

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k83t-i-mx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Register and Bit naming conventions

1.3.1 REGISTER NAMES

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.3.2 BIT NAMES

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

1.3.2.1 Short Bit Names

Short bit names are an abbreviation for the bit function. For example, some peripherals are enabled with the EN bit. The bit names shown in the registers are the short name variant.

Short bit names are useful when accessing bits in C programs. The general format for accessing bits by the short name is *RegisterName*bits.*ShortName*. For example, the enable bit, EN, in the TOCON0 register can be set in C programs with the instruction TOCON0bits.EN = 1.

Short names are generally not useful in assembly programs because the same name may be used by different peripherals in different bit positions. When this occurs, during the include file generation, all instances of that short bit name are appended with an underscore plus the name of the register in which the bit resides to avoid naming contentions.

1.3.2.2 Long Bit Names

Long bit names are constructed by adding a peripheral abbreviation prefix to the short name. The prefix is unique to the peripheral thereby making every long bit name unique. The long bit name for the Timer0 enable bit is the Timer0 prefix, T0, appended with the enable bit short name, EN, resulting in the unique bit name T0EN.

Long bit names are useful in both C and assembly programs. For example, in C the T0CON0 enable bit can be set with the T0EN = 1 instruction. In assembly, this bit can be set with the BSF T0CON0, T0EN instruction.

1.3.2.3 Bit Fields

Bit fields are two or more adjacent bits in the same register. For example, the four Least Significant bits of the T0CON0 register contain the output prescaler select bits. The short name for this field is OUTPS and the long name is T0OUTPS. Bit field access is only possible in C programs. The following example demonstrates a C program instruction for setting the Timer0 output prescaler to the 1:6 Postscaler:

TOCONObits.OUTPS = 0x5;

Individual bits in a bit field can also be accessed with long and short bit names. Each bit is the field name appended with the number of the bit position within the field. For example, the Most Significant mode bit has the short bit name OUTPS3. The following two examples demonstrate assembly program sequences for setting the Timer0 output prescaler to 1:6 Postscaler:

Example 1:

MOVLW ~(1<<OUTPS3 | 1<<OUTPS1) ANDWF TOCON0,F MOVLW 1<COUTPS2 | 1<<OUTPS0 IORWF TOCON0,F

Example 2:

BCF	TOCONO,OUTPS3
BSF	TOCONO,OUTPS2
BCF	TOCON0,OUTPS1
BSF	TOCON0,OUTPSO

1.3.3 REGISTER AND BIT NAMING EXCEPTIONS

1.3.3.1 Status, Interrupt, and Mirror Bits

Status, interrupt enables, interrupt flags, and mirror bits are contained in registers that span more than one peripheral. In these cases, the bit name shown is unique so there is no prefix or short name variant.

4.4.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of two and the LSb will always read '0' (see Section 4.2.4 "Program Counter").

Figure 4-3 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-3 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 42.0 "Instruction Set Summary" provides further details of the instruction set.

4.4.4 MULTI-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LFSR and two three-word instructions: MOVFFL and MOVSFL. In all cases, the second and the third word of the instruction always has '1111' as its four Most Significant bits; the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the four MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed and used by the instruction sequence. If the first word is skipped for some reason and the second or third word is executed by itself, a NOP is executed instead. This is necessary for cases when the multi-word instruction is preceded by a conditional instruction that changes the PC. Example 4-4 shows how this works.

FIGURE 4-3: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program M	emory			000000h
	Byte Locati	ons \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
			F4h	56h	000010h
Instruction 4:	MOVFFL	123h, 456h	00h	60h	000012h
			F4h	8Ch	000014h
			F4h	56h	000016h
					000018h
					00001Ah

7.5 Register Definitions: Oscillator Control

REGISTER 7-1: OSCCON1: OSCILLATOR CONTROL REGISTER 1

U-0	R/W-f/f	R/W-f/f	R/W-f/f	R/W-q/q	R/W-q/q	R/W-q/q	R/W-q/q
—		NOSC<2:0>		NDIV<3:0>			
bit 7	•						bit 0
Legend:							

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	f = determined by Configuration bit setting
		q = Reset value is determined by hardware

bit 7	Unimplemented: Read as '0'
bit 6-4	NOSC<2:0>: New Oscillator Source Request bits ^(1,2,3)
	The setting requests a source oscillator and PLL combination per Table 7-1.
	POR value = RSTOSC (Register 5-1).
bit 3-0	NDIV<3:0>: New Divider Selection Request bits ^(2,3)

The setting determines the new postscaler division ratio per Table 7-1.

