

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K × 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k83-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
IRXIF	WAKIF	ERRIF	TXB2IF/TXBnIF	TXB1IF	TXB0IF	RXB1IF/RXBnIF	RXB0IF/FIFOFIF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	it	U = Unimplement	ed bit, read as '0'		
u = Bit is unc	hanged	x = Bit is unkno	own	-n/n = Value at PC	R and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is clea	red	HS = Bit is set in I	nardware		
bit 7	IRXIF: CAN In 1 = Interrupt 0 = Interrupt	valid Message F has occurred (m event has not oc	Received Interrupt I lust be cleared by s ccurred	Flag bit software)			
bit 6	WAKIF: CAN I 1 = Interrupt 0 = Interrupt	Bus Wake-Up Ao has occurred (m event has not oc	ctivity Interrupt Flag nust be cleared by s ccurred	g bit software)			
bit 5	ERRIF: CAN E 1 = Interrupt 0 = Interrupt	Error Interrupt Fla has occurred (m event has not oc	ag bit (Multiple sou lust be cleared by s ccurred	rces in the COMST software)	AT register)		
bit 4	TXB2IF/TXBn 1 = Interrupt0 = Interrupt	IF: CAN Transm has occurred (m event has not oc	it Buffer 2/Transmi oust be cleared by s ccurred	t Buffer n Interrupt software)	Flag bit		
bit 3	TXB1IF: CAN 1 = Interrupt 0 = Interrupt	Transmit Buffer has occurred (m event has not oc	1 Interrupt Flag bit oust be cleared by s ccurred	software)			
bit 2	TXB0IF: CAN 1 = Interrupt 0 = Interrupt	Transmit Buffer has occurred (m event has not oc	0 Interrupt Flag bit lust be cleared by s ccurred	software)			
bit 1	RXB1IF/RXBn 1 = Interrupt 0 = Interrupt	IF: CAN Receiv has occurred (m event has not oc	e Buffer 1/ Receive oust be cleared by s ccurred	e Buffer n Interrupt software)	Flag bit		
bit 0	RXB0IF/FIFOR 1 = Interrupt 0 = Interrupt	FIF: CAN Receiv has occurred (m event has not oc	ve Buffer 0/FIFO Fu nust be cleared by s courred	ull 1 Interrupt Flag b software)	bit		
Note 1:	Interrupt flag bits enable bit. User s	get set when an oftware should e	interrupt condition ensure the appropr	occurs, regardless iate interrupt flag b	of the state of its co its are clear prior to	orresponding enable o enabling an interr	e bit, or the global upt.

REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT REGISTER 5⁽¹⁾

WRITING TO PROGRAM FLASH MEMORY MOVLW D'64′ ; number of bytes in erase block MOVWF COUNTER MOVIW BUFFER_ADDR_HIGH ; point to buffer MOVWF FSR0H BUFFER_ADDR_LOW MOVLW MOVWF FSR0L MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base MOVWF TBLPTRU ; address of the memory block MOVLW CODE_ADDR_HIGH MOVWF TBLPTRH CODE_ADDR_LOW MOVLW MOVWF TBLPTRL READ_BLOCK TBLRD*+ ; read into TABLAT, and inc TABLAT, W MOVF ; get data MOVWF POSTINCO ; store data DECFSZ COUNTER ; done? READ_BLOCK BRA ; repeat MODIFY WORD MOVLW BUFFER_ADDR_HIGH ; point to buffer MOVWF FSR0H MOVLW BUFFER_ADDR_LOW MOVWF FSR0L MOVLW NEW_DATA_LOW ; update buffer word MOVWF POSTINC0 MOVLW NEW_DATA_HIGH MOVWE INDF0 ERASE BLOCK MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base MOVWF TBLPTRU ; address of the memory block MOVLW CODE_ADDR_HIGH MOVWE TBLPTRH MOVLW CODE_ADDR_LOW MOVWF TBLPTRL BCF NVMCON1, REG0 ; point to Program Flash Memory NVMCON1, REG1 ; point to Program Flash Memory BSF NVMCON1, WREN BSF ; enable write to memory NVMCON1, FREE ; enable Erase operation BSF INTCON0, GIE ; disable interrupts BCF MOVLW 55h Required MOVWF NVMCON2 ; write 55h Sequence MOVLW AAh MOVWF NVMCON2 ; write OAAh NVMCON1, WR ; start erase (CPU stall) BSF INTCON0, GIE BSF ; re-enable interrupts TBLRD*-; dummy read decrement BUFFER_ADDR_HIGH ; point to buffer MOVLW MOVWF FSR0H MOVLW BUFFER_ADDR_LOW MOVWF FSROL WRITE_BUFFER_BACK MOVLW BlockSize ; number of bytes in holding register MOVWF COUNTER MOVLW D'64'/BlockSize ; number of write blocks in 64 bytes MOVWF COUNTER2

