

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf25k83t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F25/26K83 DEVICES BANK 60

2017	
Microchi	
o Technolog	
Jy Inc	

3CFFh	—	3CDFh	—	3CBFh	—	3C9Fh	—	3C7Fh		3C5Fh	CLC4GLS3	3C3Fh	—	3C1Fh	u —
3CFEh	MD1CARH	3CDEh	—	3CBEh	—	3C9Eh	—	3C7Eh	CLCDATA0	3C5Eh	CLC4GLS2	3C3Eh	_	3C1Eh	- I
3CFDh	MD1CARL	3CDDh	—	3CBDh	—	3C9Dh	—	3C7Dh	CLC1GLS3	3C5Dh	CLC4GLS1	3C3Dh	_	3C1DF	- I
3CFCh	MD1SRC	3CDCh	—	3CBCh	—	3C9Ch	—	3C7Ch	CLC1GLS2	3C5Ch	CLC4GLS0	3C3Ch	_	3C1Ch	- I
3CFBh	MD1CON1	3CDBh	—	3CBBh	—	3C9Bh	_	3C7Bh	CLC1GLS1	3C5Bh	CLC4SEL3	3C3Bh	_	3C1Bh	n — I
3CFAh	MD1CON0	3CDAh	—	3CBAh	—	3C9Ah	—	3C7Ah	CLC1GLS0	3C5Ah	CLC4SEL2	3C3Ah	_	3C1Ab	- I
3CF9h	—	3CD9h	—	3CB9h	—	3C99h	—	3C79h	CLC1SEL3	3C59h	CLC4SEL1	3C39h	_	3C19h	- I
3CF8h	—	3CD8h	—	3CB8h	—	3C98h	—	3C78h	CLC1SEL2	3C58h	CLC4SEL0	3C38h	_	3C18h	- I
3CF7h	—	3CD7h	—	3CB7h	—	3C97h	—	3C77h	CLC1SEL1	3C57h	CLC4POL	3C37h	_	3C17h	- I
3CF6h	_	3CD6h	—	3CB6h	_	3C96h	—	3C76h	CLC1SEL0	3C56h	CLC4CON	3C36h	_	3C16h	n —
3CF5h	_	3CD5h	—	3CB5h	_	3C95h	—	3C75h	CLC1POL	3C55h	—	3C35h	_	3C15h	n —
3CF4h	_	3CD4h	—	3CB4h	_	3C94h	—	3C74h	CLC1CON	3C54h	—	3C34h	_	3C14h	n —
3CF3h	_	3CD3h	—	3CB3h	_	3C93h	—	3C73h	CLC2GLS3	3C53h	—	3C33h	_	3C13h	n —
3CF2h	_	3CD2h	—	3CB2h	_	3C92h	—	3C72h	CLC2GLS2	3C52h	—	3C32h	_	3C12h	n —
3CF1h	_	3CD1h	—	3CB1h	_	3C91h	—	3C71h	CLC2GLS1	3C51h	—	3C31h	_	3C11h	n —
3CF0h	_	3CD0h	—	3CB0h	_	3C90h	—	3C70h	CLC2GLS0	3C50h	—	3C30h	_	3C10h	n —
3CEFh	_	3CCFh	—	3CAFh	_	3C8Fh	—	3C6Fh	CLC2SEL3	3C4Fh	—	3C2Fh	_	3C0Fh	n —
3CEEh	_	3CCEh	—	3CAEh	_	3C8Eh	—	3C6Eh	CLC2SEL2	3C4Eh	—	3C2Eh	_	3C0Eh	n —
3CEDh	_	3CCDh	—	3CADh	_	3C8Dh	—	3C6Dh	CLC2SEL1	3C4Dh	—	3C2Dh	_	3C0Dh	n —
3CECh	_	3CCCh	—	3CACh	_	3C8Ch	—	3C6Ch	CLC2SEL0	3C4Ch	—	3C2Ch	_	3C0Ch	n —
3CEBh	_	3CCBh	—	3CABh	_	3C8Bh	—	3C6Bh	CLC2POL	3C4Bh	—	3C2Bh	_	3C0Bh	n —
3CEAh	_	3CCAh	_	3CAAh	_	3C8Ah	_	3C6Ah	CLC2CON	3C4Ah	_	3C2Ah	_	3C0Ah	n —
3CE9h		3CC9h	_	3CA9h		3C89h	—	3C69h	CLC3GLS3	3C49h	—	3C29h	_	3C09h	n —
3CE8h	_	3CC8h	_	3CA8h	_	3C88h	_	3C68h	CLC3GLS2	3C48h	_	3C28h	_	3C08h	- I
3CE7h	_	3CC7h	_	3CA7h	_	3C87h	_	3C67h	CLC3GLS1	3C47h	_	3C27h	_	3C07h	- I
3CE6h	CLKRCLK	3CC6h	_	3CA6h	_	3C86h	_	3C66h	CLC3GLS0	3C46h	_	3C26h	_	3C06h	- I
3CE5h	CLKRCON	3CC5h	_	3CA5h	_	3C85h	_	3C65h	CLC3SEL3	3C45h	_	3C25h	_	3C05h	- I
3CE4h	_	3CC4h	_	3CA4h	_	3C84h	_	3C64h	CLC3SEL2	3C44h	_	3C24h	_	3C04h	— I
3CE3h	_	3CC3h	_	3CA3h	_	3C83h	_	3C63h	CLC3SEL1	3C43h	_	3C23h	_	3C03h	— I
3CE2h	_	3CC2h	_	3CA2h	_	3C82h	_	3C62h	CLC3SEL0	3C42h	_	3C22h	_	3C02h	—
3CE1h	_	3CC1h	_	3CA1h	_	3C81h	_	3C61h	CLC3POL	3C41h	_	3C21h	_	3C01h	—
3CE0h	_	3CC0h	_	3CA0h	_	3C80h	_	3C60h	CLC3CON	3C40h	_	3C20h	_	3C00F	—

Legend: Unimplemented data memory locations and registers, read as '0'.

