

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k83-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

2.4 ICSP[™] Pins

The ICSPCLK and ICSPDAT pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., ICSPCLK/ICSPDAT pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 44.0 "Development Support"**.

U-0	R-f/f	R-f/f	R-f/f	R-f/f	R-f/f	R-f/f	R-f/f	
_		COSC<2:0>			CDIV	<3:0>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	Unimpleme	ented: Read as '	כ'					
bit 6-4	COSC<2:0>: Current Oscillator Source Select bits (read-only) ⁽¹⁾							
Indicates the current source oscillator and PLL combination per Table 7-1.								
bit 3-0	3-0 CDIV<3:0>: Current Divider Select bits (read-only) ⁽¹⁾							

REGISTER 7-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

Note 1:	The POR valu	ie is the value	present when	user code e	execution begins
11010 11				0000 0000 0	shooulon bogino

Indicates the current postscaler division ratio per Table 7-1.

REGISTER 7-3: OSCCON3: OSCILLATOR CONTROL REGISTER 3

R/W/HC-0/0	R/W-0/0	U-0	R-0/0	R-0/0	U-0	U-0	U-0
CSWHOLD	SOSCPWR	—	ORDY	NOSCR	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HC = Bit is cleared by hardware

bit 7	CSWHOLD: Clock Switch Hold bit
	 1 = Clock switch will hold (with interrupt) when the oscillator selected by NOSC is ready 0 = Clock switch may proceed when the oscillator selected by NOSC is ready; NOSCR becomes '1', the switch will occur
bit 6	SOSCPWR: Secondary Oscillator Power Mode Select bit
	1 = Secondary oscillator operating in High-Power mode
	0 = Secondary oscillator operating in Low-Power mode
bit 5	Unimplemented: Read as '0'
bit 4	ORDY: Oscillator Ready bit (read-only)
	1 = OSCCON1 = OSCCON2; the current system clock is the clock specified by NOSC
	0 = A clock switch is in progress
bit 3	NOSCR: New Oscillator is Ready bit (read-only) ⁽¹⁾
	1 = A clock switch is in progress and the oscillator selected by NOSC indicates a "ready" condition
	0 = A clock switch is not in progress, or the NOSC-selected oscillator is not yet ready
bit 2-0	Unimplemented: Read as '0'
Note 1:	If CSWHOLD = 0, the user may not see this bit set because, when the oscillator becomes ready there

Note 1: If CSWHOLD = 0, the user may not see this bit set because, when the oscillator becomes ready there may be a delay of one instruction clock before this bit is set. The clock switch occurs in the next instruction cycle and this bit is cleared.

R-0/0	R-0/0	U-0	U-0	U-0	U-0	U-0	U-0
STAT<1:0>		—	—	—	—	—	—
bit 7							bit 0
Legend:							
HC = Bit is clea	ared by hardwa	ire					
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condition	ion	

REGISTER 9-2: INTCON1: INTERRUPT CONTROL REGISTER 1

bit 7-6 STAT<1:0>: Interrupt State Status bits

11 = High priority ISR executing, high priority interrupt was received while a low priority ISR was executing

10 = High priority ISR executing, high priority interrupt was received in main routine

01 = Low priority ISR executing, low priority interrupt was received in main routine

00 = Main routine executing

bit 5-0 **Unimplemented**: Read as '0'