- Note1: The default value (f/f) is determined by the RSTOSC Configuration bits. See Table 7-2 below.
 - 2: If NOSC is written with a reserved value (Table 7-1), the operation is ignored and neither NOSC nor NDIV is written.
 - **3:** When CSWEN = 0, this register is read-only and cannot be changed from the POR value.

DETOEC	SF	R Reset Value	S	Initial Econo Exercisionay			
RSTOSC	NOSC/COSC	CDIV	OSCFRQ	Initial Fosc Frequency			
111	111	1:1		EXTOSC per FEXTOSC			
110	110	4:1		Fosc = 1 MHz (4 MHz/4)			
101	101	1:1	4 MHz	LFINTOSC			
100	100	1:1		SOSC			
011			Reserved				
010	010	1:1	4 MHz	EXTOSC + 4xPLL ⁽¹⁾			
001		Reserved					
000	110	1:1	64 MHz	Fosc = 64 MHz			

TABLE 7-2: DEFAULT OSCILLATOR SETTINGS

Note 1: EXTOSC must meet the PLL specifications (Table 45-9).

13.0 NONVOLATILE MEMORY (NVM) CONTROL

Nonvolatile Memory (NVM) is separated into two types: Program Flash Memory (PFM) and Data EEPROM Memory.

PFM, Data EEPROM, User IDs and Configuration bits can all be accessed using the REG<1:0> bits of the NVMCON1 register.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

NVM can be protected in two ways, by either code protection or write protection. Code protection (CP and CPD bits in Configuration Word 5L) disables access, reading and writing to both PFM and Data EEPROM Memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all nonvolatile memory, Configuration bits and User IDs.

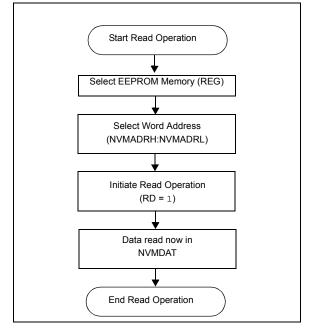
Write protection prohibits self-write and erase to a portion or all of the PFM, as defined by the WRT bits of Configuration Word 4H. Write protection does not affect a device programmer's ability to read, write or erase the device.

	PC<20:0>	Execution		User Access	;	
Memory	ICSP™ Addr<21:0> TBLPTR<21:0> NVMADDR<9:0>	CPU Execution	REG	TABLAT	NVMDAT	
Program Flash Memory (PFM)	00 0000h ••• 01 FFFFh	Read	10	Read/ Write ⁽¹⁾	(3)	
User IDs ⁽²⁾	20 0000h ••• 20 000Fh	No Access	xl	Read/ Write	(3)	
Reserved	20 0010h 2F FFFFh	No Access		(3)		
Configuration	30 0000h ••• 30 0009h	No Access	xl	Read/ Write ⁽¹⁾	(3)	
Reserved	30 000Ah 30 FFFFh	No Access				
User Data Memory (Data EEPROM)	31 0000h ••• 31 03FFh	No Access	00	(3)	Read/ Write ⁽¹⁾	
Reserved	31 0400h 3E FFFFh	No Access		(3)		
Device Information Area (DIA)	3F 0000h ••• 3F 003Fh	No Access	xl	Read	(3)	
Reserved	3F 0040h 3F FF09h	No Access		(3)		
Device Configuration Information (DCI)	3F FF00h ••• 3F FF09h	No Access	xl	Read	(3)	
Reserved	3F FF0Ah 3F FFFBh	No Access	(3)			
Revision ID/ Device ID	3F FFFCh ••• 3F FFFFh	No Access	x1	Read	(3)	

TABLE 13-1: NVM ORGANIZATION AND ACCESS INFORMATION

Note 1: Subject to Memory Write Protection settings.