• TABLE 4-8: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F25/26K83 DEVICES BANK 58

2017 Microchip	
Technology Inc.	

3AFFh	—	3ADFh	ADACTPPS	3ABFh	PPSLOCK	3A9Fh	—	3A7Fh	—	3A5Fh	—	3A3Fh	—	3A1Fh	—
3AFEh	—	3ADEh	CLCIN3PPS	3ABEh		3A9Eh	_	3A7Eh	—	3A5Eh	—	3A3Eh		3A1Eh	—
3AFDh	—	3ADDh	CLCIN2PPS	3ABDh	—	3A9Dh	—	3A7Dh	—	3A5Dh	—	3A3Dh	—	3A1Dh	—
3AFCh	—	3ADCh	CLCIN1PPS	3ABCh	—	3A9Ch	—	3A7Ch	—	3A5Ch	—	3A3Ch	—	3A1Ch	—
3AFBh	_	3ADBh	CLCIN0PPS	3ABBh	_	3A9Bh	_	3A7Bh	_	3A5Bh	RB2I2C	3A3Bh	_	3A1Bh	_
3AFAh	—	3ADAh	MD1SRCPPS	3ABAh	—	3A9Ah	—	3A7Ah		3A5Ah	RB1I2C	3A3Ah	—	3A1Ah	_
3AF9h	—	3AD9h	MD1CARHPPS	3AB9h	—	3A99h	—	3A79h		3A59h	_	3A39h	—	3A19h	_
3AF8h	_	3AD8h	MD1CARLPPS	3AB8h	_	3A98h	_	3A78h		3A58h		3A38h		3A18h	—
3AF7h	_	3AD7h	CWG3INPPS	3AB7h	_	3A97h	_	3A77h		3A57h	IOCBF	3A37h		3A17h	RC7PPS
3AF6h	_	3AD6h	CWG2INPPS	3AB6h	_	3A96h	_	3A76h		3A56h	IOCBN	3A36h		3A16h	RC6PPS
3AF5h	_	3AD5h	CWG1INPPS	3AB5h	_	3A95h	_	3A75h		3A55h	IOCBP	3A35h		3A15h	RC5PPS
3AF4h	_	3AD4h	SMT2SIGPPS	3AB4h	_	3A94h	_	3A74h		3A54h	INLVLB	3A34h		3A14h	RC4PPS
3AF3h	_	3AD3h	SMT2WINPPS	3AB3h	_	3A93h	_	3A73h		3A53h	SLRCONB	3A33h		3A13h	RC3PPS
3AF2h	_	3AD2h	SMT1SIGPPS	3AB2h	_	3A92h	_	3A72h		3A52h	ODCONB	3A32h		3A12h	RC2PPS
3AF1h	_	3AD1h	SMT1WINPPS	3AB1h	_	3A91h	_	3A71h		3A51h	WPUB	3A31h		3A11h	RC1PPS
3AF0h	_	3AD0h	CCP4PPS	3AB0h	_	3A90h	_	3A70h		3A50h	ANSELB	3A30h		3A10h	RC0PPS
3AEFh	_	3ACFh	CCP3PPS	3AAFh	_	3A8Fh	_	3A6Fh		3A4Fh		3A2Fh		3A0Fh	RB7PPS
3AEEh		3ACEh	CCP2PPS	3AAEh	_	3A8Eh	_	3A6Eh		3A4Eh		3A2Eh		3A0Eh	RB6PPS
3AEDh	CANRXPPS	3ACDh	CCP1PPS	3AADh	_	3A8Dh	_	3A6Dh		3A4Dh		3A2Dh		3A0Dh	RB5PPS
3AECh		3ACCh	T6INPPS	3AACh	_	3A8Ch	_	3A6Ch		3A4Ch		3A2Ch		3A0Ch	RB4PPS
3AEBh	U2CTSPPS	3ACBh	T4INPPS	3AABh	_	3A8Bh	_	3A6Bh	RC4I2C	3A4Bh		3A2Bh		3A0Bh	RB3PPS
3AEAh	U2RXPPS	3ACAh	T2INPPS	3AAAh	_	3A8Ah	_	3A6Ah	RC3I2C	3A4Ah		3A2Ah		3A0Ah	RB2PPS
3AE9h		3AC9h	T5GPPS	3AA9h	_	3A89h	_	3A69h		3A49h		3A29h		3A09h	RB1PPS
3AE8h	U1CTSPPS	3AC8h	T5CKIPPS	3AA8h	_	3A88h	_	3A68h		3A48h		3A28h		3A08h	RB0PPS
3AE7h	U1RXPPS	3AC7h	T3GPPS	3AA7h	—	3A87h	IOCEF	3A67h	IOCCF	3A47h	IOCAF	3A27h	_	3A07h	RA7PPS
3AE6h	I2C2SDAPPS	3AC6h	T3CKIPPS	3AA6h	_	3A86h	IOCEN	3A66h	IOCCN	3A46h	IOCAN	3A26h		3A06h	RA6PPS
3AE5h	I2C2SCLPPS	3AC5h	T1GPPS	3AA5h	_	3A85h	IOCEP	3A65h	IOCCP	3A45h	IOCAP	3A25h	—	3A05h	RA5PPS
3AE4h	I2C1SDAPPS	3AC4h	T1CKIPPS	3AA4h	_	3A84h	INLVLE	3A64h	INLVLC	3A44h	INLVLA	3A24h	_	3A04h	RA4PPS
3AE3h	I2C1SCLPPS	3AC3h	TOCKIPPS	3AA3h	_	3A83h	_	3A63h	SLRCONC	3A43h	SLRCONA	3A23h	_	3A03h	RA3PPS
3AE2h	SPI1SSPPS	3AC2h	INT2PPS	3AA2h	_	3A82h	_	3A62h	ODCONC	3A42h	ODCONA	3A22h	_	3A02h	RA2PPS
3AE1h	SPI1SDIPPS	3AC1h	INT1PPS	3AA1h	_	3A81h	WPUE	3A61h	WPUC	3A41h	WPUA	3A21h	_	3A01h	RA1PPS
3AE0h	SPI1SCKPPS	3AC0h	INT0PPS	3AA0h	_	3A80h	_	3A60h	ANSELC	3A40h	ANSELA	3A20h	_	3A00h	RA0PPS