EXAMPLE 13-4:

15.8.4 OVERRUN INTERRUPT

When the DMA receives a trigger to start a new message before the current message is completed, then the DMAxORIF Overrun interrupt flag is set.

This condition indicates that the DMA is being requested before its current transaction is finished. This implies that the active DMA may not be able to keep up with the demands from the peripheral module being serviced, which may result in data loss.

The DMAxORIF flag being set does not cause the current DMA transfer to terminate.

The Overrun interrupt is only available for trigger sources that are edge based and not available for sources that are level-based. Therefore a level-based interrupt source does not trigger a DMA overrun error due to the potential latency issues in the system.

An example of an interrupt that could use the overrun interrupt would be a timer overflow (or period match) interrupt. This event only happens every time the timer rolls over and is not dependent on any other system conditions.

An example of an interrupt that does not allow the overrun interrupt would be the UARTTX buffer. The UART will continue to assert the interrupt until the DMA is able to process the MSG. Due to latency issues, the DMA may not be able to service an empty buffer immediately, but the UART continues to assert its transmit interrupt until it is serviced. If overrun was allowed in this case, the overrun would occur almost immediately as the module samples the interrupt sources every instruction cycle.

15.9 DMA Setup and Operation

The following steps illustrate how to configure the DMA for data transfer:

- 1. Program the appropriate Source and Destination addresses for the transaction into the DMAxSSA and DMAxDSA registers
- Select the source memory region that is being addressed by DMAxSSA register, using the SMR<1:0> bits.
- 3. Program the SMODE and DMODE bits to select the addressing mode.
- 4. Program the Source size DMAxSSZ and Destination size DMAxDSZ registers with the number of bytes to be transferred. It is recommended for proper operation that the size registers be a multiple of each other.
- 5. If the user desires to disable data transfers once the message has completed, then the SSTP and DSTP bits in DMAxCON0 register need to be set.(see Section 15.5.3.2 "Source/Destination Stop").
- If using hardware triggers for data transfer, setup the hardware trigger interrupt sources for the starting and aborting DMA transfers (DMAxSIRQ and DMAxAIRQ), and set the corresponding interrupt request enable bits (SIRQEN and AIRQEN).
- Select the priority level for the DMA (see Section 3.1 "System Arbitration") and lock the priorities (see Section 3.1.1 "Priority Lock")
- 8. Enable the DMA (DMAxCON1bits. EN = 1)
- 9. If using software control for data transfer, set the DGO bit, else this bit will be set by the hardware trigger.

Once the DMA is set up, the following flow chart describes the sequence of operation when the DMA uses hardware triggers and utilizes the unused CPU cycles (bubble) for DMA transfers.

REGISTER 21-3: TxCLK: TIMERx CLOCK REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			CS<4:0>		
bit 7							bit 0
Logond							

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **CS<4:0>:** Timerx Clock Source Selection bits

