

Welcome to E-XFL.COM

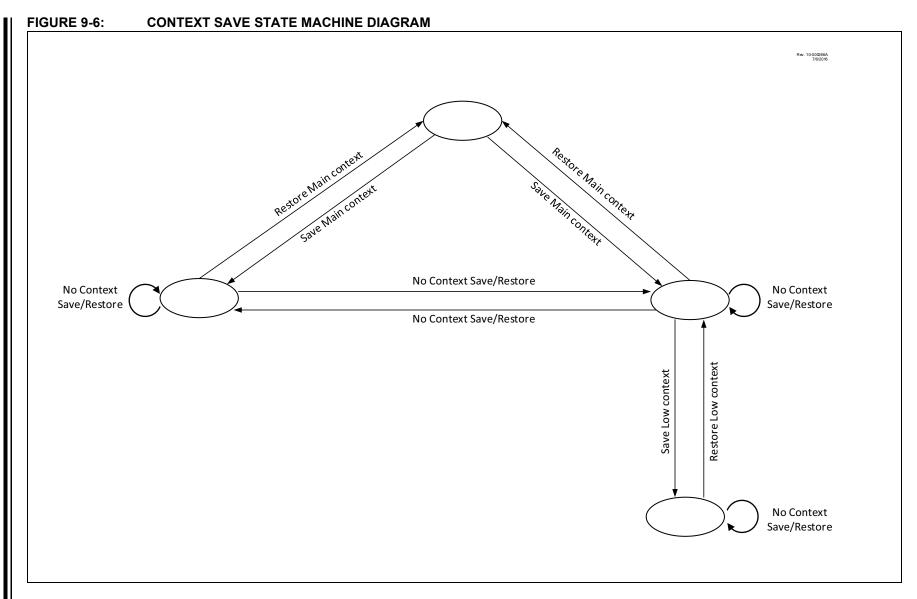
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

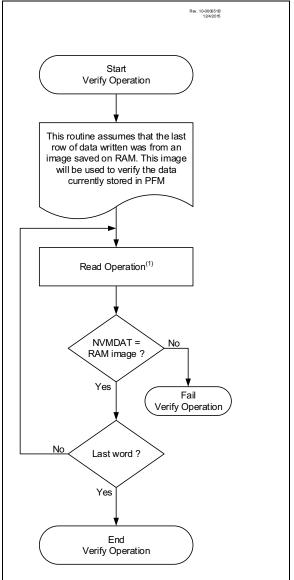
Betuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k83-e-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH CPU

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
ISRPR	—	_	_	_	-	ISRPR2	ISRPR1	ISRPR0	20
MAINPR	—	_	_	_	_	MAINPR2	MAINPR1	MAINPR0	20
DMA1PR	—	_	_	_	_	DMA1PR2	DMA1PR1	DMA1PR0	20
DMA2PR	—	_	_	_	_	DMA2PR2	DMA2PR1	DMA2PR0	21
SCANPR	—	_	_	_	_	SCANPR2	SCANPR1	SCANPR0	21
PRLOCK	_	_	_	_	—	_	_	PRLOCKED	21


Legend: — = Unimplemented location, read as '0'.

13.1.6.2 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. Since program memory is stored as a full page, the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 13-10: PROGRAM FLASH MEMORY VERIFY FLOWCHART

13.1.6.3 Unexpected Termination of Write Operation

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

13.1.6.4 Protection Against Spurious Writes

A write sequence is valid only when both the following conditions are met, this prevents spurious writes which might lead to data corruption.

- 1. The WR bit is gated through the WREN bit. It is suggested to have the WREN bit cleared at all times except during memory writes. This prevents memory writes if the WR bit gets set accidentally.
- 2. The NVM unlock sequence must be performed each time before a write operation.