Legend: Unimplemented data memory locations and registers, read as '0'.

TABLE 4-11: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F25/26K83 DEVICES BANK 55

										-					
37FFh	CANCON_RO0	37DFh	CANCON_RO2	37BFh	RXM1EIDL	379Fh	CANCON_RO4	377Fh	CANCON_RO6	375Fh	CANCON_RO8	373Fh	TXBIE	371Fh	RXF11EIDL
37FEh	CANSTAT_RO0	37DEh	CANSTAT_RO2	37BEh	RXM1EIDH	379Eh	CANSTAT_RO4	377Eh	CANSTAT_RO6	375Eh	CANSTAT_RO8	373Eh	BIE0	371Eh	RXF11EIDH
37FDh	RXB1D7	37DDh	TXB1D7	37BDh	RXM1SIDL	379Dh	B5D7	377Dh	B3D7	375Dh	B1D7	373Dh	BSEL0	371Dh	RXF11SIDL
37FCh	RXB1D6	37DCh	TXB1D6	37BCh	RXM1SIDH	379Ch	B5D6	377Ch	B3D6	375Ch	B1D6	373Ch	MSEL3	371Ch	RXF11SIDH
37FBh	RXB1D5	37DBh	TXB1D5	37BBh	RXM0EIDL	379Bh	B5D5	377Bh	B3D5	375Bh	B1D5	373Bh	MSEL2	371Bh	RXF10EIDL
37FAh	RXB1D4	37DAh	TXB1D4	37BAh	RXM0EIDH	379Ah	B5D4	377Ah	B3D4	375Ah	B1D4	373Ah	MSEL1	371Ah	RXF10EIDH
37F9h	RXB1D3	37D9h	TXB1D3	37B9h	RXM0SIDL	3799h	B5D3	3779h	B3D3	3759h	B1D3	3739h	MSEL0	3719h	RXF10SIDL
37F8h	RXB1D2	37D8h	TXB1D2	37B8h	RXM0SIDH	3798h	B5D2	3778h	B3D2	3758h	B1D2	3738h	RXFBCON7	3718h	RXF10SIDH
37F7h	RXB1D1	37D7h	TXB1D1	37B7h	RXF5EIDL	3797h	B5D1	3777h	B3D1	3757h	B1D1	3737h	RXFBCON6	3717h	RXF9EIDL
37F6h	RXB1D0	37D6h	TXB1D0	37B6h	RXF5EIDH	3796h	B5D0	3776h	B3D0	3756h	B1D0	3736h	RXFBCON5	3716h	RXF9EIDH
37F5h	RXB1DLC	37D5h	TXB1DLC	37B5h	RXF5SIDL	3795h	B5DLC	3775h	B3DLC	3755h	B1DLC	3735h	RXFBCON4	3715h	RXF9SIDL
37F4h	RXB1EIDL	37D4h	TXB1EIDL	37B4h	RXF5SIDH	3794h	B5EIDL	3774h	B3EIDL	3754h	B1EIDL	3734h	RXFBCON3	3714h	RXF9SIDH
37F3h	RXB1EIDH	37D3h	TXB1EIDH	37B3h	RXF4EIDL	3793h	B5EIDH	3773h	B3EIDH	3753h	B1EIDH	3733h	RXFBCON2	3713h	RXF8EIDL
37F2h	RXB1SIDL	37D2h	TXB1SIDL	37B2h	RXF4EIDH	3792h	B5SIDL	3772h	B3SIDL	3752h	B1SIDL	3732h	RXFBCON1	3712h	RXF8EIDH
37F1h	RXB1SIDH	37D1h	TXB1SIDH	37B1h	RXF4SIDL	3791h	B5SIDH	3771h	B3SIDH	3751h	B1SIDH	3731h	RXFBCON0	3711h	RXF8SIDL
37F0h	RXB1CON	37D0h	TXB1CON	37B0h	RXF4SIDH	3790h	B5CON	3770h	B3CON	3750h	B1CON	3730h	SDFLC	3710h	RXF8SIDH
37EFh	CANCON_RO1	37CFh	CANCON_RO3	37AFh	RXF3EIDL	378Fh	CANCON_RO5	376Fh	CANCON_RO7	374Fh	CANCON_RO9	372Fh	RXF15EIDL	370Fh	RXF7EIDL
37EEh	CANSTAT_RO1	37CEh	CANSTAT_RO3	37AEh	RXF3EIDH	378Eh	CANSTAT_RO5	376Eh	CANSTAT_R07	374Eh	CANSTAT_RO9	372Eh	RXF15EIDH	370Eh	RXF7EIDH
37EDh	TXB0D7	37CDh	TXB2D7	37ADh	RXF3SIDL	378Dh	B4D7	376Dh	B2D7	374Dh	B0D7	372Dh	RXF15SIDL	370Dh	RXF7SIDL
37ECh	TXB0D6	37CCh	TXB2D6	37ACh	RXF3SIDH	378Ch	B4D6	376Ch	B2D6	374Ch	B0D6	372Ch	RXF15SIDH	370Ch	RXF7SIDH
37EBh	TXB0D5	37CBh	TXB2D5	37ABh	RXF2EIDL	378Bh	B4D5	376Bh	B2D5	374Bh	B0D5	372Bh	RXF14EIDL	370Bh	RXF6EIDL
37EAh	TXB0D4	37CAh	TXB2D4	37AAh	RXF2EIDH	378Ah	B4D4	376Ah	B2D4	374Ah	B0D4	372Ah	RXF14EIDH	370Ah	RXF6EIDH
37E9h	TXB0D3	37C9h	TXB2D3	37A9h	RXF2SIDL	3789h	B4D3	3769h	B2D3	3749h	B0D3	3729h	RXF14SIDL	3709h	RXF6SIDL
37E8h	TXB0D2	37C8h	TXB2D2	37A8h	RXF2SIDH	3788h	B4D2	3768h	B2D2	3748h	B0D2	3728h	RXF14SIDH	3708h	RXF6SIDH
37E7h	TXB0D1	37C7h	TXB2D1	37A7h	RXF1EIDL	3787h	B4D1	3767h	B2D1	3747h	B0D1	3727h	RXF13EIDL	3707h	RXFCON1
37E6h	TXB0D0	37C6h	TXB2D0	37A6h	RXF1EIDH	3786h	B4D0	3766h	B2D0	3746h	B0D0	3726h	RXF13EIDH	3706h	RXFCON0
37E5h	TXB0DLC	37C5h	TXB2DLC	37A5h	RXF1SIDL	3785h	B4DLC	3765h	B2DLC	3745h	BODLC	3725h	RXF13SIDL	3705h	BRGCON3
37E4h	TXB0EIDL	37C4h	TXB2EIDL	37A4h	RXF1SIDH	3784h	B4EIDL	3764h	B2EIDL	3744h	B0EIDL	3724h	RXF13SIDH	3704h	BRGCON2
37E3h	TXB0EIDH	37C3h	TXB2EIDH	37A3h	RXF0EIDL	3783h	B4EIDH	3763h	B2EIDH	3743h	B0EIDH	3723h	RXF12EIDL	3703h	BRGCON1
37E2h	TXB0SIDL	37C2h	TXB2SIDL	37A2h	RXF0EIDH	3782h	B4SIDL	3762h	B2SIDL	3742h	BOSIDL	3722h	RXF12EIDH	3702h	TXERRCNT
37E1h	TXB0SIDH	37C1h	TXB2SIDH	37A1h	RXF0SIDL	3781h	B4SIDH	3761h	B2SIDH	3741h	BOSIDH	3721h	RXF12SIDL	3701h	RXERRCNT
37E0h	TXB0CON	37C0h	TXB2CON	37A0h	RXF0SIDH	3780h	B4CON	3760h	B2CON	3740h	B0CON	3720h	RXF12SIDH	3700h	CIOCON