	Timer1	Timer3	Timer5
CS	Clock Source	Clock Source	Clock Source
11111-10001	Reserved	Reserved	Reserved
10000	CLC4	CLC4	CLC4
01111	CLC3	CLC3	CLC3
01110	CLC2	CLC2	CLC2
01101	CLC1	CLC1	CLC1
01100	TMR5 overflow	TMR5 overflow	Reserved
01011	TMR3 overflow	Reserved	TMR3 overflow
01010	Reserved	TMR1 overflow	TMR1 overflow
01001	TMR0 overflow	TMR0 overflow	TMR0 overflow
01000	CLKREF	CLKREF	CLKREF
00111	SOSC	SOSC	SOSC
00110	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)	MFINTOSC (32 kHz)
00101	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)	MFINTOSC (500 kHz)
00100	LFINTOSC	LFINTOSC	LFINTOSC
00011	HFINTOSC	HFINTOSC	HFINTOSC
00010	Fosc	Fosc	Fosc
00001	Fosc/4	Fosc/4	Fosc/4
00000	T1CKIPPS	T3CKIPPS	T5CKIPPS

PIC18(L)F25/26K83

26.2.3.1 Direction Change in Full-Bridge Mode

In Full-Bridge mode, changing MODE<2:0> controls the forward/reverse direction. Changes to MODE<2:0> change to the new direction on the next rising edge of the modulated input.

A direction change is initiated in software by changing the MODE<2:0> bits of the CWGxCON0 register. The sequence is illustrated in Figure 26-8.

- The associated active output CWGxA and the inactive output CWGxC are switched to drive in the opposite direction.
- The previously modulated output CWGxD is switched to the inactive state, and the previously inactive output CWGxB begins to modulate.
- CWG modulation resumes after the directionswitch dead band has elapsed.

26.2.3.2 Dead-Band Delay in Full-Bridge Mode

Dead-band delay is important when either of the following conditions is true:

- The direction of the CWG output changes when the duty cycle of the data input is at or near 100%, or
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

The dead-band delay is inserted only when changing directions, and only the modulated output is affected. The statically-configured outputs (CWGxA and CWGxC) are not afforded dead band, and switch essentially simultaneously.

Figure 26-8 shows an example of the CWG outputs changing directions from forward to reverse, at near 100% duty cycle. In this example, at time t1, the output of CWGxA and CWGxD become inactive, while output CWGxC becomes active. Since the turn-off time of the power devices is longer than the turn-on time, a shootthrough current will flow through power devices QC and QD for the duration of 't'. The same phenomenon will occur to power devices QA and QB for the CWG direction change from reverse to forward.

When changing the CWG direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce the CWG duty cycle for one period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

FIGURE 26-8: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

26.12 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep when all the following conditions are met:

- CWG module is enabled
- · Input source is active
- HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as system clock and CWG clock, when the CWG is enabled and the input source is active, then the CPU will go Idle during Sleep, but the HFINTOSC will remain active and the CWG will continue to operate. This will have a direct effect on the Sleep mode current.

26.13 Configuring the CWG

- Ensure that the TRIS control bits corresponding to CWG outputs are set so that all are configured as inputs, ensuring that the outputs are inactive during setup. External hardware should ensure that pin levels are held to safe levels.
- 2. Clear the EN bit, if not already cleared.
- 3. Configure the MODE<2:0> bits of the CWGx-CON0 register to set the output operating mode.
- 4. Configure the POLy bits of the CWGxCON1 register to set the output polarities.
- 5. Configure the ISM<4:0> bits of the CWGxISM register to select the data input source.
- 6. If a steering mode is selected, configure the STRx bits to select the desired output on the CWG outputs.
- Configure the LSBD<1:0> and LSAC<1:0> bits of the CWGxASD0 register to select the autoshutdown output override states (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
- If auto-restart is desired, set the REN bit of CWGxAS0.
- 9. If auto-shutdown is desired, configure the ASxE bits of the CWGxAS1 register to select the shutdown source.
- 10. Set the desired rising and falling dead-band times with the CWGxDBR and CWGxDBF registers.
- 11. Select the clock source in the CWGxCLKCON register.
- 12. Set the EN bit to enable the module.
- 13. Clear the TRIS bits that correspond to the CWG outputs to set them as outputs.

If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit in software to start the CWG.

28.0 NUMERICALLY CONTROLLED OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse-Width Control
- Multiple Clock Input Sources
- Output Polarity Control
- Interrupt Capability

Figure 28-1 is a simplified block diagram of the NCO module.

31.6 DALI Mode

DALI is a protocol used for intelligent lighting control for building automation. The protocol consists of 'Control Devices' and 'Control Gear'. A Control Device is an application controller that sends out commands to the light fixtures. The light fixture itself is termed as a control gear. The communication is done using Manchester encoding, which is performed by the UART hardware.

