

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

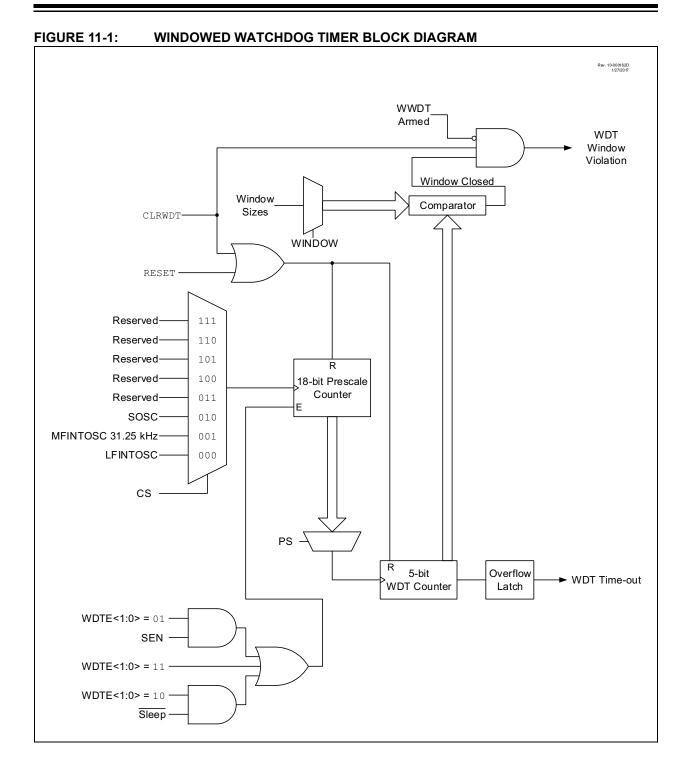
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k83t-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	MFOR	LFOR	SOR	ADOR	—	PLLR
bit 7							bit (
Legend:							
R = Readable		W = Writable	bit	•	mented bit, read		
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Reset va	lue is determine	d by hardware	;
bit 7		(TOSC (external	·	eady bit			
		scillator is ready scillator is not er		ot vet ready to h	ne used		
bit 6		NTOSC Oscillat					
Sit 0		scillator is ready	•				
		scillator is not er		ot yet ready to b	be used		
bit 5	MFOR: MF	INTOSC Oscillat	or Ready bit				
		scillator is ready					
	0 = The o	scillator is not er	abled, or is no	ot yet ready to b	be used		
bit 4		NTOSC Oscillato	•				
		scillator is ready					
		scillator is not en			be used		
bit 3		ndary (Timer1) (scillator is ready		dy bit			
		scillator is not er		ot vet ready to	he used		
bit 2		C Oscillator Rea		or yet ready to			
		scillator is ready	•				
		scillator is not er		ot yet ready to	be used		
bit 1	Unimpleme	ented: Read as	0'				
bit 0	PLLR: PLL	is Ready bit					
		LL is ready to b	e used				
			c uscu				

REGISTER 7-4: OSCSTAT: OSCILLATOR STATUS REGISTER 1

PIC18(L)F25/26K83

13.1.5 ERASING PROGRAM FLASH MEMORY

The minimum erase block is 64 words (refer to Table 5-4). Only through the use of an external programmer, or through ICSP™ control, can larger blocks of program memory be bulk erased. Word erase in the program memory array is not supported.

For example, when initiating an erase sequence from a microcontroller with erase row size of 64 words, a block of 64 words (128 bytes) of program memory is erased. The Most Significant 16 bits of the TBLPTR<21:6> point to the block being erased. The TBLPTR<5:0> bits are ignored.

The NVMCON1 register commands the erase operation. The REG<1:0> bits must be set to point to the Program Flash Memory. The WREN bit must be set to enable write operations. The FREE bit is set to select an erase operation.

The NVM unlock sequence described in **Section 13.1.4 "NVM Unlock Sequence**" should be used to guard against accidental writes. This is sometimes referred to as a long write.

A long write is necessary for erasing program memory. Instruction execution is halted during the long write cycle. The long write is terminated by the internal programming timer.

