<7:0>							—	

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the l^2C module.

EXAMPLE 34-3: TRANSMITTING A CAN MESSAGE USING BANKED METHOD

; Need to transmit Standard Identifier message 123h using TXB0 buffer. ; To successfully transmit, CAN module must be either in Normal or Loopback mode. ; TXBO buffer is not in access bank. And since we want banked method, we need to make sure ; that correct bank is selected. BANKSEL TXB0CON ; One BANKSEL in beginning will make sure that we are ; in correct bank for rest of the buffer access. ; Now load transmit data into TXB0 buffer. MOVLW MY_DATA_BYTE1 ; Load first data byte into buffer MOVWF TXB0D0 ; Compiler will automatically set "BANKED" bit ; Load rest of data bytes - up to 8 bytes into TXBO buffer. . . . ; Load message identifier MOVLW 60H ; Load SID2:SID0, EXIDE = 0 MOVWF TXB0SIDL MOVLW 24H ; Load SID10:SID3 MOVWF TXB0SIDH ; No need to load TXB0EIDL:TXB0EIDH, as we are transmitting Standard Identifier Message only. ; Now that all data bytes are loaded, mark it for transmission. MOVLW B'00001000' ; Normal priority; Request transmission MOVWF TXB0CON ; If required, wait for message to get transmitted BTFSC TXB0CON, TXREQ ; Is it transmitted? BRA \$-2 ; No. Continue to wait ... ; Message is transmitted.

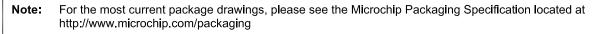
42.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

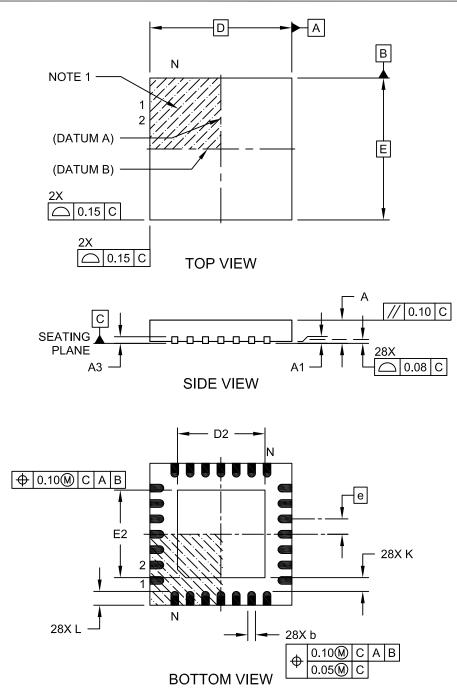
The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F25/26K83 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

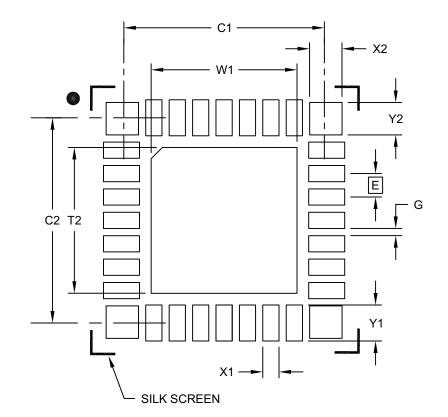

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.


Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page	
3FCEh	PORTE	_	—	_	_	RE3	—	_	_	252	
3FCDh	_				Unimple	mented				_	
3FCCh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	252	
3FCBh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	252	
3FCAh	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	252	
3FC9h - 3FC5h	—	Unimplemented							_		
3FC4h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	253	
3FC3h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	253	
3FC2h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	253	
3FC1h- 3FBDh	—				Unimple	nimplemented					
3FBCh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	254	
3FBBh	LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	254	
3FBAh	LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	254	
3FB9h	T0CON1		CS<2:0>	•	ASYNC		CKPS	8<3:0>		287	
3FB8h	T0CON0	EN		OUT	MD16		286				
3FB7h	TMR0H				TMF	ROH	288				
3FB6h	TMR0L		TMR0L						288		
3FB5h	T1CLK		CS						300		
3FB4h	T1GATE				GS	SS				301	
3FB3h	T1GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	_	299	
3FB2h	T1CON	_		CKP	S<1:0>	_	SYNC	RD16	ON	323	
3FB1h	TMR1H				TMF	R1H				302	
3FB0h	TMR1L	TMRIL							302		
3FAFh	T2RST	_	_	_			RSEL			321	
3FAEh	T2CLK	_		_				S		300	
3FADh	T2HLT	PSYNC	CKPOL	CKSYNC			MODE	-		324	
3FACh	T2CON	ON		CKPS			298				
3FABh	T2PR				PF	1	322				
3FAAh	T2TMR		PR2 TMR2						322		
3FA9h	T3CLK									300	
3FA8h	T3GATE			CS GSS						301	
3FA7h	T3GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	_	_	299	
3FA6h	T3CON				KPS		NOT_SYNC	RD16	ON	323	
	TMR3H			U U		 R3H		1,010		302	
3FA4h	TMR3L				TMF					302	
3FA3h	T4RST	_		_			RSEL			302	
3FA2h	T4RST T4CLK							s		321	
3FA2II 3FA1h	T4ULK	PSYNC	CKPOL	CKSYNC	_		MODE			320	
3FA0h	T4CON	+	CREOL					тре		324	
3F9Fh	T4CON T4PR	ON CKPS OUTPS							323		
	T4FR T4TMR	PR4 TMR4							322		
3F9Eh					C					322	
3F9Dh	T5CLK										
3F9Ch	T5GATE	05		OTM	GS	1	0)///			301	
3F9Bh	T5GCON	GE	GPOL	GTM	GSPM	GGO	GVAL	-	-	299	
3F9Ah	T5CON	-	—	C	KPS	-	NOT_SYNC	RD16	ON	323	
3F99h	TMR5H				TMF					302	
3F98h	TMR5L	TMR5L						302			
3F97h	T6RST	_	 d, = unimplem				RSEL			321	

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not present in LF devices.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length



Microchip Technology Drawing C04-105C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6 mm Body [UQFN] With 0.60mm Contact Length And Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E 0.65 BSC			
Optional Center Pad Width	W1			4.05
Optional Center Pad Length	T2			4.05
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.00
Corner Pad Width (X4)	X2			0.90
Corner Pad Length (X4)	Y2			0.90
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2209B