Manchester encoding consists of the clock and data in a single bit stream. A high-to-low or a low-to-high transition always occurs in the middle of the bit period and is not guaranteed to occur at the bit period boundaries.

When the consecutive bits in the bit stream are of the same value (i.e., consecutive '1's or consecutive '0's), a transition occurs at the bit boundary. However, when the bit value changes, there is no transition at the bit boundary. According to the standard, a half-bit time is typically 416.7 μ s long. A double half-bit time or a single bit is typically 833.3 μ s.

The protocol is inherently half-duplex. Communication over the bus occurs in the form of forward and backward frames. Wait times between the frames are defined in the standard to prevent collision between the frames.

A Control Device transmission is termed as the 'Forward Frame'. In the DALI 2.0 standard, a forward frame can be two or three bytes in length. The two-byte forward frame is used for communication between control device and control gear, whereas the three-byte forward frame is used for communication between Control Devices on the bus. The first byte in the forward frame is the control byte and is followed by either one or two data bytes. The transaction begins when the Control Device starts a transmission. Unlike other protocols, each byte in the frame is transmitted MSB first. Typical frame timing is as shown in Figure 31-8.

During communication between two control devices, three bytes are required to be transmitted. In this case, the software must write the third byte to UxTXB as soon as UxTXIF goes True and before the output shifter becomes empty. This ensures that the three bytes of the forward frame are transmitted back-to-back, without any interruption.

All control gear on the bus receive the forward frame. If the forward frame requires a reply to be sent, one of the control gear may respond with a single byte, called the 'Backward Frame'. The 2.0 standard requires the control gear to begin transmission of the backward frame between 5.5 ms to 10.5 ms (~14 to 22 half-bit times) after reception of the forward frame. Once the backward frame is received by the Control Device, it is required to wait a minimum of 2.4 ms (~6 half-bit times). After this wait time, the Control Device is free to transmit another forward frame (see Figure 31-9). A Start bit is used to indicate the start of the forward and backward frames. When ABDEN = 0, the receiver bit rate is determined by the BRG register. When ABDEN = 1, the first bit synchronizes the receiver with the transmitter and sets the receiver bit rate. The low period of the Start bit is measured and is used as the timing reference for all data bits in the forward and backward frames. The ABDOVF bit is set if the Start bit low period causes the measurement counter to overflow. All bits following the Start bit are data bits. The bit stream terminates when no transition is detected in the middle of a bit period (see Figure 31-7).

Forward and backward frames are terminated by two Idle bit periods or Stop bits. Normally, these start in the first bit period of a byte. If both Stop bits are valid, the byte reception is terminated.

If either of the Stop bits is invalid, the frame is tagged as invalid by saving it as a null byte and setting the framing error in the receive FIFO.

A framing error also occurs when no transition is detected on the bus in the middle of a bit period when the byte reception is not complete. In such a scenario, the byte will be saved with the FERIF bit.

31.6.1 CONTROL DEVICE

Control Device mode is configured with the following settings:

- MODE<3:0> = 1000
- TXEN = 1
- RXEN = 1
- UxP1 = Forward frames are held for transmission this number of half-bit periods after the completion of a forward or backward frame.
- UxP2 = Forward/backward frame threshold delimiter. Any reception that starts this number of half bit periods after the completion of a forward or backward frame is detected as forward frame and sets the PERIF flag of the corresponding received byte.
- UxBRGH:L = Value to achieve 1200 baud rate
- TXPOL = appropriate polarity for interface circuit
- STP<1:0> = 10 for two Stop bits
- RxyPPS = TX pin selection code
- TX pin TRIS control = 0
- ON = 1

A forward frame is initiated by writing the control byte to the UxTXB register. Each data byte after the control byte must be written to the UxTXB register as soon as UxTXIF goes true. It is necessary to perform every write after UxTXIF goes true to ensure the transmit buffer is ready to accept the byte. Each write must also occur before the TXMTIF bit goes true, to ensure that the bit stream of forward frame is generated without interruption.