2: User IDs are eight words ONLY. There is no code protection, table read protection or write protection implemented for this region.


3: Reads as '0', writes clear the WR bit and WRERR bit is set.

13.3.3 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the NVMADRL and NVMADRH register pair, clear REG<1:0> control bit in NVMCON1 register to access Data EEPROM locations and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the NVMDAT register can be read by the next instruction. NVMDAT will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 13-5.

FIGURE 13-11: DATA EEPROM READ FLOWCHART

13.3.4 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the address must first be written to the NVMADRL and NVMADRH register pair and the data written to the NVMDAT register. The sequence in Example 13-6 must be followed to initiate the write cycle.

The write will not begin if NVM Unlock sequence, described in **Section 13.1.4 "NVM Unlock Sequence"**, is not exactly followed for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in NVMCON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, NVMCON1, NVMADRL, NVMADRH and NVMDAT cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. A single Data EEPROM word is written and the operation includes an implicit erase cycle for that word (it is not necessary to set FREE). CPU execution continues in parallel and at the completion of the write cycle, the WR bit is cleared in hardware and the NVM Interrupt Flag bit (NVMIF) is set. The user can either enable this interrupt or poll this bit. NVMIF must be cleared by software.

REGISTER 13-5: NVMDAT: DATA EEPROM MEMORY DATA

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DAT	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'	
x = Bit is unkno	own	'0' = Bit is clea	ared	'1' = Bit is set			
-n = Value at F	POR						

bit 7-0 **DAT<7:0>:** The value of the data memory word returned from NVMADR after a Read command, or the data written by a Write command.

TABLE 13-5: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY CONTROL

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
NVMCON1	REG<1:0> — FREE WRERR WREN WR RD						200		
NVMCON2				Unloc	k Pattern				201
NVMADRL				NVMA	.DR<7:0>				201
NVMADRH	_	- — — — — NVMADR<9:8>					201		
NVMDAT				NVME	OAT<7:0>				202

Legend: — = unimplemented, read as '0'. Shaded bits are not used during EEPROM access.

*Page provides register information.

14.8 Scanner Module Overview

The Scanner allows segments of the Program Flash Memory or Data EEPROM, to be read out (scanned) to the CRC Peripheral. The Scanner module interacts with the CRC module and supplies it data one word at a time. Data is fetched from the address range defined by SCANLADR registers up to the SCANHADR registers.

The Scanner begins operation when the SGO bit is set (SCANCON0 Register) and ends when either SGO is cleared by the user or when SCANLADR increments past SCANHADR. The SGO bit is also cleared by clearing the EN bit (CRCCON0 register).

14.9 Configuring the Scanner

The scanner module may be used in conjunction with the CRC module to perform a CRC calculation over a range of program memory or Data EEPROM addresses. In order to set up the scanner to work with the CRC, perform the following steps:

- Set up the CRC module (See Section 14.7 "Configuring the CRC") and enable the Scanner module by setting the EN bit in the SCANCON0 register.
- 2. Choose which memory region the Scanner module should operate on and set the MREG bit of the SCANCON0 register appropriately.
- 3. If trigger is used for scanner operation, set the TRIGEN bit of the SCANCON0 register and select the trigger source using SCANTRIG register. Select the trigger source using SCANTRIG register and then set the TRIGEN bit of the SCANCON0 register. See Table 14-1 for Scanner Operation.
- 4. If Burst mode of operation is desired, set the BURSTMD bit (SCANCON0 register). See Table 14-1 for Scanner Operation.
- 5. Set the SCANLADRL/H/U and SCANHADRL/H/ U registers with the beginning and ending locations in memory that are to be scanned.
- Select the priority level for the Scanner module (See Section 3.1 "System Arbitration") and lock the priorities (See Section 3.1.1 "Priority Lock").
- 7. Both CRCEN and CRCGO bits must be enabled to use the scanner. Setting the SGO bit will start the scanner operation.

14.10 Scanner Interrupt

The scanner will trigger an interrupt when the SCANLADR increments past SCANHADR. The SCANIF bit can only be cleared in software.