13.2 Device Information Area, Device Configuration Area, User ID, Device ID and Configuration Word Access

When REG<1:0> = 0x01 or 0x11 in the NVMCON1 register, the Device Information Area, the Device Configuration Area, the User ID's, Device ID/ Revision ID and Configuration Words can be accessed. Different access may exist for reads and writes (see Table 13-1).

13.2.1 Reading Access

The user can read from these blocks by setting the REG bits to 0x01 or 0x11. The user needs to load the address into the TBLPTR registers. Executing a TBLRD after that moves the byte pointed to the TABLAT register. The CPU operation is suspended during the read and resumes after. When read access is initiated on an address outside the parameters listed in Table 13-1, the TABLAT register is cleared, reading back '0's.

13.2.2 Writing Access

The WREN bit in NVMCON1 must be set to enable writes. This prevents accidental writes to the CONFIG words due to errant (unexpected) code execution. The WREN bit should be kept clear at all times, except when updating the CONFIG words. The WREN bit is not cleared by hardware. The WR bit will be inhibited from being set unless the WREN bit is set.

15.9.2 DESTINATION STOP

When the Destination Stop bit is set (DSTP = 1) and the DMAxDCNT register reloads, the DMA clears the SIRQEN bit to stop receiving new start interrupt request signals and sets the DMAxDCNTIF flag.

FIGURE 15-6:	GPR-GPR TRANSA	CTIONS WIT	TH HARDWARE	TRIGGER	S, DSTP = 1
Instruction Clock		6 7 8 MMMMMM			
EN					
Source Hardware Trigger					
DGO					
DMAxSPTR	()	0x101	0x100	0x101	0x100
DMAxDPTR	(0x200)	0x201	0x202	0x203	0x200
DMAxSCNT	2	1	2	1	2
DMAxDCNT	4	3	2		4
DMA STATE		SR ⁽¹⁾ DW ⁽²⁾	IDLE SR ⁽¹⁾ DW ⁽²⁾	SR ⁽¹⁾ DW ⁽²⁾	IDLE
DMAxSCNTIF _					
DMAxDCNTIF _					
		MAxDSA 0x200 MAxDSZ 0x4]		
	R – Source Read V – Destination Write				

REGISTER 15-1: DMAxCON0: DMAx CONTROL REGISTER 0

R/W-0/0	R/W/HC-0/0	R/W/HS/HC-0/0	U-0	U-0	R/W/HC-0/0	U-0	R/HS/HC-0/0
EN	SIRQEN	DGO	_		AIRQEN		XIP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n/n = Value at POR		0 = bit is cleared	x = bit is unknown
and BOR/Value at all			u = bit is unchanged
other Resets			

bit 7 EN: DMA Module Enable bi

- 1 = Enables module
- 0 = Disables module
- SIRQEN: Start of Transfer Interrupt Request Enable bits
 - 1 = Hardware triggers are allowed to start DMA transfers
 - 0 = Hardware triggers are not allowed to start DMA transfers

bit 5 DGO: DMA transaction bit

bit 6

- 1 = DMA transaction is in progress
- 0 = DMA transaction is not in progress
- bit 4-3 Unimplemented: Read as '0'

bit 2 AIRQEN: Abort of Transfer Interrupt Request Enable bits

- 1 = Hardware triggers are allowed to abort DMA transfers
- 0 = Hardware triggers are not allowed to abort DMA transfers

bit 1 Unimplemented: Read as '0'

- bit 0 XIP: Transfer in Progress Status bit
 - 1 = The DMAxBUF register currently holds contents from a read operation and has not transferred data to the destination.
 - 0 = The DMAxBUF register is empty or has successfully transferred data to the destination address