31.16 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value of the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 7.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value of the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 31.17.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change of the peripheral clock frequency.

31.17 UART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is a 16-bit timer that is dedicated to the support of the UART operation.

The UxBRGH, UxBRGL register pair determines the period of the free running baud rate timer. The multiplier of the baud rate period is determined by the BRGS bit in the UxCON0 register.

Table 31-1 contains the formulas for determining the baud rate. Example 31-1 provides a sample calculation for determining the baud rate and baud rate error.

The high baud rate range (BRGS = 1) is intended to extend the baud rate range up to a faster rate when the desired baud rate is not possible otherwise. Using the normal baud rate range (BRGS = 0) is recommended when the desired baud rate is achievable with either range.

Writing a new value to the UxBRGH, UxBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RXIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 31-1: CALCULATING BAUD RATE ERROR

TABLE 31-1: BAUD RATE FORMULAS

BRGS	BRG/UART Mode	Baud Rate Formula
1	High Rate	Fosc/[4 (n+1)]
0	Normal Rate	Fosc/[16(n+1)]

Legend: n = value of UxBRGH, UxBRGL register pair.

34.7 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the Message Assembly Buffer should be loaded into any of the receive buffers. Once a valid message has been received into the MAB. the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 34-1 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

Mask bit n	Filter bit n	Message Identifier bit n001	Accept or Reject bit n
0	x	х	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

TABLE 34-1: FILTER/MASK TRUTH TABLE

Legend: x = don't care

In Mode 0, acceptance filters, RXF0 and RXF1, and filter mask, RXM0, are associated with RXB0. Filters, RXF2, RXF3, RXF4 and RXF5, and mask, RXM1, are associated with RXB1.

In Mode 1 and 2, there are an additional ten acceptance filters, RXF6-RXF15, creating a total of 16 available filters. RXF15 can be used either as an acceptance filter or acceptance mask register. Each of these acceptance filters can be individually enabled or disabled by setting or clearing the RXFENn bit in the RXFCONn register. Any of these 16 acceptance filters can be dynamically associated with any of the receive buffers. Actual association is made by setting the appropriate bits in the RXFBCONn register. Each RXFBCONn register contains a nibble for each filter. This nibble can be used to associate a specific filter to any of available receive buffers. User firmware may associate more than one filter to any one specific receive buffer.

In addition to dynamic filter to buffer association, in Mode 1 and 2, each filter can also be dynamically associated to available Acceptance Mask registers. The FILn_m bits in the MSELn register can be used to link a specific acceptance filter to an acceptance mask register. As with filter to buffer association, one can also associate more than one mask to a specific acceptance filter.

When a filter matches and a message is loaded into the receive buffer, the filter number that enabled the message reception is loaded into the FILHIT bit(s). In Mode 0 for RXB1, the RXB1CON register contains the FILHIT<2:0> bits. They are coded as follows:

- 101 = Acceptance Filter 5 (RXF5)
- 100 = Acceptance Filter 4 (RXF4)
- 011 = Acceptance Filter 3 (RXF3)
- 010 = Acceptance Filter 2 (RXF2)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)

Note:	'000' and '001' can only occur if the
	RXB0DBEN bit is set in the RXB0CON
	register, allowing RXB0 messages to rollover into RXB1.

The coding of the RXB0DBEN bit enables these three bits to be used similarly to the FILHIT bits and to distinguish a hit on filter, RXF0 and RXF1, in either RXB0 or after a rollover into RXB1.

- 111 = Acceptance Filter 1 (RXF1)
- 110 = Acceptance Filter 0 (RXF0)
- 001 = Acceptance Filter 1 (RXF1)
- 000 = Acceptance Filter 0 (RXF0)

If the RXB0DBEN bit is clear, there are six codes corresponding to the six filters. If the RXB0DBEN bit is set, there are six codes corresponding to the six filters, plus two additional codes corresponding to RXF0 and RXF1 filters, that rollover into RXB1.

In Mode 1 and 2, each buffer control register contains five bits of filter hit bits (FILHIT<4:0>). A binary value of '0' indicates a hit from RXF0 and 15 indicates RXF15.