R/W/HS-0/	0 R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
SMT1PWAI	IF SMT1PRAIF	SMT1IF	C1IF	ADTIF	ADIF	ZCDIF	INT0IF ⁽²⁾
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is un	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is se	et	'0' = Bit is clea	ared	HS = Bit is se	et in hardware		
bit 7	SMT1PWAIF:	SMT1 Pulse-	Vidth Acquisit	ion Interrupt Fl	ag bit		
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred				
bit 6	SMT1PRAIF:	SMT1 Period	Acquisition Int	errupt Flag bit			
	1 = Interrupt	has occurred (must be cleare	ed by software)		
6.4 F							
DIT 5	SMITTE: SMI		g Dit		`		
	$\perp = $ Interrupt $0 = $ Interrupt	nas occurred (event has not (must be cleare	ed by soπware)		
bit 4	C1IF: CMP1 I	nterrupt Flag b	oit				
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred		,		
bit 3	ADTIF: ADC	Threshold Inter	rupt Flag bit				
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred				
bit 2	ADIF: ADC In	iterrupt Flag bit	t				
	1 = Interrupt	has occurred (must be cleare	ed by software)		
	0 = Interrupt	event has not o	occurred				
bit 1	ZCDIF: ZCD I	Interrupt Flag b	oit , , , ,		,		
	1 = Interrupt	nas occurred (must be cleare	ed by soπware)		
hit 0				hit(2)			
DILU			must be slear	Dit'	\		
	0 = Interrupt	event has not o	occurred	eu by Soltware)		
Note 1: Ir e c	nterrupt flag bits g nable bit, or the g lear prior to enabl	et set when an lobal enable bi ing an interrup	interrupt cond t. User softwa t.	dition occurs, r re should ensu	egardless of the ure the appropri	e state of its co ate interrupt fla	rresponding ig bits are

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

2: The external interrupt GPIO pin is selected by the INTxPPS register.

14.5 CRC Check Value

The CRC check value will be located in the CRCACC registers after the CRC calculation has finished. The check value will depend on two mode settings of the CRCCON0 register: ACCM and SHIFTM. When the ACCM bit is set, the CRC module augments the data with a number of zeros equal to the length of the polynomial to align the final check value. When the ACCM bit is not set, the CRC will stop at the end of the data. A number of zeros equal to the length of the polynomial can then be entered into CRCDAT to find the same check value as augmented mode. Alternatively the expected check value can be entered at this point to make the final result equal '0'.

When the CRC check value is computed with the SHIFTM bit set, selecting LSb first, and the ACCM bit is also set then the final value in the CRCACC registers will be reversed such that the LSb will be in the MSb position and vice versa. This is the expected check value in bit reversed form. If you are creating a check value to be appended to a data stream then a bit reversal must be performed on the final value to achieve the correct checksum. You can use the CRC to do this reversal by the following method:

- Save the CRCACC value in user RAM space
- Clear the CRCACC registers
- Clear the CRCXOR registers
- Write the saved CRCACC value to the CRCDAT input.

The properly oriented check value will be in the CRCACC registers as the result.

14.6 CRC Interrupt

The CRC will generate an interrupt when the BUSY bit transitions from 1 to 0. The CRCIF Interrupt Flag is set every time the BUSY bit transitions, regardless of whether or not the CRC interrupt is enabled. The CRCIF bit can only be cleared in software.

14.7 Configuring the CRC

The following steps illustrate how to properly configure the CRC.

- Determine if the automatic program memory scan will be used with the scanner or manual calculation through the SFR interface and perform the actions specified in Section 14.4 "CRC Data Sources", depending on which decision was made.
- 2. If desired, seed a starting CRC value into the CRCACCH/L registers.
- 3. Program the CRCXORH/L registers with the desired generator polynomial.
- Program the DLEN<3:0> bits of the CRCCON1 register with the length of the data word - 1 (refer to Example 14-1). This determines how many times the shifter will shift into the accumulator for each data word.
- 5. Program the PLEN<3:0> bits of the CRCCON1 register with the length of the polynomial -2 (refer to Example 14-1).
- Determine whether shifting in trailing zeros is desired and set the ACCM bit of the CRCCON0 register appropriately.
- 7. Likewise, determine whether the MSb or LSb should be shifted first and write the SHIFTM bit of the CRCCON0 register appropriately.
- 8. Write the GO bit of the CRCCON0 register to begin the shifting process.
- 9a. If manual SFR entry is used, monitor the FULL bit of the CRCCON0 register. When FULL = 0, another word of data can be written to the CRCDATH/L registers, keeping in mind that CRCDATH should be written first if the data has more than eight bits, as the shifter will begin upon the CRCDATL register being written.
- 9b. If the scanner is used, the scanner will automatically load words into the CRCDATH/L registers as needed, as long as the GO bit is set.
- 10a. If manual entry is used, monitor the CRCIF (and BUSY bit to determine when the completed CRC calculation can be read from CRCACCH/L registers.
- 10b.If using the memory scanner, monitor the SCANIF (or the GO bit) for the scanner to finish pushing information into the CRCDAT registers. After the scanner is completed, monitor the BUSY bit to determine that the CRC has been completed and the check value can be read from the CRCACC registers. If both the interrupt flags are set and the BUSY and GO bits are cleared, the completed CRC calculation can be read from the CRCACCH/L registers.