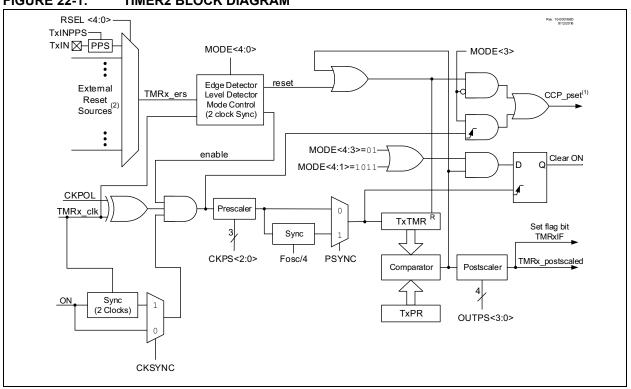
TABLE 17-2:PPS OUTPUT REGISTER
DETAILS

	DETAILS					
RxyPPS<5:0>	Pin Rxy Output	Devid	e Configu	ration		
10x311 0x3.0×	Source	PIC18(L)F2xK83				
0b11 1111 - 0b11 0101	Reserved					
0b11 0101	CANTX1		В	С		
0b11 0011	CANTX0	_	В	C		
0b11 0010	ADGRDB	А		c		
0b11 0001	ADGRDA	A		c		
0b11 0000	CWG3D	A		c		
0b10 1111	CWG3C	A		C		
0b10 1110	CWG3B	A		c		
0b10 1101	CWG3A		В	c		
0b10 1101	CWG2D		В	c		
0b10 1011	CWG2C		В	c		
0b10 1011	CWG2B		В	c		
0b10 1010	CWG2B CWG2A		В	c		
	DSM1	 A	D	c		
0b10 1000 0b10 0111	CLKR	~		C		
0b10 0111 0b10 0110	NCO1		ت	c		
	TMR0	A		c		
0b10 0101	I ² C2 (SDA)		В	C		
0b10 0100				-		
0b10 0011	I ² C2 (SCL)	_	B	C		
0b10 0010	I ² C1 (SDA)		B	C		
0b10 0001	I ² C1 (SCL)		В	C		
0b10 0000	SPI1 (SS)	A	_	C		
0b01 1111	SPI1 (SDO)		B	C		
0b01 1110	SPI1 (SCK)		В	C		
0b01 1101	C2OUT	A		C		
0b01 1100	C1OUT	A	_	С		
0b01 1011 - 0b01 1001		Reserve	ed			
0b01 1000	UART2 (RTS)	_	В	С		
0b01 0111	UART2 (TXDE)	_	В	С		
0b01 0110	UART2 (TX)	_	В	С		
0b01 0101	UART1 (RTS)	_	В	С		
0b01 0100	UART1 (TXDE)	_	В	С		
0b01 0011	UART1 (TX)	_	В	С		
0b01 0010 - 0b01 0001		Reserve	ed			
0b01 0001	PWM8	A	_	С		
0b00 1111	PWM7	A		C		
0b00 1110	PWM6	A	_	C		
0b00 1101	PWM5	A	_	C		
0b00 1100	CCP4	_	В	C		
0b00 1011	CCP3	_	В	С		
0b00 1010	CCP2	_	В	C		
0b00 1001	CCP1	_	В	С		
0b00 1000	CWG1D		В	С		
0b00 0111	CWG1C		В	С		

TABLE 17-2: PPS OUTPUT REGISTER DETAILS

D	Pin Rxy	Device Configuration PIC18(L)F2xK83			
RxyPPS<5:0>	Output Source				
0b00 0101	CWG1A	—	В	С	
0b00 0100	CLC4OUT		В	С	
0b00 0011	CLC3OUT		В	С	
0b00 0010	CLC2OUT	А		С	
0b00 0001	CLC1OUT	А	_	С	
0000 0000	LATxy	А	В	С	