14.11 Scanning Modes

The interaction of the scanner with the system operation is controlled by the priority selection in the System Arbiter (see **Section 3.2 "Memory Access Scheme"**). Additionally, BURSTMD and TRIGEN also determine the operation of the Scanner.

14.11.1 TRIGEN = 0, BURSTMD = 0

In this case, the memory access request is granted to the scanner if no other higher priority source is requesting access.

All sources with lower priority than the scanner will get the memory access cycles that are not utilized by the scanner.

14.11.2 TRIGEN = 1, **BURSTMD =** 0

In this case, the memory access request is generated when the CRC module is ready to accept.

The memory access request is granted to the scanner if no other higher priority source is requesting access. All sources with lower priority than the scanner will get the memory access cycles that are not utilized by the scanner.

The memory access request is granted to the scanner if no other higher priority source is requesting access. All sources with lower priority than the scanner will get the memory access cycles that are not utilized by the scanner.

14.11.3 TRIGEN = x, BURSTMD = 1

In this case, the memory access is always requested by the scanner.

The memory access request is granted to the scanner if no other higher priority source is requesting access. The memory access cycles will not be granted to lower priority sources than the scanner until it completes operation i.e., SGO = 0 (SCANCON0 register)

Note: If TRIGEN = 1 and BURSTMD = 1, the user should ensure that the trigger source is active for the Scanner operation to complete.

16.5 Register Definitions: Port Control

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
Rx7	Rx6	Rx5	Rx4	Rx3	Rx2	Rx1	Rx0
bit 7	•		•	•			bit
Legend:							
Legend: R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
•	bit	W = Writable '0' = Bit is clea		U = Unimplen x = Bit is unkr		d as '0'	

bit 7-0 **Rx<7:0>:** Rx7:Rx0 Port I/O Value bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTx are actually written to the corresponding LATx register. Reads from PORTx register return actual I/O pin values.

TABLE 16-2: PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
PORTB	RB7 ⁽¹⁾	RB6 ⁽¹⁾	RB5	RB4	RB3	RB2	RB1	RB0
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
PORTE	_	_	-	-	RE3 ⁽²⁾	_		_

Note 1: Bits RB6 and RB7 read '1' while in Debug mode.

2: Bit PORTE3 is read-only, and will read '1' when MCLRE = 1 (Master Clear enabled).

24.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when T2PR is 255. The resolution is a function of the T2PR register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution = $\frac{\log[4(T2PR + 1)]}{\log(2)}$ bits

Note: If the pulse-width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

TABLE 24-1 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
---------------------	---

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
T2PR Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the T2TMR register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, T2TMR will continue from its previous state.

24.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 7.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

24.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

25.6.6 GATED WINDOWED MEASURE MODE

This mode measures the duty cycle of the SMTx_signal input over a known input window. It does so by incrementing the timer on each pulse of the clock signal while the SMTx_signal input is high, updating the SMTxCPR register and resetting the timer on every rising edge of the SMTWINx input after the first. See Figure 25-12 and Figure 25-13.

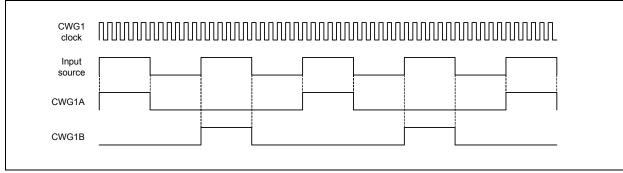
26.2.4 STEERING MODES

In both Synchronous and Asynchronous Steering modes, the modulated input signal can be steered to any combination of four CWG outputs and a fixed-value will be presented on all the outputs not used for the PWM output. Each output has independent polarity, steering, and shutdown options. Dead-band control is not used in either steering mode.

When STRx = 0 (Register 26-5), then the corresponding pin is held at the level defined by OVRx (Register 26-5). When STRx = 1, then the pin is driven by the modulated input signal.

The POLx bits (Register 26-2) control the signal polarity only when STRx = 1.

The CWG auto-shutdown operation also applies to steering modes as described in **Section 26.14 "Register Definitions: CWG Control"**.