Legend: Unimplemented data memory locations and registers, read as '0'.

U-1	U-1	U-1	U-1	U-1	U-1	U-1	R/W-1
_	_	_	_	_	_	—	CP
bit 7						·	bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '1'	
-n = Value for b	lank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own

REGISTER 5-9: CONFIGURATION WORD 5L (30 0008h)

bit 7-1 Unimplemented: Read as '1'

bit 0

CP: User Program Flash Memory and Data EEPROM Code Protection bit

1 = User Program Flash Memory and Data EEPROM code protection is disabled

0 = User Program Flash Memory and Data EEPROM code protection is enabled

REGISTER 5-10: CONFIGURATION WORD 5H (30 0009h)

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—	_	—	_	—	_	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '1'
-n = Value for blank device	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 Unimplemented: Read as '1'

TABLE 5-2:SUMMARY OF CONFIGURATION WORDS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
30 0000h	CONFIG1L	_	I	RSTOSC<2:0	>	_		FEXTOSC<2	:0>	1111 1111
30 0001h	CONFIG1H	_	_	FCMEN	_	CSWEN	_	PR1WAY	CLKOUTEN	1111 1111
30 0002h	CONFIG2L	BORE	N<1:0>	LPBOREN	IVT1WAY	MVECEN	PWR	TS<1:0>	MCLRE	1111 1111
30 0003h	CONFIG2H	XINST	_	DEBUG	STVREN	PPS1WAY	ZCD	BOR	V<1:0>	1111 1111
30 0004h	CONFIG3L	_	WDT	E<1:0>			WDTCPS<4	4:0>		1111 1111
30 0005h	CONFIG3H	_	_	v	VDTCCS<2:0	>		WDTCWS<2	:0>	1111 1111
30 0006h	CONFIG4L	WRTAPP	_	_	SAFEN	BBEN		BBSIZE<2:0)>	1111 1111
30 0007h	CONFIG4H	_	_	LVP	_	WRTSAF	WRTD	WRTC	WRTB	1111 1111
30 0008h	CONFIG5L	_	_	_	_	_	—	_	CP	1111 1111
30 0009h	CONFIG5H	_	_	_	_	_	_	_	_	1111 1111

.