22.0 TIMER2/4/6 MODULE

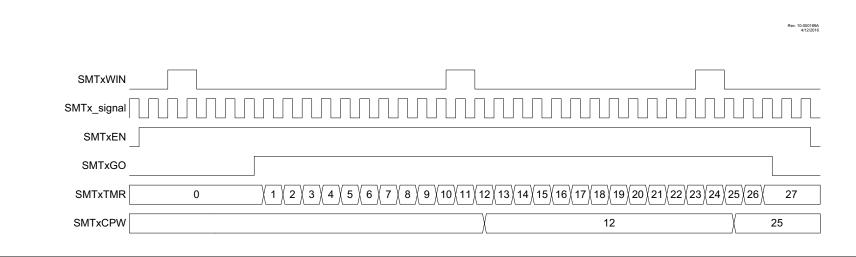

The Timer2/4/6 modules are 8-bit timers that can operate as free-running period counters or in conjunction with external signals that control start, run, freeze, and reset operation in One-Shot and Monostable modes of operation. Sophisticated waveform control such as pulse density modulation are possible by combining the operation of these timers with other internal peripherals such as the comparators and CCP modules. Features of the timer include:

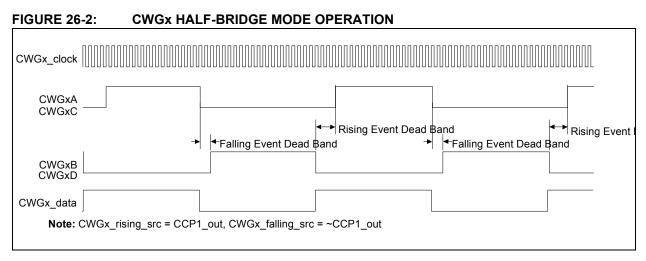
- 8-bit timer register
- 8-bit period register
- · Selectable external hardware timer resets
- Programmable prescaler (1:1 to 1:128)
- Programmable postscaler (1:1 to 1:16)
- Selectable synchronous/asynchronous operation
- · Alternate clock sources
- Interrupt on period

- Three modes of operation:
 - Free Running Period
 - One-Shot
 - Monostable

See Figure 22-1 for a block diagram of Timer2. See Figure 22-2 for the clock source block diagram.

Note: Three identical Timer2 modules are implemented on this device. The timers are named Timer2, Timer4, and Timer6. All references to Timer2 apply as well to Timer4 and Timer6. All references to T2PR apply as well to T4PR and T6PR.

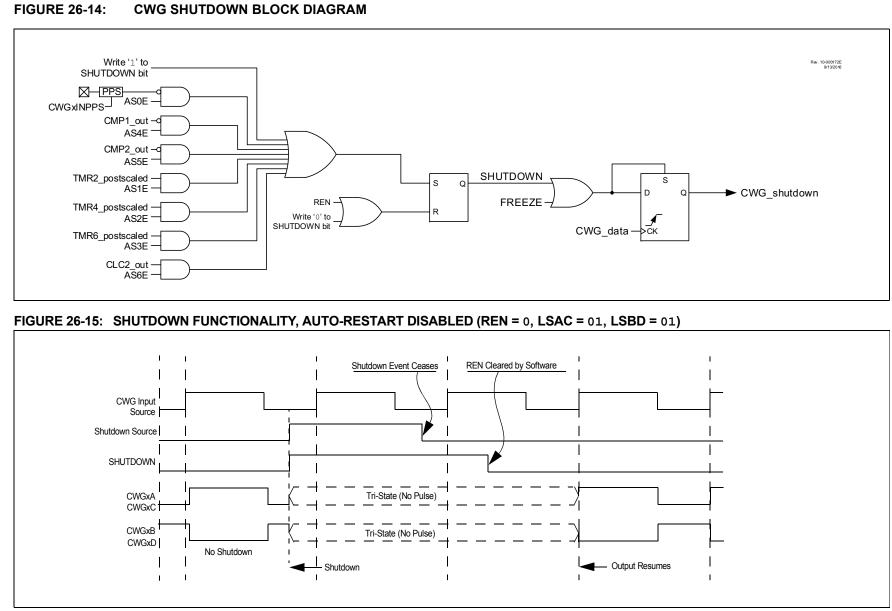

FIGURE 22-1: TIMER2 BLOCK DIAGRAM


	Rev. 10-001/86A 4/22/2016
SMTxWIN	
SMTxWIN_sync	
SMTx_signal	
SMTx_signalsync _	
SMTx Clock	
SMTxEN	
SMTxGO	
SMTxGO_sync _	
SMTxTMR	$0 \qquad 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$
SMTxCPW	13
SMTxCPR	٨ ٩
SMTxPWAIF	