Note: Only the STRx bits are synchronized; the SDATx (data) bits are not synchronized.

The CWG auto-shutdown operation also applies in Steering modes as described in **Section 26.10 "Auto-Shutdown"**. An auto-shutdown event will only affect pins that have STRx = 1.

26.2.4.1 Synchronous Steering Mode

In Synchronous Steering mode (MODE<2:0> bits = 001, Register 26-1), changes to steering selection registers take effect on the next rising edge of the modulated data input (Figure 26-9). In Synchronous Steering mode, the output will always produce a complete waveform.

FIGURE 26-9: EXAMPLE OF SYNCHRONOUS STEERING (MODE<2:0> = 001)

PIC18(L)F25/26K83

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ACNT	GCEN	FME	ADB	SDAHT<	:1:0>	BFRE	T<1:0>	
bit 7				-			bit (
Legend:								
R = Readal	ble bit	W = Writable b		U = Unimpleme	nted bit, read	d as '0'		
u = Bit is ur	nchanged	x = Bit is unkno	own	-n/n = Value at F	POR and BC	R/Value at all c	other Resets	
'1' = Bit is s	set	'0' = Bit is clea	red	HS = Hardware	set HC =	Hardware clea	r	
bit 7	1 = The firs ister. ACKD receiv updat	The I2CCNT regineration The I2CCNT regineration of the I2CCNT regineration	smitted byte al ster is loaded a ermine the ACI is prevents a gister.	ble bit fter the address, is at the same time a I2CCNT <nack></nack>	s the value is the address	s moved to/fron bytes and first	n the shifter. data byte of a	
bit 6	1 = Genera		(00, causes ac	1ODE<2:0> = 00x Idress match even	,			
bit 5	1 = SCL is			driving SCL low. (ing SCL low. (Fsci		(/4)		
bit 4	1 = Receiv Trans 0 = Receiv	 0 = SCL is sampled high twice before driving SCL low. (FSCL = FCLK/5) ADB: Address Data Buffer Disable bit 1 = Received address data is loaded into both the I2CADB and I2CRXB Transmitted address data is loaded from the I2CTXB 0 = Received address data is loaded only into the I2CADB Transmitted address data is loaded from the I2CADB 						
bit 3-2	11 = Reser 10 = Minim 01 = Minim	SDAHT<1:0>: SDA Hold Time Selection bits 11 = Reserved 10 = Minimum of 30 ns hold time on SDA after the falling edge of SCL 01 = Minimum of 100 ns hold time on SDA after the falling edge of SCL 00 = Minimum of 300 ns hold time on SDA after the falling edge of SCL						
bit 1-0	BFRET<1:0>: Bus Free Time Selection bits $11 = 64 \ I^2C$ Clock pulses $10 = 32 \ I^2C$ Clock pulses $01 = 16 \ I^2C$ Clock pulses $00 = 8 \ I^2C$ Clock pulses							

PIC18(L)F25/26K83

REGISTER 3	3-11: I2CxP	E: I2CxIE IN		AND HOLD E	NABLE RE	GISTER	
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTIE	ACKTIE	_	WRIE	ADRIE	PCIE	RSCIE	SCIE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, re	ead as '0'	
u = Bit is unch	anged	x = Bit is unkr	own	-n/n = Value	at POR and I	BOR/Value at all of	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HS = Hardwa	are set HC	C = Hardware clear	
bit 7	1 = When CN	Count Interrupt NTIF is set nt interrupts are					
bit 6	ACKTIE: Acknowledge Interrupt and Hold Enable bit 1 = When ACKTIF is set If ACK is generated, CSTR is also set. If NACK is generated, CSTR is unchanged 0 = Acknowledge holding and interrupt is disabled						
bit 5	Unimplemen	ted: Read as ')'				
bit 4	1 = When W	Write Interrupt a RIF is set; CST te holding and i	R is set				
bit 3	1 = When AD	ess Interrupt ar DRIF is set; CS holding and int	TR is set				
bit 2							
bit 1 RSCIE: Restart Condition Interrupt Enable bit 1 = Enable interrupt on detection of Restart condition 0 = Start detection interrupts are disabled							
bit 0							
Note 1: Ena	abled interrupt f	lags are OR'd t	o produce th	e PIRx <l2cxif< td=""><td>> bit.</td><td></td><td></td></l2cxif<>	> bit.		