REGISTER	8-2: CLKR	CLK: CLOCH		ICE CLOCK S	ELECTION N	IUX	
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	—	_		CLK	<3:0>	
bit 7	·	-					bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
u = Bit is un	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-4	Unimplemer	nted: Read as '	0'				
bit 3-0	CLK<3:0>: (CLKR Clock Se	lection bits				
	1111 = Rese	erved					
	•						
	•						
	•						
	1011 = Rese	erved					
	1010 = CLC	4 Output					
	1001 = CLC	3 Output					
	1000 = CLC	2 Output					
	0111 = CLC						
	0110 = NCO						
	0101 = 303	U NTOSC (31-25)	(H7)				
	0.011 = MEIN	TOSC (500 kH	(1) (7)				
	0.010 = 1 FIN	TOSC (31 kHz))				
	0001 = HFIN	ITOSC	,				
	0000 = Fosc	2					
		-					

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK REFERENCE OUTPUT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CLKRCON	EN	_	_	DC<	:1:0>		DIV<2:0>				
CLKRCLK	_			_	_		CLK<2:0>		104		

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

Register Definitions: Interrupt Control 9.12

REGISTER	9-1: INTCO	ON0: INTERR		ROL REGIST	ER 0		
R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
GIE/GIEH	GIEL	IPEN	—	-	INT2EDG	INT1EDG	INT0EDG
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit		mented bit, read		
-n = value at	POR	"1" = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkr	nown
bit 7	GIE/GIEH: G	ilobal Interrunt i	- nable bits				
bit i	If IPFN = 0°						
	<u>GIE:</u>						
	1 = Enables	s all unmasked i	interrupts				
	0 = Disable	s all interrupts	·				
	If IPEN = 1:						
	GIEH:						
	1 = Enables	all unmasked l	high priority ir	nterrupts: bit a	lso needs to be	e set for enabli	ng low priority
	0 = Disables	all interrupts					
bit 6	GIEL: Global	I Low Priority In	terrupt Enable	e bit			
	<u>If IPEN = 0</u> :						
	Reserved, re	ad as '0'					
	<u>If IPEN = 1</u> :						
	<u>GIEL:</u>						
	1 = Enables 0 = Disables	all unmasked loss all low priority	ow priority inte	errupts, GIEH a	llso needs to be	set for low prio	rity interrupts
bit 5	IPEN: Interru	pt Priority Enab	ole bit				
	1 = Enable p	priority levels or	interrupts				
	0 = Disable	priority levels of	n interrupts; a	Il interrupts are	e treated as high	h priority interru	ipts
DIT 4-3		ted: Read as '). F 2 Edge Sele	at bit			
DIL Z	1 = Interrunt	on rising edge	of INT2 nin				
	0 = Interrupt	on falling edge	of INT2 pin				
bit 1	INT1EDG: EX	xternal Interrupt	t 1 Edge Sele	ct bit			
	1 = Interrupt	on rising edge	of INT1 pin				
1.11.0	0 = Interrupt	on falling edge	of INT1 pin				
bit 0	INTOEDG: Ex	xternal Interrup	t U Edge Sele	ct bit			
	0 = Interrupt	on falling edge	of INT0 pin				

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
DMA2AIF	DMA2ORIF	DMA2DCNTIF	DMA2SCNTIF	SMT2PWAIF	SMT2PRAIF	SMT2IF	C2IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit		U = Unimpleme	nted bit, read as	'0'	
u = Bit is unc	hanged	x = Bit is unknow	vn	-n/n = Value at I	POR and BOR/Va	alue at all other F	Resets
'1' = Bit is se	t	'0' = Bit is cleare	d	HS = Bit is set i	n hardware		
bit 7	DMA2AIF: DM	IA2 Abort Interrup	t Flag bit				
	1 = Interrupt I	has occurred (mus	st be cleared by s	oftware)			
hit 6			uneu				
	1 = Interrunt I	has occurred (mus	st be cleared by si	oftware)			
	0 = Interrupt	event has not occ	urred	ontwarc)			
bit 5	DMA2DCNTIF	: DMA2 Destination	on Count Interrupt	t Flag bit			
	1 = Interrupt I	has occurred		-			
	0 = Interrupt	event has not occ	urred				
bit 4	DMA2SCNTIF	: DMA2 Source C	ount Interrupt Flag	g bit			
	1 = Interrupt I	has occurred	unua al				
L:1.0		event has not occi	urrea h. A a maisitism latar				
Dit 3	SMI2PWAIF:	SM12 Pulse-Widt	h Acquisition Inter	rrupt Flag bit			
	0 = Interrupt	event has not occ	urred				
bit 2	SMT2PRAIE	SMT2 Period Aca	uisition Interrupt F	ilag hit			
	1 = Interrupt I	has occurred		lag bit			
	0 = Interrupt e	event has not occ	urred				
bit 1	SMT2IF: SMT	2 Interrupt Flag bi	t				
	1 = Interrupt I	has occurred					
		event has not occ	urrea				
DIT U	C2IF: C2 Inter	rupt Flag bit					
	0 = Interrupt	event has not occi	urred				
			4		a af the state of "		anabla bit
NOTE 1: I	he global enable	jet set when an in bit. User software	should ensure the	e appropriate inte	s of the state of it strupt flag bits are	s corresponding clear prior to en	enable bit, or abling an inter-
r	upt.						