25.6.9 COUNTER MODE

This mode increments the timer on each pulse of the SMTx_signal input. This mode is asynchronous to the SMT clock and uses the SMTx_signal as a time source. The SMTxCPW register will be updated with the current SMTxTMR value on the rising edge of the SMTxWIN input. See Figure 25-18.

FIGURE 25-18: COUNTER MODE TIMING DIAGRAM



26.2.2 PUSH-PULL MODE

In Push-Pull mode, two output signals are generated, alternating copies of the input as illustrated in Figure 26-4. This alternation creates the push-pull effect required for driving some transformer-based power supply designs. Steering modes are not used in Push-Pull mode. A basic block diagram for the Push-Pull mode is shown in Figure 26-3.

The push-pull sequencer is reset whenever EN = 0 or if an auto-shutdown event occurs. The sequencer is clocked by the first input pulse, and the first output appears on CWGxA.

The unused outputs CWGxC and CWGxD drive copies of CWGxA and CWGxB, respectively, but with polarity controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

© 2017 Microchip Technology Inc.

Preliminary

-n/n = Value at POR and BOR/Value at all other Resets

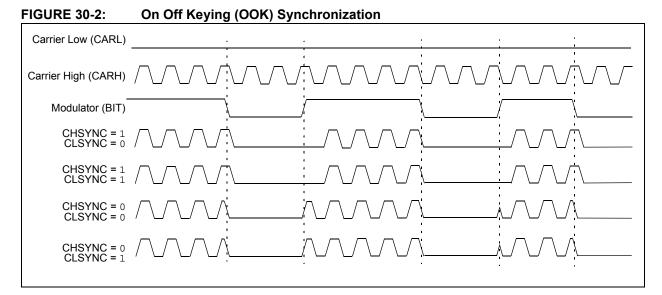
q = Value depends on condition

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			IS<4:0>		
bit 7			•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	

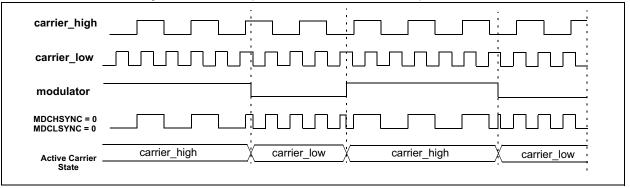
REGISTER 26-4: CWGxISM: CWGx INPUT SELECTION REGISTER

bit 7-5 Unimplemented Read as '0'

u = Bit is unchanged


'1' = Bit is set

bit 4-0 IS<4:0>: CWG Data Input Selection Multiplexer Select bits


x = Bit is unknown

'0' = Bit is cleared

IS<4:0>	CWG1	CWG2	CWG3
15<4:0>	Input Selection	Input Selection	Input Selection
11111-10011	Reserved	Reserved	Reserved
10010	CLC4_out	CLC4_out	CLC4_out
10001	CLC3_out	CLC3_out	CLC3_out
10000	CLC2_out	CLC2_out	CLC2_out
01111	CLC1_out	CLC1_out	CLC1_out
01110	DSM_out	DSM_out	DSM_out
01101	CMP2OUT	CMP2OUT	CMP2OUT
01100	CMP1OUT	CMP1OUT	CMP1OUT
01011	NCO1OUT	NCO10UT	NCO10UT
01010-01001	Reserved	Reserved	Reserved
01000	PWM8OUT	PWM8OUT	PWM8OUT
00111	PWM7OUT	PWM7OUT	PWM7OUT
00110	PWM6OUT	PWM6OUT	PWM6OUT
00101	PWM5OUT	PWM5OUT	PWM5OUT
00100	CCP4_out	CCP4_out	CCP4_out
00011	CCP3_out	CCP3_out	CCP3_out
00010	CCP2_out	CCP2_out	CCP2_out
00001	CCP1_out	CCP1_out	CCP1_out
00000	Pin selected by CWG1PPS	Pin selected by CWG2PPS	Pin selected by CWG3PPS