DECIOTED 22 44. 12CYDIE: 12CYIE INTERDURT AND HOLD ENABLE DECISTER

RXFBCON0	R/W-0							
KAFBCUNU	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_0
RXFBCON1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
KAFBCONT	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_0
	_							
RXFBCON2	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_0
RXFBCON3	R/W-0							
	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_0
RXFBCON4	R/W-0							
	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_0
RXFBCON5	R/W-0							
KAFBCONS	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_0
RXFBCON6	R/W-0							
	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_0
RXFBCON7	R/W-0							
	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_0
	bit 7							bit 0

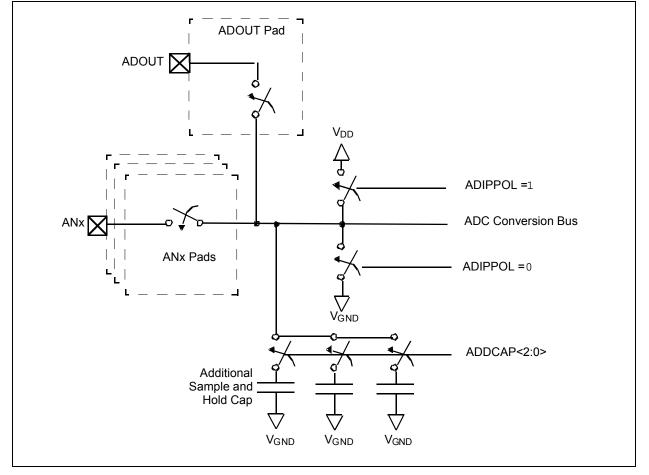
REGISTER 34-47: RXFBCONn: RECEIVE FILTER BUFFER CONTROL REGISTER 'n'(1)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 F<15:2>BP_<3:0>: Filter n Buffer Pointer Nibble bits 0000 = Filter n is associated with RXB0 0001 = Filter n is associated with RXB1 0010 = Filter n is associated with B0 0011 = Filter n is associated with B1 ... 0111 = Filter n is associated with B5 1111-1000 = Reserved

Note 1: This register is available in Mode 1 and 2 only.

37.4 ADC Charge Pump


The ADC module has a dedicated charge pump which can be controlled through the ADCP register (Register 37-36). The primary purpose of the charge pump is to supply a constant voltage to the gates of transistor devices in the A/D converter, signal and reference input pass-gates, to prevent degradation of transistor performance at low operating voltage.

The charge pump can be enabled by setting the CPON bit in the ADC register. Once enabled, the pump will undergo a start-up time to stabilize the charge pump output. Once the output stabilizes and is ready for use, the CPRDY bit of the ADCP register will be set.

37.5 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. Figure 37-6 shows the basic block diagram of the CVD portion of the ADC module.

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0	R/W-0/0	R/W-0/0	R/W-0/0	
-		CALC<2:0>		SOI		TMD<2:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value a	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	t is cleared HC = Bit is cleared by hardware					

REGISTER 37-4: ADCON3: ADC CONTROL REGISTER 3

bit 7 Unimplemented: Read as '0'

bit 6-4 CALC<2:0>: ADC Error Calculation Mode Select bits

CALC	DSEN = 0 Single-Sample Mode	DSEN = 1 CVD Double-Sample Mode ⁽¹⁾	Application
111	Reserved	Reserved	Reserved
110	Reserved	Reserved	Reserved
101	FLTR-STPT	FLTR-STPT	Average/filtered value vs. setpoint
100	PREV-FLTR	PREV-FLTR	First derivative of filtered value ⁽³⁾ (negative)
011	Reserved	Reserved	Reserved
010	RES-FLTR	(RES-PREV)-FLTR	Actual result vs. averaged/filtered value
001	RES-STPT	(RES-PREV)-STPT	Actual result vs.setpoint
000	RES-PREV	RES-PREV	First derivative of single measurement ⁽²⁾
			Actual CVD result in CVD mode ⁽²⁾

bit 3
 SOI: ADC Stop-on-Interrupt bit

 If CONT = 1:
 1 = GO is cleared when the threshold conditions are met, otherwise the conversion is retriggered