13.1.5.1 Program Flash Memory Erase Sequence

The sequence of events for erasing a block of internal program memory is:

- 1. REG bits of the NVMCON1 register point to PFM
- 2. Set the FREE and WREN bits of the NVMCON1 register
- 3. Perform the unlock sequence as described in Section 13.1.4 "NVM Unlock Sequence"

If the PFM address is write-protected, the WR bit will be cleared and the erase operation will not take place, WRERR is signaled in this scenario.

The operation erases the memory row indicated by masking the LSBs of the current TBLPTR.

While erasing PFM, CPU operation is suspended and it resumes when the operation is complete. Upon completion the WR bit is cleared in hardware, the NVMIF is set and an interrupt will occur if the NVMIE bit is also set.

Write latch data is not affected by erase operations and WREN will remain unchanged.

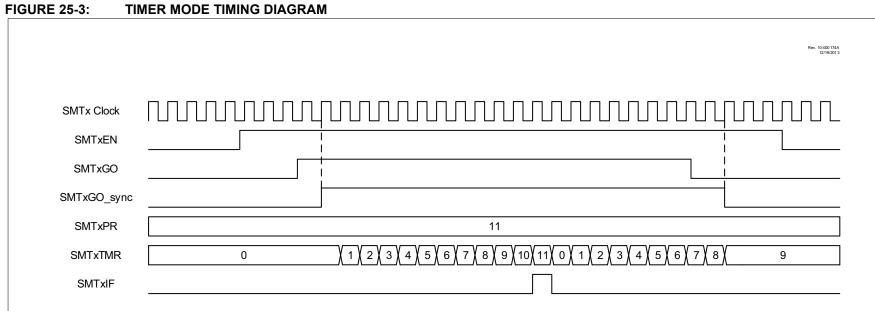
Note 1: If a write or erase operation is terminated by an unexpected event, WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

- 2: WRERR is set if WR is written to '1' while TBLPTR points to a write-protected address.
- **3:** WRERR is set if WR is written to '1' while TBLPTR points to an invalid address location (Table 13-1).

13.4 Register Definitions: Nonvolatile Memory

REGISTER 13-1: NVMCON1: NONVOLATILE MEMORY CONTROL 1 REGISTER

R/W-0/	0 R/W-0/0	U-0	R/S/HC-0/0	R/W/HS-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
F	REG<1:0>		FREE	WRERR	WREN	WR	RD
bit 7							bit C
Legend:							
R = Reada		W = Writable		HC = Bit is cle	-		
x = Bit is ι		-n = Value at	-		-	are, but not clea	ared
'0' = Bit is	cleared	'1' = Bit is se	t	U = Unimplen	nented bit, rea	id as '0'	
bit 7-6	10 =Access x1 = Access				ID and Device	e ID	
bit 5	Unimplemer	nted: Read as	ʻ0'				
bit 4	1 = Perform	ns an erase op	nory Erase Enal eration on the n nd performs a w	ext WR comm	and		
	or WR v or WR v or WR v	was written to was written to was written to	l'b1 when REG	valid address i <1:0> and add te-protected ac	s accessed (T ress do not po	able 4-1, Table bint to the same ssed (Table 4-2	region
bit 2	1 = Allows		able bit and refresh cyo erasing and use		/M		
bit 1 bit 0	When REG p1 = InitiatesWhen REG p1 = Initiates0 = NVM prRD: Read Co	an erase/prog points to a PFM the PFM write rogram/erase c pontrol bit ⁽⁸⁾	l location: operation with peration is com	e correspondin data from the pplete and inac	nolding registe		
Note de	0 = NVM re	ad operation is	s complete and		IADR, and loa	ads data into N∖	INIDAT
Note 1: 2: 3: 4: 5: 6: 7: 8:	This can only be u This bit is set whe completed success Bit must be cleare Bit may be written This bit can only b Operations are set Once a write oper The bit can only b	en WR = 1 and safully. ed by the user; a to '1' by the u be set by follow elf-timed and the ration is initiate	clears when the hardware will n ser in order to i ving the unlock e WR bit is clea d, setting this b	ot clear this bit mplement test sequence of S o ared by hardwa it to zero will ha	sequences. ection 13.1.4 are when comp ave no effect.	" NVM Unlock a blete.	Sequence".