FIGURE 30-3: No Synchronization (CHSYNC = 0, CLSYNC = 0)

Carrier High Synchronization (CHSYNC = 1, CLSYNC = 0)

carrier_high	
carrier_low	
modulator	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	carrier_high / both carrier_low / carrier_high / both \ carrier_low

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			TXCH	IK<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 31-18: UxTXCHK: UART TRANSMIT CHECKSUM RESULT REGISTER

bit 7-0	TXCHK<7:0>: Checksum calculated from TX bytes
	LIN mode and C0EN = 1:
	Sum of all transmitted bytes including PID
	LIN mode and C0EN = 0:
	Sum of all transmitted bytes except PID
	All other modes and COEN = 1:
	Sum of all transmitted bytes since last clear
	All other modes and COEN = 0:
	Not used

REGISTER 31-19: UxRXCHK: UART RECEIVE CHECKSUM RESULT REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RXCHK<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	RXCHK<7:0>: Checksum calculated from RX bytes
	LIN mode and COEN = 1:
	Sum of all received bytes including PID
	LIN mode and COEN = 0:
	Sum of all received bytes except PID
	All other modes and C0EN = 1:
	Sum of all received bytes since last clear
	All other modes and C0EN = 0:
	Not used

34.15 CAN Module Registers

Note: Not all CAN registers are available in the Access Bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- Control and Status Registers
- Dedicated Transmit Buffer Registers
- Dedicated Receive Buffer Registers
- Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

34.15.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

REGISTER 34-13: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER (CONTINUED)

bit 2	Mode 0: RB0DBEN: Receive Buffer 0 Double-Buffer Enable bit
	1 = Receive Buffer 0 overflow will write to Receive Buffer 1 0 = No Receive Buffer 0 overflow to Receive Buffer 1
	Mode 1, 2: FILHIT<4:0>: Filter Hit bit 2
	This bit combines with other bits to form filter acceptance bits<4:0>.
bit 1	Mode 0: JTOFF: Jump Table Offset bit (read-only copy of RXB0DBEN) ⁽²⁾
	1 = Allows jump table offset between 6 and 7
	0 = Allows jump table offset between 1 and 0
	<u>Mode 1, 2:</u>
	FILHIT<4:0>: Filter Hit bit 1
	This bit combines with other bits to form filter acceptance bits<4:0>.
bit 0	
	FILHIT0: Filter Hit bit 0 This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0.
	1 = Acceptance Filter 1 (RXF1)
	0 = Acceptance Filter 0 (RXF0)
	Mode 1, 2:
	FILHIT<4:0>: Filter Hit bit 0
	This bit, in combination with FILHIT<4:1>, indicates which acceptance filter enabled the message reception
	into this receive buffer.
	01111 = Acceptance Filter 15 (RXF15)
	01110 = Acceptance Filter 14 (RXF14)
	00000 = Acceptance Filter 0 (RXF0)

- **Note 1:** This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full. After clearing the RXFUL flag, the PIR5 bit, RXB0IF, can be cleared. If RXB0IF is cleared, but RXFUL is not cleared, then RXB0IF is set again.
 - **2:** This bit allows the same filter jump table for both RXB0CON and RXB1CON.

37.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO bit is set by hardware.

The auto-conversion trigger source is selected by the ADACT register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met. See Register 37-33 for auto-conversion sources.