REGISTER 15-21: DMAxDCNTH: DMAx DESTINATION COUNT HIGH REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—		—		DCNT<	11:8>	
bit 7							bit 0

Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and 1 = bit is set 0 = bit is cleared x = bit is unknown BOR/Value at all other u = bit is unchanged u = bit is unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 DCNT<11:8>: Current Destination Byte Count

REGISTER 15-22: DMAxSIRQ: DMAx START INTERRUPT REQUEST SOURCE SELECTION REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_				SIRQ<6:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7 Unimplemented: Read as '0'

bit 6-0 **SIRQ<6:0>:** DMAx Start Interrupt Request Source Selection bits Please refer to Table 15-2 for more information.

REGISTER 15-23: DMAxAIRQ: DMAx ABORT INTERRUPT REQUEST SOURCE SELECTION REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_				AIRQ<6:0>			
bit 7	•						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7 Unimplemented: Read as '0'

bit 6-0 **AIRQ<6:0>:** DMAx Interrupt Request Source Selection bits Please refer to Table 15-2 for more information.

16.3.6 INPUT THRESHOLD CONTROL

The INLVLx register (Register 16-8) controls the input voltage threshold for each of the available PORTx input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTx register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 45-4 for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

16.3.7 WEAK PULL-UP CONTROL

The WPUx register (Register 16-5) controls the individual weak pull-ups for each port pin.

16.3.8 EDGE SELECTABLE INTERRUPT-ON-CHANGE

An interrupt can be generated by detecting a signal at the port pin that has either a rising edge or a falling edge. Any individual pin can be configured to generate an interrupt. The interrupt-on-change module is present on all the pins of Ports B, C, E and on pin RG5. For further details about the IOC module refer to **Section 18.0 "Interrupt-on-Change"**.

16.3.9 I²C PAD CONTROL

For the PIC18(L)F25/26K83 devices, the I²C specific pads are available on RB1, RB2, RC3, RC4, RD0⁽¹⁾ and RD1⁽¹⁾ pins. The I²C characteristics of each of these pins is controlled by the RxyI2C registers (see Register 16-9). These characteristics include enabling I²C specific slew rate (over standard GPIO slew rate), selecting internal pull-ups for I²C pins, and selecting appropriate input threshold as per SMBus specifications.

Note 1: RD0 and RD1 I²C pads are not available in PIC18(L)F25K83 parts.

2: Any peripheral using the I²C pins read the I²C ST inputs when enabled via RxyI2C.

16.4 PORTE Registers

16.4.1 MASTER CLEAR INPUT (MCLR)

For PIC18(L)F2xK83 devices, PORTE is only available when Master Clear functionality is disabled (MCLRE = 0). In this case, PORTE is a single bit, input-only port comprised of RE3 only. The pin operates as previously described. RE3 in PORTE register is a read-only bit and will read '1' when MCLRE = 1 (i.e., Master Clear enabled).

16.4.2 RE3 WEAK PULL-UP

The port RE3 pin has an individually controlled weak internal pull-up. When set, the WPUE3 bit enables the RE3 pin pull-up. When the RE3 port pin is configured as \overline{MCLR} , (CONFIG2L, MCLRE = 1 and CONFIG4H, LVP = 0), or configured for Low-Voltage Programming, (MCLRE = x and LVP = 1), the pull-up is always enabled and the WPUE3 bit has no effect.

16.4.3 INTERRUPT-ON-CHANGE

The interrupt-on-change feature is available only on the RE3 pin of PORTE for all devices. If MCLRE = 1 or LVP = 1, RE3 port functionality is disabled and interrupt-on-change on RE3 is not available. For further details refer to **Section 18.0** "Interrupt-on-Change".