The following sections describe with visual reference the sequence of events for different configurations of the DMA module

15.9.1 SOURCE STOP

When the Source Stop bit is set (SSTP = 1) and the DMAxSCNT register reloads, the DMA clears the SIRQEN bit to stop receiving new start interrupt request signals and sets the DMAxSCNTIF flag.

FIGURE 15-5: GPR-GPR TRANSACTIONS WITH HARDWARE TRIGGERS, SSTP = 1

	(1)	2	3	(4) (5)	6 (2	8 () 10	11	12	13	14	15	16	6)	13	Rev. 10-00275A 819/2016
Instruction Clock		Ŵ	ŴM	MM	www) M	ŴŴ		MM	Ŵ	Ŵ	Ŵ	NÑ	M	ŇŇ	Ŵ	M
EN																	
SIRQEN																	
Source Hardware Trigger –				1													
DGO_																	
DMAxSPTR	$\langle $		0x100		X 0x101)		0x102		X	0x10	з			0x100)	
DMAxDPTR			0x200		X 0x201)	/	0x201		_χ	0x20	01			0x200)	
DMAxSCNT	$\langle $		4		Х 3			2		X	1)	$\langle $		4		
DMAxDCNT			2		1)	(2		χ	1				2		
DMA STATE		IDLE		SR ⁽¹⁾ DW	²⁾ SR ⁽¹⁾ DV	N ⁽²⁾	I	DLE	SR ⁽¹⁾	DW ⁽²⁾	SR ⁽¹⁾	DW ⁽²⁾			IDLE		
DMAxSCNTIF																	
DMAxDCNTIF —																	
	DMA	xSSA	0x100)	DMAxDSA	C)x200										
	DMA	xSSZ	0x4		DMAxDSZ		0x2										
Note 1: S	SR – S	ource	e Rea	d													
2: □	DW – D	Destin	ation	Write													

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	—	—			WSEL<4:0>						
bit 7	·		<u>.</u>				bit				
Legend:											
R = Readal	ble bit	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'					
u = Bit is u		x = Bit is unk		•	at POR and BC		other Resets				
'1' = Bit is s	-	'0' = Bit is cle			pends on condi						
	Set		eareu	q – value del		uon					
bit 7-5	Unimplemen	ted: Read as '0'									
bit 4-0		SMTx Window S	election bits								
	11111 = Res										
	•										
	•										
	• 11011 = Res	erved									
		11010 = CLC4_out									
	11001 = CLC	_									
	11000 = CLC										
	10111 = CLC	—									
	10110 = ZCE	—									
	10101 = CM 10100 = CM										
	10011 = NC										
	10010 = Res										
	10001 = Res	erved									
	10000 = PW										
	01111 = PW	—									
	01110 = PW	—									
	01101 = PW 01100 = CCF	—									
	01011 = CC										
	01010 = CCF										
	01001 = CC										
		R6_postscaled									
		R4_postscaled									
		R2_postscaled									
	00101 = TM	_									
	00100 = CLK 00011 = SOS										
		SC NTOSC/16 (32 kl	Hz)								
	00001 = LFI		,								
	00000 = SM										

REGISTER 25-5: SMTxWIN: SMTx WINDOW INPUT SELECT REGISTER

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxF	PR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 25-16: SMTxPRL: SMT PERIOD REGISTER – LOW BYTE

bit 7-0 SMTxPR<7:0>: Significant bits of the SMT Timer Value for Period Match – Low Byte

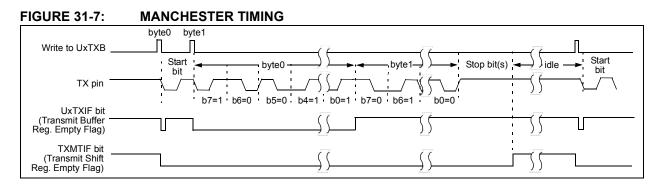
REGISTER 25-17: SMTxPRH: SMT PERIOD REGISTER – HIGH BYTE

R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1
			SMTxPF	R<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	ł	U = Unimpler	mented bit, read	1 as '0'	