37.2.6 ADC CONVERSION PROCEDURE (BASIC MODE)

This is an example procedure for using the ADC to perform an analog-to-digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRISx register)
 - Configure pin as analog (Refer to the ANSELx register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Select voltage reference
 - · Select ADC input channel

EXAMPLE 37-1: ADC CONVERSION /*This code block configures the ADC

for polling, VDD and VSS references, FRC

```
Precharge and acquisition
```

- Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - Enable ADC interrupt
 - Enable global interrupt (GIEL bit)⁽¹⁾
- If ADACQ = 0, software must wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO bit
 - Polling the ADIF bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).
 - **Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.
 - 2: Refer to Section 37.3 "ADC Acquisition Requirements".

oscillator and ANO input. Conversion start & polling for completion are included. * / void main() { //System Initialize initializeSystem(); //Setup ADC ADCON0bits.FM = 1; //right justify ADCONObits.CS = 1; //FRC Clock ADPCH = 0×00 ; //RAO is Analog channel TRISAbits.TRISA0 = 1; //Set RA0 to input ANSELAbits.ANSELA0 = 1; //Set RA0 to analog ADCONObits.ON = 1; //Turn ADC On while (1) { ADCONObits.GO = 1; //Start conversion while (ADCONObits.GO); //Wait for conversion done resultHigh = ADRESH; //Read result resultLow = ADRESL; //Read result }

}

Branch if Not Zero

 $(PC) + 2 + 2n \rightarrow PC$

0001

incremented to fetch the next instruction, the new address will be

If the ZERO bit is '0', then the program

The 2's complement number '2n' is added to the PC. Since the PC will have

nnnn

nnnn

BNZ n

None 1110

will branch.

 $-128 \le n \le 127$ if ZERO bit is '0'

BNOV	Branch if	Not Overflo	w	BNZ
Syntax:	BNOV n			Syntax:
Operands:	-128 ≤ n ≤ 1	27		Operands:
Operation:	if OVERFLO (PC) + 2 + 2			Operation:
Status Affected:	None			Status Affected:
Encoding:	1110	0101 nni	nn nnnn	Encoding:
Description:	program wil The 2's con added to the incremented instruction,	nplement num e PC. Since th d to fetch the r the new addre n. This instruct	Description:	
Words:	1			Words:
Cycles:	1(2)			Cycles:
Q Cycle Activity: If Jump:				Q Cycle Activity: If Jump:
Q1	Q2	Q3	Q4	Q1
Decode	Read literal 'n'	Process Data	Write to PC	Decode F
No operation	No operation	No operation	No operation	No operation
If No Jump:				If No Jump:
Q1	Q2	Q3	Q4	Q1
Decode	Read literal 'n'	Process Data	No operation	Decode F
Example: Before Instruc PC After Instructio If OVERF PC If OVERF PC	= ado n FLOW = 0; = ado FLOW = 1;	BNOV Jump dress (HERE dress (Jump dress (HERE)	Example: Before Instructio PC After Instruction If ZERO PC If ZERO PC

PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2) Q3 Q2 Q4 Read literal Process Write to PC 'n' Data No No No operation operation operation Q2 Q3 Q4 Read literal Process No 'n' Data operation HERE BNZ Jump on address (HERE) = = 0;

address (Jump)

1; address (HERE + 2)

=

=

=

INFS	SNZ	Increment f, skip if not 0					
Synta	ax:	INFSNZ f	INFSNZ f {,d {,a}}				
Oper	ands:	$0 \leq f \leq 255$					
		d ∈ [0,1] a ∈ [0,1]					
Oper	ation:	(f) + 1 \rightarrow de skip if resul					
Ctat	s Affected:	None	1 ≠ 0				
			101 550				
	ding: cription:	0100	10da fff ts of register 'f				
Word		placed in W placed back If the result instruction, discarded a instead, ma instruction. If 'a' is '0', tt If 'a' is '0', tt If 'a' is '0', tt GPR bank. If 'a' is '0' a set is enabl in Indexed I mode when tion 42.2.3 Oriented Ir	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 42.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. 1				
-		Note: 3 d	cycles if skip a a 2-word instr				
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
lf sk	in:	register i	Dala	destination			
ii on	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	-	operation			
lf sk	ip and followe						
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exar</u>	Example: HERE INFSNZ REG, 1, 0 ZERO NZERO						
	Before Instruc	tion					
	PC		(HERE)				
	After Instruction REG	on = REG + 1	1				
	If REG	- REG+ ≠ 0;	I				
	PC If REG	= Address = 0;	3 (NZERO)				
	PC		(ZERO)				