Peripheral	PPS Input Register	Default Pin Selection at	Register Reset	Input Available from Selected PORTx			
		POR	value at POR	PIC18(L)F2xK83			
Interrupt 0	INTOPPS	RB0	0b0 1000	A	В	—	
Interrupt 1	INT1PPS	RB1	0b0 1001	А	В	—	
Interrupt 2	INT2PPS	RB2	0b0 1010	А	В	—	
Timer0 Clock	TOCKIPPS	RA4	0b0 0100	А	В	_	
Timer1 Clock	T1CKIPPS	RC0	0b1 0000	А	—	С	
Timer1 Gate	T1GPPS	RB5	0b0 1101		В	С	
Timer3 Clock	T3CKIPPS	RC0	0b1 0000	_	В	С	
Timer3 Gate	T3GPPS	RC0	0b1 0000	А	—	С	
Timer5 Clock	T5CKIPPS	RC2	0b1 0010	А	—	С	
Timer5 Gate	T5GPPS	RB4	0b0 1100	_	В	С	
Timer2 Clock	T2INPPS	RC3	0b1 0011	А	—	С	
Timer4 Clock	T4INPPS	RC5	0b1 0101		В	С	
Timer6 Clock	T6INPPS	RB7	0b0 1111	_	В	С	
CCP1	CCP1PPS	RC2	0b1 0010	_	В	С	
CCP2	CCP2PPS	RC1	0b1 0001	_	В	С	
CCP3	CCP3PPS	RB5	0b0 1101	_	В	С	
CCP4	CCP4PPS	RB0	0b0 1000	_	В	С	
SMT1 Window	SMT1WINPPS	RC0	0b1 0000	_	В	С	
SMT1 Signal	SMT1SIGPPS	RB4	0b0 1100	_	В	С	
SMT2 Window	SMT2WINPPS	RB5	0b0 1101	_	В	С	
SMT2 Signal	SMT2SIGPPS	RC1	0b1 0001	_	В	С	
CWG1	CWG1PPS	RB0	0b0 1000	_	В	С	
CWG2	CWG2PPS	RB1	0b0 1001	_	В	С	
CWG3	CWG3PPS	RB2	0b0 1010	_	В	С	
DSM1 Carrier Low	MD1CARLPPS	RA3	0b0 0011	А	—	С	
DSM1 Carrier High	MD1CARHPPS	RA4	0b0 0100	А	—	С	
DSM1 Source	MD1SRCPPS	RA5	0b0 0101	А	—	С	
CLCx Input 1	CLCIN0PPS	RA0	0b0 0000	А	—	С	
CLCx Input 2	CLCIN1PPS	RA1	0b0 0001	А	—	С	
CLCx Input 3	CLCIN2PPS	RB6	0b0 1110		В	С	
CLCx Input 4	CLCIN3PPS	RB7	0b0 1111	_	В	С	
ADC Conversion Trigger	ADACTPPS	RB4	0b0 1100		В	С	
SPI1 Clock	SPI1SCKPPS	RC3	0b1 0011	_	В	С	
SPI1 Data	SPI1SDIPPS	RC4	0b1 0100	_	В	С	
SPI1 Slave Select	SPI1SSPPS	RA5	0b0 0101	А	_	С	
I ² C1 Clock	I2C1SCLPPS	RC3	0b1 0011	_	В	С	
I ² C1 Data	I2C1SDAPPS	RC4	0b1 0100	_	В	С	
I ² C2 Clock	I2C2SCLPPS	RB1	0b0 1001		В	С	
I ² C2 Data	I2C2SDAPPS	RB2	0b0 1010	_	В	С	
UART1 Receive	U1RXPPS	RC7	0b1 0111	—	В	С	
UART1 Clear To Send	U1CTSPPS	RC6	0b1 0110	_	В	С	
UART2 Receive	U2RXPPS	RB7	0b0 1111	—	В	С	
UART2 Clear To Send	U2CTSPPS	RB6	0b0 1110	_	В	С	
CAN Receive	CANRXPPS	RB3	0b0 1011	_	В	С	

TABLE 17-1: PPS INPUT REGISTER DETAILS

REGISTER 22-3: TxTMR: TIMERx COUNTER REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TMRx	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **TMRx<7:0>:** Timerx Counter bits