If more than one acceptance filter matches, the FILHIT bits will encode the binary value of the lowest numbered filter that matched. In other words, if filter RXF2 and filter RXF4 match, FILHIT will be loaded with the value for RXF2. This essentially prioritizes the acceptance filters with a lower number filter having higher priority. Messages are compared to filters in ascending order of filter number.

The mask and filter registers can only be modified when the CAN module is in Configuration mode.

34.15 CAN Module Registers

Note: Not all CAN registers are available in the Access Bank.

There are many control and data registers associated with the CAN module. For convenience, their descriptions have been grouped into the following sections:

- Control and Status Registers
- · Dedicated Transmit Buffer Registers
- Dedicated Receive Buffer Registers
- Programmable TX/RX and Auto RTR Buffers
- Baud Rate Control Registers
- I/O Control Register
- Interrupt Status and Control Registers

Detailed descriptions of each register and their usage are described in the following sections.

34.15.1 CAN CONTROL AND STATUS REGISTERS

The registers described in this section control the overall operation of the CAN module and show its operational status.

39.13 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown in Table 39-2. Refer to **Section 1.3.2.2 "Long Bit Names"** for more information.

TABLE 39-2:

Peripheral	Bit Name Prefix
C1	C1
C2	C2

REGISTER 39-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0	R-0/0	U-0	R/W-0/0	U-0	U-1	R/W-0/0	R/W-0/0
EN	OUT	—	POL	—	—	HYS	SYNC
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EN: Comparator Enable bit
	 1 = Comparator is enabled 0 = Comparator is disabled and consumes no active power
bit 6	OUT: Comparator Output bit
	$\frac{\text{If POL} = 0 \text{ (noninverted polarity)}:}{1 = CxVP > CxVN}$ $0 = CxVP < CxVN$ $\frac{\text{If POL} = 1 \text{ (inverted polarity)}:}{1 = CxVP < CxVN}$
	0 = C X V P > C X V N
bit 5	Unimplemented: Read as '0'
bit 4	POL: Comparator Output Polarity Select bit
	 1 = Comparator output is inverted 0 = Comparator output is not inverted
bit 3	Unimplemented: Read as '0'
bit 2	Unimplemented: Read as '1'
bit 1	HYS: Comparator Hysteresis Enable bit
	 1 = Comparator hysteresis enabled 0 = Comparator hysteresis disabled
bit 0	SYNC: Comparator Output Synchronous Mode bit
	 1 = Comparator output to Timer1/3/5 and I/O pin is synchronous to changes on Timer1 clock source. 0 = Comparator output to Timer1/3/5 and I/O pin is asynchronous Output updated on the falling edge of Timer1/3/5 clock source.

PIC18(L)F25/26K83

CALLW	Subroutine Call Using WREG							
Syntax:	CALLW							
Operands:	None							
Operation:	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$							
Status Affected:	None							
Encoding:	0000 0000 0001 0100							
Description	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W. Status or BSR							
Words:	1							
Cycles:	2							
Q Cycle Activity:								
	Q1	Q2	Q3	Q4				
	Decode	Read WREG	PUSH PC to stack	No operation				
	No operation	No opera- tion	No operation	No operation				
Example:	HERE	CALLW						
$\begin{array}{rcl} \text{Before Instruction} & & & \text{PC} & = & \text{address} & (\text{HERE}) \\ \text{PCLATH} & = & 10h \\ \text{PCLATU} & = & 00h \\ W & = & 06h \\ \end{array}$ $\begin{array}{rcl} \text{After Instruction} & & \\ \text{PC} & = & 001006h \\ \text{TOS} & = & \text{address} & (\text{HERE} + 2) \\ \text{PCLATH} & = & 10h \\ \text{PCLATU} & = & 00h \\ W & = & 06h \end{array}$								

CLR	RF	Clear f							
Synt	ax:	CLRF f{	,a}						
Oper	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$						
Oper	ration:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$							
Statu	is Affected:	Z							
Enco	oding:	0110	101a	ffff	ffff				
		register. If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode whe tion 42.2.3 Oriented I eral Offse	register. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 42.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-						
Word	ds:	1							
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	}	Q4				
	Decode	Read register 'f'	Proce Dat	ess a	Write register 'f'				
Example: CLRF FLAG_REG, 1 Before Instruction FLAG_REG = 5Ah After Instruction									
	$FLAG_REG = 0000$								