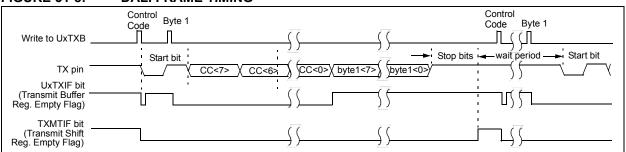
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SMTxPR<15:8>: Significant bits of the SMT Timer Value for Period Match – High Byte

REGISTER 25-18: SMTxPRU: SMT PERIOD REGISTER – UPPER BYTE


R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1	R/W-x/1				
SMTxPR<23:16>											
bit 7 bit											

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-0 SMTxPR<23:16>: Significant bits of the SMT Timer Value for Period Match – Upper Byte

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
POL	—	—	_	G4POL	G3POL	G2POL	G1POL			
bit 7							bit 0			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets										
'1' = Bit is set '0' = Bit is cleared										
bit 7	POL: CLCxO	UT Output Pola	arity Control	bit						
		ut of the logic c								
	0 = The outp	ut of the logic c	ell is not inv	erted						
bit 6-4	Unimplemen	ted: Read as 'o)'							
bit 3	G4POL: Gate	e 3 Output Pola	rity Control b	bit						
		ut of gate 3 is ir ut of gate 3 is n		n applied to the	logic cell					
h # 0	•	•		:4						
bit 2		e 2 Output Pola								
		ut of gate 2 is in ut of gate 2 is n		n applied to the	logic cell					
bit 1		e 1 Output Pola		it						
bit i			,	n applied to the	logic cell					
		ut of gate 1 is n			logic cen					
bit 0	G1POL: Gate	e 0 Output Pola	rity Control b	oit						
		•	2	n applied to the	logic cell					
	•	ut of gate 0 is n		••	J					

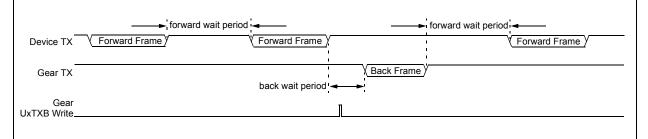

REGISTER 27-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

FIGURE 31-8: DALI FRAME TIMING

FIGURE 31-9: DALI FORWARD/BACK FRAME TIMING

33.3.2 BYTE FORMAT

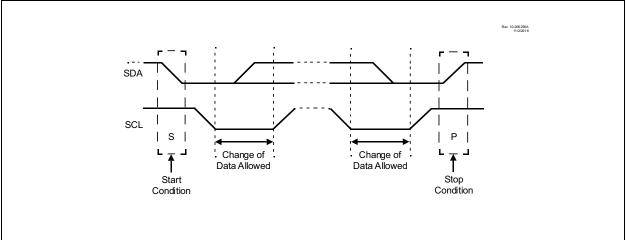
All communication in I^2C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent by the receiver. After the 8th falling edge of the SCL line, the device transmitting data on the SDA line releases control of that pin to an input, and reads in an acknowledge value on the next clock pulse. The clock signal is provided by the master. Data is valid to change while the SCL line is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define Start and Stop conditions on the bus which are explained further in the chapter.

33.3.3 SDA AND SCL PINS

The user must configure these pins as open-drain outputs. This is done by clearing the appropriate TRIS bits and setting the appropriate ODCON bits. The user may also select the input threshold, slew-rate and internal pull-up settings using the Rxyl2C control registers (Register 16-9).

33.3.4 SDA HOLD TIME

The hold time of the SDA pin is selected by the SDAHT<1:0> bits of the I2CxCON2 register. Hold time is the time SDA is held valid after the falling edge of SCL. A longer hold time setting may help on buses with large capacitance.


33.3.5 START CONDITION

The I²C specification defines a Start condition as a transition of SDA line from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 33-3 shows waveforms for Start conditions. Master hardware waits for the BFRE bit of I2CxSTAT0 to be set, before asserting a Start condition on the SCL and SDA lines. If two masters assert a start at the same time, a collision will occur during the addressing phase.

33.3.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low to high while the SCL line is high. Figure 33-3 shows waveforms for Stop conditions.

Note: At least one SCL low time must appear before a Stop is valid. Therefore, if the SDA line goes low then high again while the SCL line is high, only the Start condition is detected.