 0 = GO is not cleared by hardware, must be cleared by software to stop retriggers

 bit 2-0
 TMD<2:0>: Threshold Interrupt Mode Select bits

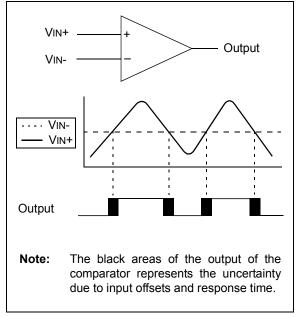
 11 = Interrupt regardless of threshold test results

- 110 = Interrupt if ERR>UTH
- 101 = Interrupt if ERR≤UTH
- 100 = Interrupt if ERR<LTH or ERR>UTH
- 011 = Interrupt if ERR>LTH and ERR<UTH
- 010 = Interrupt if ERR≥LTH
- 001 = Interrupt if ERR<LTH
- 000 = Never interrupt
- **Note 1:** When PSIS = 0, the value of (RES-PREV) is the value of (S2-S1) from Table 37-2.
 - 2: When PSIS = 0
 - **3:** When PSIS = 1.

39.0 COMPARATOR MODULE

Note: The PIC18(L)F25/26K83 devices have two comparators. Therefore, all information in this section refers to both C1 and C2.

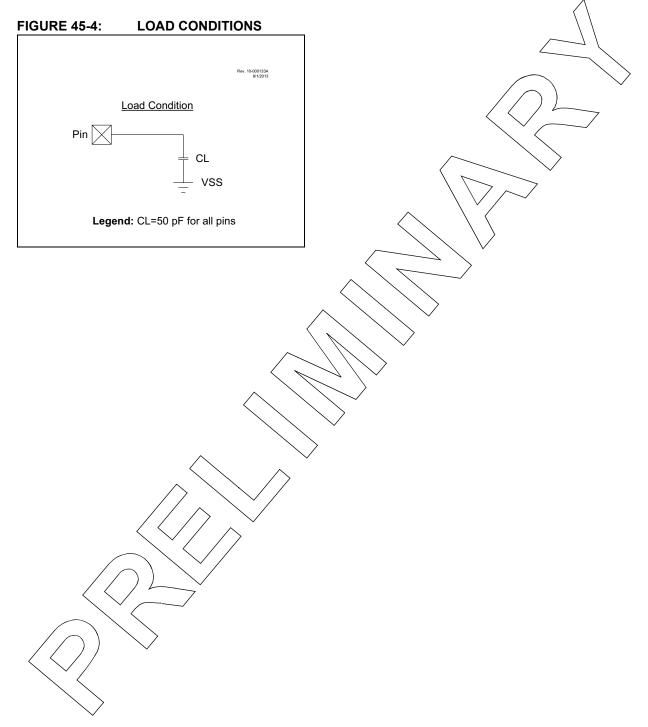
Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution.


The analog comparator module includes the following features:

- Programmable input selection
- Programmable output polarity
- Rising/falling output edge interrupts

39.1 Comparator Overview

A single comparator is shown in Figure 39-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.