REGISTER 9-9: PIR6: PERIPHERAL INTERRUPT REGISTER 6⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PWM8MD	PWM7MD	PWM6MD	PWM5MD	CCP4MD	CCP3MD	CCP2MD	CCP1MD
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on condit	ion	
bit 7	PWM8MD: Dis 1 = PWM8 mc 0 = PWM8 mc	able Pulse-Wid odule disabled odule enabled	th Modulator P ¹	WM8 bit			
bit 6	PWM7MD: Dis 1 = PWM7 mc 0 = PWM7 mc	able Pulse-Wid odule disabled odule enabled	th Modulator P ^v	WM7 bit			
bit 5	PWM6MD: Dis 1 = PWM6 mc 0 = PWM6 mc	able Pulse-Wid odule disabled odule enabled	th Modulator P	WM6 bit			
bit 4	PWM5MD: Dis 1 = PWM5 mc 0 = PWM5 mc	able Pulse-Wid odule disabled odule enabled	th Modulator P	WM5 bit			
bit 3	CCP4MD: Disa 1 = CCP4 mo 0 = CCP4 mo	able Capture/Cc dule disabled dule enabled	mpare/PWM C	CP4 bit			
bit 2	CCP3MD: Disa 1 = CCP3 mo 0 = CCP3 mo	able Capture/Cc dule disabled dule enabled	mpare/PWM C	CP3 bit			
bit 1	CCP2MD: Disa 1 = CCP2 mo 0 = CCP2 mo	able Capture/Co dule disabled dule enabled	mpare/PWM C	CP2 bit			
bit 0	CCP1MD: Disa 1 = CCP1 mo 0 = CCP1 mo	able Capture/Cc dule disabled dule enabled	mpare/PWM C	CP1 bit			

REGISTER 19-4: PMD3: PMD CONTROL REGISTER 3

REGISTER 28-8: NCO1INCU: NCO1 INCREMENT REGISTER – UPPER BYTE⁽¹⁾

			-		-	_				
U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
			INC	<19:6>						
bit 7 bit (

Legend:

Logona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 INC<19:16>: NCO1 Increment, Upper Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

TABLE 28-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCO

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
NCO1CON	N1EN	—	N1OUT	N1POL	—	—	_	N1PFM	439	
NCO1CLK		N1PWS<2:0> — — N1CKS<2:0>								
NCO1ACCL	NCO1ACC<7:0>								441	
NCO1ACCH			Ν	ICO1ACC<	:15:8>				441	
NCO1ACCU	—	_	—	_		NCO1ACC	<19:16>		442	
NCO1INCL		NCO1INC<7:0>								
NCO1INCH		NCO1INC<15:8>							442	
NCO1INCU	_	_	_	—		NCO1INC	<19:16>		443	

Legend: – = unimplemented read as '0'. Shaded cells are not used for NCO module.

PIC18(L)F25/26K83

FIGURE 30-5:	Carrier Low Synchronization (CHSYNC = 0, CLSYNC = 1)
carrier_high	
carrier_low	
modulator	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State	carrier_high / carrier_low / carrier_high / carrier_low

34.0 CAN MODULE

This family of devices contain a Controller Area Network (CAN) module. The CAN module is fully backwards-compatible with the CAN and ECAN modules found in older PIC18 devices.

The Controller Area Network (CAN) module is a serial interface which is useful for communicating with other peripherals or microcontroller devices. This interface, or protocol, was designed to allow communications within noisy environments.

The CAN module is a communication controller, implementing the CAN 2.0A or B protocol as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system; however, the CAN specification is not covered within this data sheet. Refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- DeviceNet[™] data bytes filter support
- Standard and extended data frames
- · 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Fully backward compatible with CAN modules on older PIC18 devices
- Three modes of operation:
 - Mode 0 Legacy mode
 - Mode 1 Enhanced Legacy mode with DeviceNet support
- Mode 2 FIFO mode with DeviceNet support
- Support for remote frames with automated handling
- Double-buffered receiver with two prioritized received message storage buffers
- Six buffers programmable as RX and TX message buffers
- 16 full (standard/extended identifier) acceptance filters that can be linked to one of four masks
- Two full acceptance filter masks that can be assigned to any filter
- One full acceptance filter that can be used as either an acceptance filter or acceptance filter mask
- Three dedicated transmit buffers with application specified prioritization and abort capability
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to timer module for time-stamping and network synchronization
- Low-power Sleep mode

34.1 Module Overview

The CAN bus module consists of a protocol engine and message buffering and control. The CAN protocol engine automatically handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the two receive registers.

The CAN module supports the following frame types:

- Standard Data Frame
- Extended Data Frame
- Remote Frame
- Error Frame
- Overload Frame Reception

The CANRX input pin is selected with the CANRXPPS register. The CANTX output pin is selected with each pin's RxyPPS register.

Note: The CANRX pin defaults to pin RB3, but the CANTX has no default location and must be assigned to a pin before CAN transmissions can occur.

In Normal mode, the user must ensure that the appropriate TRIS bit for CANRX is set and the appropriate TRIS bit for CANRX is cleared. In addition, the appropriate ANSEL bit for CANRX must be cleared to disable the analog input buffer.

Note: Unlike older Microchip devices with CAN functionality, the CAN pins can be mapped to pins with analog functionality. Ensure that the analog functionality on the CANRX pin is disabled, or the CAN module will not properly function.