Mode 0	R/W-1	R/W-0	R/W-0	R/S-0	R/W-0	R/W-0	R/W-0	U-0					
	REQOP2	REQOP1	REQOP0	ABAT	WIN2	WIN1	WIN0						
	R/W-1	R/W-0	R/W-0	R/S-0	UO	U-0	U-0	U-0					
Mode 1	REQOP2	REQOP1	REQOP0	ABAT		<u> </u>	<u> </u>	-0					
	REGOLE	REGOLI	ILL QUI U	<i>i</i> (B <i>i</i> (1									
Mode 2	R/W-1	R/W-0	R/W-0	R/S-0	R-0	R-0	R-0	R-0					
Mode 2	REQOP2	REQOP1	REQOP0	ABAT	FP3	FP2	FP1	FP0					
	bit 7							bit 0					
Legend: S = Settable bit													
R = Readal	ble bit		W = Writable		U = Unimpl	emented bit, r	ead as '0'						
-n = Value a	at POR		'1' = Bit is se	et	'0' = Bit is c		x = Bit is unl	known					
bit 7-5		-	CAN Operation	n Mode bits	6								
		ests Configur											
		ests Listen O ests Loopbac											
		led/Sleep mc											
		ests Normal r											
bit 4		-	Transmission		(4)								
			smissions (in eding as norm		t buffers) ⁽¹⁾								
bit 3-1	<u>Mode 0:</u> WIN<2:0>: V	Vindow Addr	ess bits										
	buffer registe can be copie	ers from any o ed to the WIN	data memory	bank. After	a frame has o	cess Bank are caused an inte See Example	errupt, the ICC						
	111 = Recei 110 = Recei 101 = Recei	ve Buffer 0											
	100 = Trans												
	011 = Trans 010 = Trans												
	010 = Transi 001 = Recei												
	000 = Rece i												
bit 0	<u>Mode 0:</u> Unimpleme	nted: Read a	s '0'										
bit 4-0	<u>Mode 1:</u>												
	-	nted: Read a	s '0'										
	Mode 2:	EO Bood Boi	ntor hito										
	FP<3:0>: FIFO Read Pointer bits These bits point to the message buffer to be read.												
	0000 = Rece	eive Message	e Buffer 0										
		eive Message											
		eive Message eive Message											
		eive Message											
	0101 = Rece	eive Message	e Buffer 5										
		eive Message											
	1000:1111	eive Message Reserved											

REGISTER 34-1: CANCON: CAN CONTROL REGISTER

Note 1: This bit will clear when all transmissions are aborted.

34.15.3.1 Programmable TX/RX and Auto-RTR Buffers

The ECAN module contains six message buffers that can be programmed as transmit or receive buffers. Any of these buffers can also be programmed to automatically handle RTR messages.

Note: These registers are not used in Mode 0.

REGISTER 34-22: BnCON: TX/RX BUFFER 'n' CONTROL REGISTERS IN RECEIVE MODE $[0 \le n \le 5, TXnEN (BSEL0 < n >) = 0]^{(1)}$

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
RXFUL ⁽²⁾	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

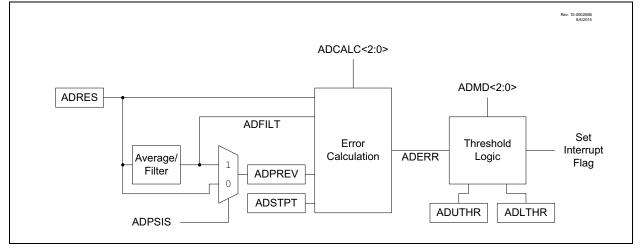
bit 7	RXFUL: Receive Full Status bit ⁽²⁾
	1 = Receive buffer contains a received message
	0 = Receive buffer is open to receive a new message
bit 6	RXM1: Receive Buffer Mode bit
	 1 = Receive all messages including partial and invalid (acceptance filters are ignored) 0 = Receive all valid messages as per acceptance filters
bit 5	RXRTRRO: Read-Only Remote Transmission Request for Received Message bit
	1 = Received message is a remote transmission request
	0 = Received message is not a remote transmission request
bit 4-0	FILHIT<4:0>: Filter Hit bits
	These bits indicate which acceptance filter enabled the last message reception into this buffer.
	01111 = Acceptance Filter 15 (RXF15)
	01110 = Acceptance Filter 14 (RXF14)
	00001 = Acceptance Filter 1 (RXF1)
	00000 = Acceptance Filter 0 (RXF0)

- **Note 1:** These registers are available in Mode 1 and 2 only.
 - 2: This bit is set by the CAN module upon receiving a message and must be cleared by software after the buffer is read. As long as RXFUL is set, no new message will be loaded and the buffer will be considered full.