PIC18(L)F25/26K83

SUBWF	Subtrac	Subtract W from f						
Syntax:	SUBWF	f {,d {,a}}						
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \ \in \ [0,1] \\ a \ \in \ [0,1] \end{array}$						
Operation:	(f) – (W)	$(f)-(W)\to dest$						
Status Affected:	N, OV, C	N, OV, C, DC, Z						
Encoding:	0101	0101 11da ffff ffff						
Description: Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 42.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal Offset Mode" for details								
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Read Process egister 'f' Data						
Example 1:	SUBWF	REG, 1, 0						
Before Instruct REG W C After Instructio REG W C Z	tion = 3 = 2 = ? n = 1 = 2 = 1 ; = 0	result is positive	e					
Ν	= 0							
Example 2:	SUBWF	REG, 0, 0						
REG W C After Instructio	tion = 2 = 2 = ?							
REG W C Z N	= 2 = 0 = 1 ; = 1 = 0	result is zero						
Example 3:	SUBWF	REG, 1, 0						
Before Instruct REG W C	tion = 1 = 2 = ?							
After Instructio REG W C Z N	n = FFh;(= 2 = 0; = 0; = 1	(2's complemen result is negativ	t) /e					

SUBWFB	Subtract W from f with Borrow							
Syntax:	SL	JBWFB	f {,d {,a	a}}				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$							
Operation:	(f)	– (W) –	$(\overline{C}) \rightarrow de$	st				
Status Affected:	Ν,	N, OV, C, DC, Z						
Encoding:	0101 10da ffff ffff							
Description:	Subtract W and the CARRY flag (borrow) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 42.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lite-							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1		Q2	Q	3	Q4			
Decode		Read	Proc	ess	Write to			
	reę	gister 'f	Da	ta	destination			
Example 1:	. 5	UBWFB	REG, 1	1, 0				
REG W C	(ion = = =	19h 0Dh 1	(000 (000	1 100 0 110	01) 01)			
After Instructio REG W C Z	n = OCh (0000 1100) = ODh (0000 1101) = 1 = 0							
N Evennle 2:	=	0	; resu	lit is po	sitive			
<u>Litallipie 2</u> . Refore Instruct	ion S	ORME.R	кње, О	, U				
REG W C	= = =	1Bh 1Ah 0	(000 (000	1 101 1 101	.1) .0)			
After Instructio REG W C	n = =	1Bh 00h 1	(000	1 101	.1)			
Z N	=	= 1 ; result is zero = 0			ro			
Example 3:	. 5	UBWFB	REG, 1	l, O				
REG W C	ion = = =	03h 0Eh 1	(000 (000	0 001 0 111	.1) .0)			
After Instructio REG	n =	F5h	(111	1 010)1)			
W C	= =	0Eh 0	; [2's (000	comp] 0 111	.0)			
Z N	=	0 1	; resu	ılt is ne	gative			