34.1.1 MODULE FUNCTIONALITY

The CAN bus module consists of a protocol engine, message buffering and control (see Figure 34-1). The protocol engine can best be understood by defining the types of data frames to be transmitted and received by the module.

The following sequence illustrates the necessary initialization steps before the CAN module can be used to transmit or receive a message. Steps can be added or removed depending on the requirements of the application.

- 1. Use the CANRXPPS and appropriate RxyPPS registers to map the CANRX and CANTX functions to the desired pins of the device.
- 2. Initialize LAT, TRIS and ANSEL bits for the selected CANRX and CANTX pins.
- 3. Ensure that the CAN module is in Configuration mode.
- 4. Select CAN Functional mode.

REGISTER 34-16: RXBnSIDL: RECEIVE BUFFER 'n' STANDARD IDENTIFIER REGISTERS, LOW BYTE $[0 \le n \le 1]$

R-x	R-x	R-x	R-x	R-x	U-0	R-x	R-x	
SID2	SID1	SID0	SRR	EXID	_	EID17	EID16	
bit 7	·				·		bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
<u></u>								
bit 7-5	SID<2:0>: Sta	andard Identifie	er bits (if EXID) = 0)				
	Extended Ide	ntifier bits, EID	<20:18> (if E	XID = 1).				
bit 4	SRR: Substitut	ute Remote Re	quest bit					
bit 3	EXID: Extend	led Identifier bi	t					
	1 = Received 0 = Received	message is ar message is a	n extended da standard data	ita frame, SID< a frame	10:0> are EID<	28:18>		
bit 2	Unimplemen	ted: Read as '	0'					

REGISTER 34-17: RXBnEIDH: RECEIVE BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, HIGH BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier bits

REGISTER 34-18: RXBnEIDL: RECEIVE BUFFER 'n' EXTENDED IDENTIFIER REGISTERS, LOW BYTE [0 \leq n \leq 1]

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier bits

REGISTER 34-23: BnCON: TX/RX BUFFER 'n' CONTROL REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, \mbox{ TXnEN (BSEL0<n>) = 1]}^{(1)}$

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXBIF ⁽³	³⁾ TXABT ⁽³⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ ^(2,4)	RTREN	TXPRI1 ⁽⁵⁾	TXPRI0 ⁽⁵⁾
bit 7							bit 0
Legend:							
R = Reada	ible bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	TXBIF: Trans 1 = A messag	mit Buffer Interi je was success	rupt Flag bit ⁽³ fully transmiti itted) ied			
bit 6	TXABT: Trans 1 = Message 0 = Message	smission Aborte was aborted was not aborte	ed Status bit ⁽³ d	3)			
bit 5	TXLARB: Tra 1 = Message 0 = Message	nsmission Lost lost arbitration did not lose arb	Arbitration S while being s pitration while	tatus bit ⁽³⁾ ent being sent			
bit 4	TXERR: Tran	smission Error	Detected Sta	tus bit ⁽³⁾			
hit 2	1 = A bus erro 0 = A bus erro	or occurred whi or did not occur	le the message while the me	ge was being se ssage was beir	ent ng sent		
DIL 3	1 = Requests 0 = Automatic	sending a mes cally cleared wh	sage; clears	the TXABT, TXI age is successf	LARB and TXE ully sent	ERR bits	
bit 2	RTREN: Auto 1 = When a ro 0 = When a ro	omatic Remote emote transmis emote transmis	Transmission sion request i sion request i	Request Enab is received, TXI is received, TXI	le bit REQ will be au REQ will be un	tomatically set affected	
bit 1-0	TXPRI<1:0>:	Transmit Priori	ty bits ⁽⁵⁾				
	11 = Priority I 10 = Priority I 01 = Priority I 00 = Priority I	_evel 3 (highest _evel 2 _evel 1 _evel 0 (lowest	t priority) priority)				
Note 1: 2: 3: 4:	These registers an Clearing this bit in This bit is automat While TXREQ is so	e available in M software while ically cleared w et or a transmis	lode 1 and 2 of the bit is set w hen TXREQ sion is in prog	only. will request a m is set. gress, Transmit	essage abort. Buffer register	rs remain read-o	only.

5: These bits set the order in which the Transmit Buffer register will be transferred. They do not alter the CAN message identifier.

38.6 Register Definitions: DAC Control

Long bit name prefixes for the DAC peripheral is shown below. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

Peripheral	Bit Name Prefix
DAC1	DAC1

REGISTER 38-1: DAC1CON0: DAC CONTROL REGISTER

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0 R/W-0/0		R/W-0/0 R/W-0/0		U-0	R/W-0/0
EN	—	OE1	OE2	PSS<1:0>		—	NSS		
bit 7							bit 0		

L

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	EN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled ⁽¹⁾
bit 6	Unimplemented: Read as '0'
bit 5	 OE1: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT1 pin 0 = DAC voltage level is disconnected from the DAC1OUT1 pin
bit 4	 OE2: DAC Voltage Output Enable bit 1 = DAC voltage level is output on the DAC1OUT2 pin 0 = DAC voltage level is disconnected from the DAC1OUT2 pin
bit 3-2	<pre>PSS<1:0>: DAC Positive Source Select bit 11 = Reserved 10 = FVR buffer 2 01 = VREF+ 00 = VDD</pre>
bit 1	Unimplemented: Read as '0'
bit 0	NSS: DAC Negative Source Select bit 1 = VREF- 0 = VSS
Note 1: [DAC1OUTx output pins are still active.