Mode 0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	IRXIE	WAKIE	ERRIE	TXB2IE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXB1IE	RXB0IE
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Mode 1	IRXIE	WAKIE	ERRIE	TXBnIE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXBnIE	FIFOWMIE
	bit 7							bit 0
Legend:								
R = Reada	blo bit		W = Writabl	o hit	II – Unimple	montod bit r	ood oo '0'	
-n = Value			'1' = Bit is s		'0' = Bit is cl	emented bit, re	x = Bit is un	known
	alFUR		I - DIL 15 5	el		eareu		KHOWH
bit 7	1 = Enable i	Bus Error Me nvalid messa	ge received i	interrupt	ot Enable bit			
hit C		invalid messa	•	•	la hit			
bit 6	1 = Enable I	N bus Activity bus activity wa bus activity w	ake-up interr	upt	ie dit			
bit 5		N bus Error In		•				
		CAN module CAN module						
bit 4	TXB2IE: CA	<u>is in Mode 0:</u> N Transmit B Transmit Buffe Transmit Buff	er 2 interrupt		bit			
	When CAN TXBnIE: CA 1 = Enable t	is in Mode 1 d N Transmit B	o <u>r 2:</u> suffer Interrup r interrupt; in	ots Enable b dividual inte	it rrupt is enable	ed by TXBIE a	and BIE0	
bit 3	TXB1IE: CA	N Transmit B Transmit Buffe Transmit Buff	uffer 1 Interr er 1 interrupt	upt Enable t	bit ⁽¹⁾			
bit 2	TXB0IE: CA	N Transmit Buffe Transmit Buffe Transmit Buffe	uffer 0 Interr er 0 interrupt	upt Enable b	_{Dit} (1)			
bit 1	RXB1IE: CA	<u>is in Mode 0:</u> AN Receive B Receive Buffe Receive Buffe	r 1 interrupt		it			
	RXBnIE: CA	<u>is in Mode 1 c</u> AN Receive B receive buffer all receive bu	uffer Interrup interrupt; inc	dividual inter	t rupt is enable	d by BIE0		
bit 0	RXB0IE: CA 1 = Enable I 0 = Disable	<u>is in Mode 0:</u> AN Receive B Receive Buffe Receive Buffe	r 0 interrupt	•	it			
	Unimpleme	is in Mode 1: nted: Read a	s '0'					
	FIFOWMIE:	<u>is in Mode 2:</u> FIFO Watern FIFO waterma		t Enable bit				

REGISTER 34-57: PIE5: PERIPHERAL INTERRUPT ENABLE REGISTER 5

Note 1: In CAN Mode 1 and 2, these bits are forced to '0'.


Mode 0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
wode u	IRXIP	WAKIP	ERRIP	TXB2IP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXB1IP	RXB0IP			
	D 44/4			D 44/ 4		D (14/ 4					
Mode 1,2	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
		WAKIP	ERRIP	TXBnIP	TXB1IP ⁽¹⁾	TXB0IP ⁽¹⁾	RXBnIP	FIFOWMIP			
	bit 7							bit (
Legend:											
R = Reada	ble bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'				
-n = Value	at POR		'1' = Bit is se	et	'0' = Bit is cl	eared	x = Bit is un	known			
bit 7	IRXIP: CAN 1 = High pric 0 = Low pric		essage Recei	ved Interrup	ot Priority bit						
bit 6	WAKIP: CA 1 = High pric 0 = Low pric		/ Wake-up In	terrupt Prior	ity bit						
bit 5	ERRIP: CAN 1 = High pric 0 = Low pric		or Interrupt P	riority bit							
bit 4	When CAN is in Mode 0: TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit 1 = High priority 0 = Low priority										
	When CAN is in Mode 1 or 2: TXBnIP: CAN Transmit Buffer Interrupt Priority bit 1 = High priority 0 = Low priority										
bit 3	TXB1IP: CA 1 = High pric 0 = Low pric		uffer 1 Interro	upt Priority b	bit(1)						
bit 2	TXB0IP: CA 1 = High pric 0 = Low pric		uffer 0 Interro	upt Priority b	_{Dit} (1)						
bit 1	RXB1IP: CA 1 = High pric 0 = Low pric When CAN		or 2:								

REGISTER 34-58: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

37.6 Computation Operation

The ADC module hardware is equipped with post conversion computation features. These features provide data post-processing functions that can be operated on the ADC conversion result, including digital filtering/averaging and threshold comparison functions.

FIGURE 37-10: COMPUTATIONAL FEATURES SIMPLIFIED BLOCK DIAGRAM

The operation of the ADC computational features is controlled by ADMD <2:0> bits in the ADCON2 register.

The module can be operated in one of five modes:

• **Basic**: In this mode, ADC conversion occurs on single (ADDSEN = 0) or double (ADDSEN = 1) samples. ADIF is set after all the conversion are complete.

• Accumulate: With each trigger, the ADC conversion result is added to accumulator and CNT increments. ADIF is set after each conversion. ADTIF is set according to the calculation mode.

• Average: With each trigger, the ADC conversion result is added to the accumulator. When the RPT number of samples have been accumulated, a threshold test is performed. Upon the next trigger, the accumulator is cleared. For the subsequent tests, additional RPT samples are required to be accumulated.

• **Burst Average**: At the trigger, the accumulator is cleared. The ADC conversion results are then collected repetitively until RPT samples are accumulated and finally the threshold is tested.

• Low-Pass Filter (LPF): With each trigger, the ADC conversion result is sent through a filter. When RPT samples have occurred, a threshold test is performed. Every trigger after that the ADC conversion result is sent through the filter and another threshold test is performed.

The five modes are summarized in Table 37-2 below.

R/W-0/0	U-0	U-0	U-0	U-0	U-0	U-0	R-0/0				
CPON	_	—	—	_	_	_	CPRDY				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncl	nanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared	HS= Hardware set							
bit 7											
bit 6-1	Unimplemented: Read as '0'										
bit 0	CPRDY: Charge Pump Ready Status bit										

REGISTER 37-36: ADCP: ADC CHARGE PUMP CONTROL REGISTER

1 = Charge Pump is ready

0 = Charge Pump is not ready (or never started)

© 2017 Microchip	Technology Inc.
------------------	-----------------

FIGURE 42-2:	Genera	al Form	at for Instru	ctions (2	(2/2)
	Control operatio	ns			
	CALL, GOTO and	Branch o	perations		
	15		8 7	0	
	0	PCODE	n<7:0> (l	iteral)	GOTO Label
	15	12 11	•	0	
	1111		n<19:8> (literal)		
	n = 20-bit	immediate	value		
	15		8 7	0	
	OPC	ODE	S n<7:0> (lite	ral)	CALL MYFUNC
	15	12 11		0	
	1111		n<19:8> (literal))	
		S = Fast b	t		
	15	11 10		0	
	OPCODE	n	<10:0> (literal)		BRA MYFUNC
	15	8	7	0	
	OPCODE		n<7:0> (literal)		BC MYFUNC

PIC18(L)F25/26K83

ADDWFC	ADD W ar	ADD W and CARRY bit to f					
Syntax:	ADDWFC	f {,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:	(W) + (f) + ($(C) \rightarrow dest$					
Status Affected:	N,OV, C, D	C, Z					
Encoding:	0010	00da ffi	ff ffff				
Description:	Add W, the CARRY flag and data mer ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'. If 'a' is '0', the Access Bank is selected If 'a' is '1', the BSR is used to select th GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Sec tion 42.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit eral Offset Mode" for details.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	Write to destination				
Example:	ADDWFC	REG, 0,	1				
Before Instruct CARRY b REG W After Instructio CARRY b REG W	bit = 1 = 02h = 4Dh						

	DLW	A	AND literal with W							
Synta	ax:	Α	NDLW	k						
Oper	ands:	0	≤ k ≤ 255	5						
Oper	ation:	(\	N) .AND.	$k\toW$						
Statu	is Affected:	Ν	, Z							
Encoding:			0000	1011	kkk	k	kkkk			
Desc	ription:	-		nts of W a 'k'. The r			d with the aced in W.			
Word	ls:	1								
Cycle	es:	1								
QC	ycle Activity:									
	Q1		Q2	Q3		Q4				
	Decode	Re	ad literal 'k'	Proce Dat		Write to W				
Example:		A	NDLW	05Fh						
Before Instruction										
	W	=	A3h							
	After Instruction	on								
	W	=	03h							

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3F6Ah	PWM6CON	EN		OUT	POL	_	_	_		344
3F69h	PWM6DCH	DC	C9	DC7	DC6	DC5	DC4	DC3	DC2	346
3F68h	PWM6DCL	DC1	DC0	_	—	_	_	-	_	346
3F67h	_				Unimple	mented				_
3F66h	PWM7CON	EN	_	OUT	POL	_	_	_	—	344
3F65h	PWM7DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	346
3F64h	PWM7DCL	DC1	DC0	_	_	_	_	_	_	346
3F63h	_				Unimple	mented		4		_
3F62h	PWM8CON	EN	_	OUT	POL		_	_	—	344
3F61h	PWM8DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	346
3F60h	PWM8DCL	DC1	DC0	_	_	_	_	_	_	346
3F5Fh	CCPTMRS1	P8T	SEL		TSEL	P6 ⁻	TSEL	P5	TSEL	345
3F5Eh	CCPTMRS0	C4T	SEL	C3	TSEL	C2	TSEL	C1	TSEL	345
3F5Dh- 3F5Bh	_				Unimple	mented				-
3F5Ah	CWG1STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	414
3F59h	CWG1AS1	_	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	416
3F58h	CWG1AS0	SHUTDOWN	REN	L	SBD	LS	SAC	_	_	415
3F57h	CWG1CON1	_	_	IN	_	POLD	POLC	POLB	POLA	411
3F56h	CWG1CON0	EN	LD	_		_		MODE		410
3F55h	CWG1DBF	_	_		DBF					
3F54h	CWG1DBR	_	_		DBR					
3F53h	CWG1ISM	_	_	IS						417
3F52h	CWG1CLK	_	_	_		_	_	_	CS	412
3F51h	CWG2STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	414
3F50h	CWG2AS1	_	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	416
3F4Fh	CWG2AS0	SHUTDOWN	REN		SBD		SAC	_	_	415
3F4Eh	CWG2CON1	_	_	IN	_	POLD	POLC	POLB	POLA	411
3F4Dh	CWG2CON0	EN	LD					MODE		410
3F4Ch	CWG2DBF	_	_			Γ)BF			417
3F4Bh	CWG2DBR	_	_				BR			417
3F4Ah	CWG2ISM	_	_	_	_			IS		413
3F49h	CWG2CLK	_	_	_		_	_		CS	412
3F48h	CWG3STR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	414
3F47h	CWG3AS1	-	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	416
3F46h	CWG3AS0	SHUTDOWN	REN		SBD		SAC	_		415
3F45h	CWG3CON1	_	_	IN	_	POLD	POLC	POLB	POLA	411
3F44h	CWG3CON0	EN	LD			-	1020	MODE	TOER	410
3F43h	CWG3DBF					<u>Г</u>) BF	MODE		417
3F42h	CWG3DBR						BR			417
3F41h	CWG3DBK							IS		417
3F40h	CWG3CLK								CS	412
3F3Fh	NCO1CLK		PWS					CKS	00	440
3F3Eh	NCO1CON	EN	1 1/0	OUT	POL				PFM	440
		EIN		001			_	_	FFIVI	-
3F3Dh					IN					443
3F3Ch	NCO1INCH				IN					442
3F3Bh	NCO1INCL				IN					442
3F3Ah	NCO1ACCU				AC					442
3F39h	NCO1ACCH				AC					441
3F38h	NCO1ACCL x = unknown	, u = unchanged,			AC					441

TABLE 43-1: REGISTER FILE SUMMARY FOR PIC18(L)F25/26K83 DEVICES (CONTINUED)

Note 1: Not present in LF devices.