REGISTER 22-4: TxPR: TIMERx PERIOD REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			PRx	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bi	it	LI = Unimpler	mented hit read	1 as '0'	

R = Readable bit	vv = vvritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PRx<7:0>:** Timerx Period Register bits

PIC18(L)F25/26K83

FIGURE 25-2: SMT SIGNAL AND WINDOW BLOCK DIAGRAM

FIGURE 25-11: WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAM

PIC18(L)F25/26K83

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
bit 7	·	·			•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	G4D4T: Gate	3 Data 4 True	(non-inverted) bit			
	1 = CLCIN3	(true) is gated i	nto CLCx Gat	te 3			
	0 = CLCIN3	(true) is not gat	ed into CLCx	Gate 3			
bit 6	G4D4N: Gate	e 3 Data 4 Nega	ated (inverted)) bit			
	1 = CLCIN3 0 = CLCIN3	(inverted) is ga	ted into CLCx t gated into Cl	Gate 3			
bit 5	G4D3T: Gate	3 Data 3 True	(non-inverted)) hit			
bit 0	1 = CLCIN2	(true) is gated i	nto CI Cx Gat	e 3			
	0 = CLCIN2	(true) is not gat	ted into CLCx	Gate 3			
bit 4	G4D3N: Gate	e 3 Data 3 Nega	ated (inverted)) bit			
	1 = CLCIN2	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN2	(inverted) is no	t gated into C	LCx Gate 3			
bit 3	G4D2T: Gate	3 Data 2 True	(non-inverted) bit			
	1 = CLCIN1	(true) is gated i	nto CLCx Gat	te 3			
h ii 0		(true) is not gai	ied into CLCX	Gate 3			
DIT 2		e 3 Data 2 Nega	ated (Inverted)				
	1 = CLCIN1 0 = CLCIN1	(inverted) is ga	t dated into CLCX	LCx Gate 3			
bit 1	G4D1T: Gate	4 Data 1 True	(non-inverted)) bit			
2	1 = CLCIN0	(true) is gated i	nto CLCx Gat	te 3			
	0 = CLCIN0	(true) is not gat	ed into CLCx	Gate 3			
bit 0	G4D1N: Gate	e 3 Data 1 Nega	ated (inverted)) bit			
	1 = CLCIN0	(inverted) is ga	ted into CLCx	Gate 3			
	0 = CLCIN0	(inverted) is no	t gated into C	LCx Gate 3			

REGISTER 27-10: CLCxGLS3: GATE 3 LOGIC SELECT REGISTER

32.0 SERIAL PERIPHERAL INTERFACE (SPI) MODULE

32.1 SPI Module Overview

The SPI (Serial Peripheral Interface) module is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select. Example slave devices include serial EEPROMs, shift registers, display drivers, A/D converters, or another PIC[®] device.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data IN (SDI)
- Slave Select (SS)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- Clock Polarity and Edge Select
- SDI, SDO, and SS Polarity Control
- Separate Transmit and Receive Enables
- Slave Select Synchronization
- Daisy-chain connection of slave devices
- Separate Transmit and Receive Buffers with 2-byte FIFO and DMA capabilities

Figure 32-1 shows the block diagram of the SPI module.

© 2017 Microchip Technology Inc.

The SPI transmit output (SDO_out) is available to the remappable PPS SDO pin and internally to the following peripherals:

- Configurable Logic Cell (CLC)
- Data Signal Modulator (DSM)

The SPI bus typically operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions typically involve shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new bit is shifted into the device. Unlike older Microchip devices, the SPI on the PIC18(L)F2X/4X/5XK42 contains two separate registers for incoming and outgoing data. Both registers also have 2-byte FIFO buffers and allow for DMA bus connections.

Figure 32-2 shows a typical connection between two PIC18F2X/4XK42 devices configured as master and slave devices.

Data is shifted out of the transmit FIFO on the programmed clock edge and into the receive shift register on the opposite edge of the clock.

The master device transmits information on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

The master device sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its output register (on its SDO pin) and the slave device is reading this bit and saving as the LSb of its input register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its input register.

After eight bits have been shifted out, the master and slave have exchanged register values and stored the incoming data into the receiver FIFOs.