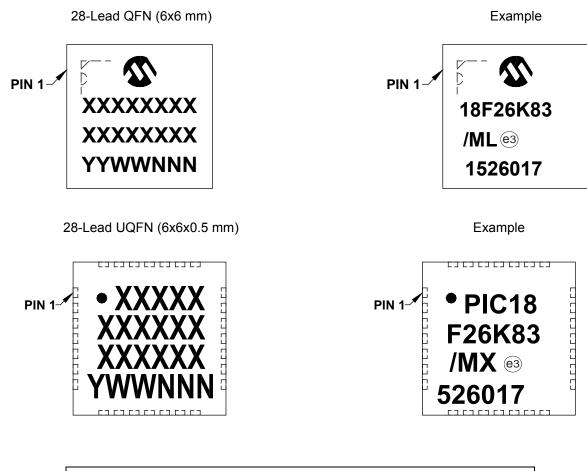

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3F96h	T6CLK	—	—	_	_		(CS		300
3F95h	T6HLT	PSYNC	CKPOL	CKSYNC			MODE			324
3F94h	T6CON	ON		CKPS			OU	ITPS		323
3F93h	T6PR				PR	6				322
3F92h	T6TMR				TMF	76				322
3F91h	ECANCON	MDSEL1	MDSEL0	FIFOWM	EWIN4	EWIN3	EWIN2	EWIN1	EWIN0	607
3F90h	COMSTAT	RXB00VFL	RXB10VFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	608
3F90h	COMSTAT	_	RXBnOVFL	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	608
3F90h	COMSTAT	FIFOEMPTY	RXBnOVFL	ТХВО	TXBP	RXBP	TXWARN	RXWARN	EWARN	608
3F8Fh	CANCON	REQOP2	REQOP1	REQOP0	ABAT	WIN2	WIN1	WIN0	_	603
3F8Fh	CANCON	REQOP2	REQOP1	REQOP0	ABAT	_	_	_	—	603
3F8Fh	CANCON	REQOP2	REQOP1	REQOP0	ABAT	FP3	FP2	FP1	FP0	603
3F8Eh	CANSTAT	OPMODE2	OPMODE1	OPMODE0		ICODE2	ICODE1	ICODE0	_	604
3F8Eh	CANSTAT	OPMODE2	OPMODE1	OPMODE0	EICODE4	EICODE3	EICODE2	EICODE1	EICODE0	604
3F8Dh	RXB0D7	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F8Ch	RXB0D6	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F8Bh	RXB0D5	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F8Ah	RXB0D4	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F89h	RXB0D3	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F88h	RXB0D2	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F87h	RXB0D1	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F86h	RXB0D0	RXB0Dm7	RXB0Dm6	RXB0Dm5	RXB0Dm4	RXB0Dm3	RXB0Dm2	RXB0Dm1	RXB0Dm0	620
3F85h	RXB0DLC	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	620
3F84h	RXB0EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	620
3F83h	RXB0EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	620
3F82h	RXB0SIDL	SID2	SID1	SID0	SRR	EXID		EID17	EID16	620
3F81h	RXB0SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	620
3F80h	RXB0CON	RXFUL	RXM1	RXM0		RXRTRRO	RXB0DBEN	JTOFF	FILHIT0	620
3F80h	RXB0CON	RXFUL	RXM1	RTRRO	FILHITF4	FILHIT3	FILHIT2	FILHIT1	FILHITO	620
3F7Fh	CCP1CAP	_	_	_				<3:0>		338
3F7Eh	CCP1CON	EN		OUT	FMT			ODE		335
3F7Dh	CCPR1H				RF	1		002		339
3F7Ch	CCPR1L				RI					338
3F7Bh	CCP2CAP	_	_	_	_		CTS	<3:0>		338
3F7Ah	CCP2CON	EN		OUT	FMT			DDE		335
3F79h	CCPR2H				RF	1		002		339
3F78h	CCPR2L				RI					338
3F77h	CCP3CAP	_	_	_	_		CTS	<3:0>		338
3F76h	CCP3CON	EN	_	OUT	FMT			DDE		335
3F75h	CCPR3H				RH	1		=		339
3F74h	CCPR3L				RI					338
3F73h	CCP4CAP	_	_	_	_		CTS	<3:0>		338
3F72h	CCP4CON	EN	_	OUT	FMT			DDE		335
3F71h	CCPR4H				RH	1				339
3F70h	CCPR4L	1			RI					338
3F6Fh					Unimpler					
3F6Eh	PWM5CON	EN	_	OUT	POL	_		_	_	344
3F6Dh	PWM5DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	346
	1		DC0	501	200	200	007	200	0.02	346
3F6Ch	PWM5DCL	DC1	1.10.10							

TABLE 43-1: REGISTER FILE SUMMARY FOR PIC18(L)F25/26K83 DEVICES (CONTINUED)

Note 1: Not present in LF devices.

45.4 AC Characteristics

Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN ©3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.