42.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F25/26K83 family of devices. This includes the MPLAB C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page		
3BC8h- 3AEEh	_	Unimplemented								_		
3AEDh	CANRXPPS	_		_	CANRXPPS					264		
3AECh					Unimpler	Unimplemented						
3AEBh	U2CTSPPS	—	_	_		264						
3AEAh	U2RXPPS	_	_	_			U2RXPPS			264		
3AE9h					Unimplemented							
3AE8h	U1CTSPPS		_	_		264						
3AE7h	U1RXPPS			_		UIRXPPS						
3AE6h	I2C2SDAPPS			_			I2C2SDAPPS			264		
3AE5h	I2C2SCLPPS	_		_			I2C2SCLPPS			264		
3AF4h	I2C1SDAPPS			_			I2C1SDAPPS			264		
3AE3h	I2C1SCI PPS		_	_			I2C1SCI PPS			264		
3AE2h	SPI1SSPPS						SPI1SSPPS			264		
3AE1h	SPI1SDIPPS						SPI1SDIPPS			264		
34E0b	SPI1SCKPPS									204		
				_			ADACTORS			204		
				_						204		
3ADEII							CLCIN3PP3			204		
3ADDI							CLCIN2FF3			204		
3ADCH										204		
SADBI							CLCIN0PPS			204		
3ADAn	MD1SRCPPS			_			MD1SRCPPS	<u></u>		264		
3AD9n	MD1CARHPPS	_		_	MD1CARHPPS							
3AD8h	MD1CARLPPS	—		_	MD1CARLPPS							
3AD7h	CWG3INPPS	—			CWG3INPPS							
3AD6h	CWG2INPPS			_	CWG2INPPS							
3AD5h	CWG1INPPS		—	—	CWG1INPPS							
3AD4h	SMT2SIGPPS	—	—	—	SMT2SIGPPS							
3AD3h	SMT2WINPPS	—	—	—	SMT2WINPPS							
3AD2h	SMT1SIGPPS	—	—	—	SMT1SIGPPS							
3AD1h	SMT1WINPPS	—	—	_	SMT1WINPPS							
3AD0h	CCP4PPS	—	—	_	CCP4PPS							
3ACFh	CCP3PPS	—	—	—			CCP3PPS			264		
3ACEh	CCP2PPS			_			CCP2PPS			264		
3ACDh	CCP1PPS			_	CCP1PPS							
3ACCh	T6INPPS	—	—	—	T6INPPS							
3ACBh	T4INPPS	_		—	T4INPPS							
3ACAh	T2INPPS	—	—	—			T2INPPS			264		
3AC9h	T5GPPS	—	—	—	T5GPPS							
3AC8h	T5CLKIPPS	—	_	—			T5CLKIPPS			264		
3AC7h	T3GPPS	—	—	_			T3GPPS			264		
3AC6h	T3CLKIPPS	—	_	_			T3CLKIPPS			264		
3AC5h	T1GPPS	—	_	—			T1GPPS			264		
3AC4h	T1CKIPPS	_	_	_			T1CKIPPS			264		
3AC3h	T0CKIPPS	_	_	_			TOCKIPPS			264		
3AC2h	INT2PPS	_	_	_			INT2PPS			264		
3AC1h	INT1PPS	_	_	_			INT1PPS			264		
3AC0h	INTOPPS	_	_	_			INT0PPS			264		
3ABFh	PPSLOCK	—	_	_	—	—	_	—	PPSLOCKED	268		

TABLE 43-1: REGISTER FILE SUMMARY FOR PIC18(L)F25/26K83 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not present in LF devices.

	<u>A</u>								
Standard Operating Conditions (unless otherwise stated)									
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions		
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μs <	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tcy	_		$\langle \rangle$		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	- <	μ\$	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	_ `	Jus J	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tcy		$ \land \langle$			
SP102*	TR	SDA and SCL rise	100 kHz mode		1000	ns			
		time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL fall time	100 kHz mode	$\wedge - \land$	250	ns			
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data input hold time	100 kHz mode 🔪	0	> -	ns			
			400 kHz mode	6	0.9	μS			
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)		
			400 kHz mode	100	—	ns			
SP109*	ΤΑΑ	Output valid from	100 kHz mode	\sim –	3500	ns	(Note 1)		
		clock	400 kHz mode	- \		ns			
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission can start		
SP111	Св	Bus capacitive loading	\frown	—	400	pF			

TABLE 45-23: I²C BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1:

As a transmitter the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. A Fast mode (400 kHz) J^2C bus device can be used in a Standard mode (100 kHz) I^2C bus system, but the requirement TSU:DAT \geq 250 ns must then be refet. This will automatically be the case if the device does not stretch the low period of 2: the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL lipe is released.

47.1 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensior	n Limits	MIN	NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	.100 BSC					
Top to Seating Plane	Α	—	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	_	_	.430			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	Z		28		
Pitch	е		1.27 BSC		
Overall Height	A	-	-	2.65	
Molded Package Thickness	A2	2.05			
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25 - 0.75			
Foot Length	L	0.40 - 1.27			
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	I	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18 - 0.33			
Lead Width	b	0.31 - 0.51			
Mold Draft Angle Top	α	5° - 15°			
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2