If there is more data to exchange, the registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data
- Master sends useful data and slave sends useful data
- Master sends dummy data and slave sends useful data

In this particular SPI module, dummy data may be sent without software involvement, by clearing either the RXR bit (for receiving dummy data) or the TXR bit (for sending dummy data) (see Table 32-1 as well as **Section 32.5 "Master mode"** and **Section 32.6 "Slave Mode"** for further TXR/RXR setting details). This SPI module can send transmissions of any number of bits, and can send information in segments of varying size (from 1-8 bits in width). As such, transmissions may involve any number of clock cycles, depending on the amount of data to be transmitted.

When there is no more data to be transmitted, the master stops sending the clock signal and deselects the slave.

Every slave device connected to the bus that has not been selected through its Slave Select line disregards the clock and transmission signals and does not transmit out any data of its own.

FIGURE 34-5: EFFECTS OF PHASE JITTER ON THE MICROCONTROLLER CLOCK AND CAN BIT TIME

Once these considerations are taken into account, it is possible to show that the relation between the jitter and the total frequency error can be defined as:

EQUATION 34-4: JITTER AND TOTAL FREQUENCY ERROR

$$\Delta f = \frac{T_{\text{jitter}}}{10 \times \text{NBT}} = \frac{2 \times P_{\text{jitter}}}{10 \times \text{NBT}}$$

where jitter is expressed in terms of time and NBT is the Nominal Bit Time.

For example, assume a CAN bit rate of 125 Kb/s, which gives an NBT of 8 μ s. For a 16 MHz clock generated from a 4x PLL, the jitter at this clock frequency is:

EQUATION 34-5: 16 MHz CLOCK FROM 4x PLL JITTER:

 $2\% \times \frac{1}{16 \text{ MHz}} = \frac{0.02}{16 \times 10^6} = 1.25 \text{ ns}$

and resultant frequency error is:

EQUATION 34-6: RESULTANT FREQUENCY ERROR:

$$\frac{2 \times (1.25 \times 10^{-9})}{10 \times (8 \times 10^{-6})} = 3.125 \times 10^{-5} = 0.0031\%$$

Table 34-2 shows the relation between the clock generated by the PLL and the frequency error from jitter (measured jitter-induced error of 2%, Gaussian distribution, within three standard deviations), as a percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a crystal oscillator, typically specified at 100 ppm or 0.01%. If we add jitter to oscillator drift, we have a total frequency drift of 0.0132%. The total oscillator frequency errors for common clock frequencies and bit rates, including both drift and jitter, are shown in Table 34-3.

TABLE 34-2: FREQUENCY ERROR FROM JITTER AT VARIOUS PLL GENERATED CLOCK SPEEDS

DI I			Frequenc	y Error at Various N	ror at Various Nominal Bit Times (Bit Rates)			
Output	P _{jitter}	. T _{jitter}	8 μs (125 Kb/s)	4 μs (250 Kb/s)	2 μs (500 Kb/s)	1 μs (1 Mb/s)		
40 MHz	0.5 ns	1 ns	0.00125%	0.00250%	0.005%	0.01%		
24 MHz	0.83 ns	1.67 ns	0.00209%	0.00418%	0.008%	0.017%		
16 MHz	1.25 ns	2.5 ns	0.00313%	0.00625%	0.013%	0.025%		

© 2017 Microchip Technology Inc.

REGISTER 34-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER 'n' EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \le n \le 15]⁽¹⁾

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID15 | EID14 | EID13 | EID12 | EID11 | EID10 | EID9 | EID8 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDH:RXF15EIDH, are available in Mode 1 and 2 only.

REGISTER 34-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER 'n' EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 15]⁽¹⁾

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDL:RXF15EIDL, are available in Mode 1 and 2 only.

REGISTER 34-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK 'n' STANDARD IDENTIFIER MASK REGISTERS, HIGH BYTE [0 \le n \le 1]

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 7	1	1	I		L	1	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit. read	as '0'	

-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 SID<10:3>: Standard Identifier Mask bits or Extended Identifier Mask bits (EID<28:21>)

34.15.6 CAN INTERRUPT REGISTERS

The registers in this section are the same as described in **Section 9.0 "Interrupt Controller"**. They are duplicated here for convenience.

							R/M_0	R/M/0
Mode 0								
	INAIF	WANT		TADZIE	TABILLY	TABUL	RAD IIF	KABUIP
Mode 1.2	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Woue 1,2	IRXIF	WAKIF	ERRIF	TXBnIF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXBnIF	FIFOWMIF
	bit 7							bit 0
Legend:								
R = Reada	able bit		W = Writab	ole bit	U = Unimple	emented bit, re	ead as '0'	
-n = Value	at POR		'1' = Bit is s	set	'0' = Bit is cl	eared	x = Bit is un	known
bit 7	IRXIF: CAN Bus Error Message Received Interrupt Flag bit 1 = An invalid message has occurred on the CAN bus 0 = No invalid message on the CAN bus							
bit 6	WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit 1 = Activity on the CAN bus has occurred 0 = No activity on the CAN bus							
bit 5	ERRIF: CAN Module Error Interrupt Flag bit 1 = An error has occurred in the CAN module (multiple sources; refer to Section 34.14.6 " Error Interrupt ") 0 = No CAN module errors							
bit 4	When CAN is in Mode 0: TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit 1 = Transmit Buffer 2 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 2 has not completed transmission of a message When CAN is in Mode 1 or 2: TXBnIF: Any Transmit Buffer Interrupt Flag bit 1 = One or more transmit buffers have completed transmission of a message and may be reloaded 0 = No transmit buffer is ready for reload							
bit 3	TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit ⁽¹⁾ 1 = Transmit Buffer 1 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 1 has not completed transmission of a message							
bit 2	TXB0IF: CA 1 = Transmit 0 = Transmit	N Transmit Bu t Buffer 0 has o t Buffer 0 has r	ffer 0 Interr completed to not completed	rupt Flag bit ⁽ transmission ted transmiss	 of a message sion of a mess 	and may be r age	reloaded	
bit 1	When CAN is in Mode 0: RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit 1 = Receive Buffer 1 has received a new message 0 = Receive Buffer 1 has not received a new message When CAN is in Mode 1 or 2: RXBnIF: Any Receive Buffer Interrupt Flag bit 1 = One or more receive buffers has received a new message 0 = No receive buffer has received a new message							
bit 0	When CAN is in Mode 0: RXB0IF : CAN Receive Buffer 0 Interrupt Flag bit 1 = Receive Buffer 0 has received a new message 0 = Receive Buffer 0 has not received a new message When CAN is in Mode 1: Unimplemented: Read as '0' When CAN is in Mode 2: FIFOWMIF : FIFO Watermark Interrupt Flag bit 1 = FIFO high watermark is reached 0 = FIFO high watermark is not reached							
Note 1:	In CAN Mode	e 1 and 2. thes	e bits are f	orced to '0'.				

REGISTER 34-56: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

Standard Operating Conditions (unless otherwise stated)					
Param No.	Sym.	Characteristic	Тур.	Units	Conditions
TH01	θJA	Thermal Resistance Junction to Ambient	60	°C/W	28-pin SPDIP package
			80	°C/W	28-pin SOIC package
			90	°C/W	28-pin SSOP package
			27.5	°C/W	28-pin UQEN 4x4 mm package
			27.5	°C/W	28-pin QFN 6x6mm package
TH02	θJC	Thermal Resistance Junction to Case	31.4	°C/W	28-pin SPDIP package
			24	°C/W	28-pin SOIC package
			24	°C/W	28-pin SSOP package
			24	°C/W	28-pin UQFN 4x4mm package
			24	°ÇAW	28-pin QFN 6x6mm package
TH03	TJMAX	Maximum Junction Temperature	150) De	$\langle \rangle$
TH04	PD	Power Dissipation	- /	W	PD = PINTERNAL + PI/0 ⁽³⁾
TH05	PINTERNAL	Internal Power Dissipation	- <	W	PINTERNAL = IDD x VDD ⁽¹⁾
TH06	Pi/o	I/O Power Dissipation	\wedge	XW /	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$
TH07	Pder	Derated Power	\mathcal{F}	W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾

TABLE 45-6: THERMAL CHARACTERISTICS

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

3: See absolute maximum ratings for total power dissipation

Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			