IORLW	Inclusive	OR lite	ral with	w		
Syntax:	IORLW k					
Operands:	$0 \le k \le 255$	5				
Operation:	(W) .OR. k	$\rightarrow W$				
Status Affected:	N, Z					
Encoding:	0000	1001	kkkk	kkkk		
Description:		The contents of W are ORed with the 8- bit literal 'k'. The result is placed in W.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Proce Data		Write to W		
	•	•				
Example:	IORLW	35h				
Before Instruc	ction					
W	= 9Ah					

BFh

=

After Instruction W

RET	FIE	Return fro	om Interrupt	:			
Synta	ax:	RETFIE {s	RETFIE {s}				
Oper	ands:	s ∈ [0,1]					
Operation:		if s = 1, con STATUS, B FSR1H, FS PRODH, PI PCLATU re	$(TOS) \rightarrow PC$, if s = 1, context is restored into WREG, STATUS, BSR, FSR0H, FSR0L, FSR1H, FSR1L, FSR2H, FSR2L, PRODH, PRODL, PCLATH and PCLATU registers from the corresponding shadow registers.				
		if s = 0, the any register	re is no chang ^{r.}	e in status of			
Statu	is Affected:	STAT<1:0>	in INTCON1 r	egister			
Enco	oding:	0000	0000 000	01 000s			
	ription:	the PC. Inte setting eithe global intern contents of WREG, STA FSR0L, FS FSR2L, PR PCLATU, al registers. T registers, m The set retr execution d operation o FIE was exe	and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WREG, STATUS, BSR, FSR0H, FSR0L, FSR1H, FSR1L, FSR2H, FSR2L, PRODH, PRODL, PCLATH and PCLATU, are loaded into corresponding registers. There are two sets of shadow registers, main context and low context. The set retrieved on RETFIE instruction execution depends on what the state of operation of the CPU was when RET- FIE was executed. If 's' = 0, no update of these registers occurs (default).				
Word	ds:	1					
Cycle	es:	2					
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	No operation	No operation	POP PC from stack Set GIEH or GIEL			
	No	No	No	No			
	operation	operation	operation	operation			
Exan	nple: After Interrupt WREG BSR STATUS FSR0L/H FSR1L/H FSR1L/H FSR1L/H FSR2L/H PROD/H		= BSR_S = STATU = FSR0L = FSR1L = FSR2L	S SHAD SHAD IS SHAD /H_SHAD /H_SHAD /H_SHAD /H_SHAD			
	PCLATH	ΰ		H/U_SHAD			

RETLW		Return lite	Return literal to W					
Synta	ax:	RETLW k						
Oper	ands:	$0 \le k \le 255$						
Operation:			$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Statu	is Affected:	None						
Enco	oding:	0000	1100 k	kkk	kkkk			
Desc	cription:	Program Co of the stack high addres	W is loaded with the 8-bit literal 'k'. The Program Counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Word	ds:	1						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'k'	Process Data	fro	OP PC m stack, rite to W			
	No operation	No operation	No operation	or	No peration			
<u>Exar</u>		operation						
		; offset v ; W now ha						
TABI								
	ADDWF PCL RETLW k0	; W = offs ; Begin ta						
:	RETLW kl	;						

© 2017 Microchip Technology Inc.

:

RETLW kn ; End of table

W = value of kn

W = 07h

Before Instruction

After Instruction