40.5 Applications

In many applications, it is desirable to detect a drop below, or rise above, a particular voltage threshold. For example, the HLVD module could be periodically enabled to detect Universal Serial Bus (USB) attach or detach. This assumes the device is powered by a lower voltage source than the USB when detached. An attach would indicate a High-Voltage Detect from, for example, 3.3V to 5V (the voltage on USB) and vice versa for a detach. This feature could save a design a few extra components and an attach signal (input pin).

For general battery applications, Figure 40-4 shows a possible voltage curve. Over time, the device voltage decreases. When the device voltage reaches voltage, VA, the HLVD logic generates an interrupt at time, TA. The interrupt could cause the execution of an Interrupt Service Routine (ISR), which would allow the application to perform "housekeeping tasks" and a controlled shutdown before the device voltage exits the valid operating range at TB. This would give the application a time window, represented by the difference between TA and TB, to safely exit.

TYPICAL LOW-VOLTAGE DETECT APPLICATION

42.2.2 EXTENDED INSTRUCTION SET

ADDULNK	Add Literal to FSR2 and Return							
Syntax:	ADDULNK k							
Operands:	$0 \le k \le 63$							
Operation:	$FSR2 + k \rightarrow FSR2$,							
	$(TOS) \rightarrow$	PC						
Status Affected:	None							
Encoding:	1110	1000	11kk	kkkk				
Description:	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates							
Words:	1							
Cycles:	2							

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	literal 'k'	Data	FSR
No	No	No	No
Operation	Operation	Operation	Operation

Example: ADDULNK 23h

Before Instruction								
FSR2	=	03FFh						
PC	=	0100h						
After Instruct	ion							
FSR2	=	0422h						
PC	=	(TOS)						

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
3773h	B3EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	626
3772h	B3SIDL	SID2	SID1	SID0	SRR	EXIDE	_	EID17	EID16	625
3771h	B3SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	624
3770h	B3CON	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	622
3770h	B3CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	623
376Fh	CANCON_RO7				CANCON	I_R07			•	603
376Eh	CANSTAT_R07				CANSTA	[_R07				604
376Dh	B2D7				B2D	7				627
376Ch	B2D6				B2D	6				627
376Bh	B2D5				B2D	5				627
376Ah	B2D4				B2D	4				627
3769h	B2D3				B2D	3				627
3768h	B2D2				B2D	2				627
3767h	B2D1				B2D	1				627
3766h	B2D0				B2D	0				627
3765h	B2DLC	—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	628
3765h	B2DLC	—	TXRTR	—	_	DLC3	DLC2	DLC1	DLC0	629
3764h	B2EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	626
3763h	B2EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	626
3762h	B2SIDL	SID2	SID1	SID0	SRR	EXIDE	_	EID17	EID16	625
3761h	B2SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	624
3760h	B2CON	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	622
3760h	B2CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	623
375Fh	CANCON_RO8		CANCON_RO8							603
375Eh	CANSTAT_RO8				CANSTA	F_RO8				604
375Dh	B1D7				B1D	7				627
375Ch	B1D6				B1D	6				627
375Bh	B1D5				B1D	5				627
375Ah	B1D4				B1D	4				627
3759h	B1D3				B1D	3				627
3758h	B1D2				B1D	2				627
3757h	B1D1				B1D	1				627
3756h	B1D0		1		B1D	0		I		627
3755h	B1DLC	—	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	628
3755h	B1DLC	—	TXRTR	—	—	DLC3	DLC2	DLC1	DLC0	629
3754h	B1EIDL	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	626
3753h	B1EIDH	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	626
3752h	B1SIDL	SID2	SID1	SID0	SRR	EXIDE	—	EID17	EID16	625
3751h	B1SIDH	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	624
3750h	B1CON	RXFUL	RXM1	RXRTRRO	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0	622
3750h	B1CON	TXBIF	TXABT	TXLARB	TXERR	TXREQ	RTREN	TXPRI1	TXPRI0	623
374Fh	CANCON_RO9				CANCON	I_RO9				603
374Eh	CANSTAT_RO9				CANSTA	r_ro9				604
374Dh	B0D7				B0D	7				627
374Ch	B0D6				B0D	6				627
374Bh	B0D5				B0D	5				627
374Ah	B0D4				B0D	4				627
3749h	B0D3				B0D	3				627
3748h	B0D2				B0D	2				627
3747h	B0D1				BOD	1				627

Not present in LF devices. Note 1:

28-Lead Plastic Quad Flat, No Lead Package (MX) - 6x6x0.5mm Body [UQFN] Ultra-Thin with 0.40 x 0.60 mm Terminal Width/Length and Corner Anchors

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX		
Number of Pins	N		28			
Pitch	е		0.65 BSC			
Overall Height	Α	0.40	0.50	0.60		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	(A3) 0.127 REF					
Overall Width	E	6.00 BSC				
Exposed Pad Width	E2		4.00			
Overall Length	D		6.00 BSC			
Exposed Pad Length	D2		4.00			
Terminal Width	b	0.35	0.40	0.45		
Corner Pad b		0.55	0.60	0.65		
Corner Pad, Metal Free Zone b2		0.15	0.20	0.25		
Terminal Length	L	0.55	0.60	0.65		
Terminal-to-Exposed Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 4. Outermost portions of corner structures may vary slightly.

Microchip Technology Drawing C04-0209 Rev C Sheet 2 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

5118 Fax: **Tha**i 252 Tel: