
Microchip Technology - PIC18LF26K83-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity CANbus, I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 25

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Surface Mount

Package / Case 28-SOIC (0.295", 7.50mm Width)

Supplier Device Package 28-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k83-e-so

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf26k83-e-so-4393768
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F25/26K83
REGISTER 9-8: PIR5: PERIPHERAL INTERRUPT REGISTER 5(1)

R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0

IRXIF WAKIF ERRIF TXB2IF/TXBnIF TXB1IF TXB0IF RXB1IF/RXBnIF RXB0IF/FIFOFIF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Bit is set in hardware

bit 7 IRXIF: CAN Invalid Message Received Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 6 WAKIF: CAN Bus Wake-Up Activity Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 5 ERRIF: CAN Error Interrupt Flag bit (Multiple sources in the COMSTAT register)
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 4 TXB2IF/TXBnIF: CAN Transmit Buffer 2/Transmit Buffer n Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 3 TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 2 TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 1 RXB1IF/RXBnIF: CAN Receive Buffer 1/ Receive Buffer n Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 0 RXB0IF/FIFOFIF: CAN Receive Buffer 0/FIFO Full 1 Interrupt Flag bit
1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

Note 1: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit, or the global
enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 132

PIC18(L)F25/26K83
EXAMPLE 13-4: WRITING TO PROGRAM FLASH MEMORY

MOVLW D'64’ ; number of bytes in erase block
MOVWF COUNTER
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW CODE_ADDR_UPPER ; Load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL

READ_BLOCK
TBLRD*+ ; read into TABLAT, and inc
MOVF TABLAT, W ; get data
MOVWF POSTINC0 ; store data
DECFSZ COUNTER ; done?
BRA READ_BLOCK ; repeat

MODIFY_WORD
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L
MOVLW NEW_DATA_LOW ; update buffer word
MOVWF POSTINC0
MOVLW NEW_DATA_HIGH
MOVWF INDF0

ERASE_BLOCK
MOVLW CODE_ADDR_UPPER ; load TBLPTR with the base
MOVWF TBLPTRU ; address of the memory block
MOVLW CODE_ADDR_HIGH
MOVWF TBLPTRH
MOVLW CODE_ADDR_LOW
MOVWF TBLPTRL
BCF NVMCON1, REG0 ; point to Program Flash Memory
BSF NVMCON1, REG1 ; point to Program Flash Memory
BSF NVMCON1, WREN ; enable write to memory
BSF NVMCON1, FREE ; enable Erase operation
BCF INTCON0, GIE ; disable interrupts
MOVLW 55h

Required MOVWF NVMCON2 ; write 55h
Sequence MOVLW AAh

MOVWF NVMCON2 ; write 0AAh
BSF NVMCON1, WR ; start erase (CPU stall)
BSF INTCON0, GIE ; re-enable interrupts
TBLRD*- ; dummy read decrement
MOVLW BUFFER_ADDR_HIGH ; point to buffer
MOVWF FSR0H
MOVLW BUFFER_ADDR_LOW
MOVWF FSR0L

WRITE_BUFFER_BACK
MOVLW BlockSize ; number of bytes in holding register
MOVWF COUNTER
MOVLW D’64’/BlockSize ; number of write blocks in 64 bytes
MOVWF COUNTER2
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 191

PIC18(L)F25/26K83
15.8.4 OVERRUN INTERRUPT

When the DMA receives a trigger to start a new
message before the current message is completed,
then the DMAxORIF Overrun interrupt flag is set.

This condition indicates that the DMA is being
requested before its current transaction is finished.
This implies that the active DMA may not be able to
keep up with the demands from the peripheral module
being serviced, which may result in data loss.

The DMAxORIF flag being set does not cause the
current DMA transfer to terminate.

The Overrun interrupt is only available for trigger
sources that are edge based and not available for
sources that are level-based. Therefore a level-based
interrupt source does not trigger a DMA overrun error
due to the potential latency issues in the system.

An example of an interrupt that could use the overrun
interrupt would be a timer overflow (or period match)
interrupt. This event only happens every time the timer
rolls over and is not dependent on any other system
conditions.

An example of an interrupt that does not allow the
overrun interrupt would be the UARTTX buffer. The
UART will continue to assert the interrupt until the DMA
is able to process the MSG. Due to latency issues, the
DMA may not be able to service an empty buffer
immediately, but the UART continues to assert its
transmit interrupt until it is serviced. If overrun was
allowed in this case, the overrun would occur almost
immediately as the module samples the interrupt
sources every instruction cycle.

15.9 DMA Setup and Operation

The following steps illustrate how to configure the DMA
for data transfer:

1. Program the appropriate Source and
Destination addresses for the transaction into
the DMAxSSA and DMAxDSA registers

2. Select the source memory region that is being
addressed by DMAxSSA register, using the
SMR<1:0> bits.

3. Program the SMODE and DMODE bits to select
the addressing mode.

4. Program the Source size DMAxSSZ and
Destination size DMAxDSZ registers with the
number of bytes to be transferred. It is
recommended for proper operation that the size
registers be a multiple of each other.

5. If the user desires to disable data transfers once
the message has completed, then the SSTP and
DSTP bits in DMAxCON0 register need to be
set.(see Section 15.5.3.2 “Source/Destina-
tion Stop”).

6. If using hardware triggers for data transfer,
setup the hardware trigger interrupt sources for
the starting and aborting DMA transfers
(DMAxSIRQ and DMAxAIRQ), and set the
corresponding interrupt request enable bits
(SIRQEN and AIRQEN).

7. Select the priority level for the DMA (see
Section 3.1 “System Arbitration”) and lock
the priorities (see Section 3.1.1 “Priority
Lock”)

8. Enable the DMA (DMAxCON1bits. EN = 1)

9. If using software control for data transfer, set the
DGO bit, else this bit will be set by the hardware
trigger.

Once the DMA is set up, the following flow chart
describes the sequence of operation when the DMA
uses hardware triggers and utilizes the unused CPU
cycles (bubble) for DMA transfers.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 226

PIC18(L)F25/26K83
REGISTER 21-3: TxCLK: TIMERx CLOCK REGISTER

U-0 U-0 U-0 R/W-0/u R/W-0/u R/W-0/u R/W-0/u R/W-0/u

— — — CS<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared u = unchanged

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 CS<4:0>: Timerx Clock Source Selection bits

CS
Timer1 Timer3 Timer5

Clock Source Clock Source Clock Source

11111-10001 Reserved Reserved Reserved

10000 CLC4 CLC4 CLC4

01111 CLC3 CLC3 CLC3

01110 CLC2 CLC2 CLC2

01101 CLC1 CLC1 CLC1

01100 TMR5 overflow TMR5 overflow Reserved

01011 TMR3 overflow Reserved TMR3 overflow

01010 Reserved TMR1 overflow TMR1 overflow

01001 TMR0 overflow TMR0 overflow TMR0 overflow

01000 CLKREF CLKREF CLKREF

00111 SOSC SOSC SOSC

00110 MFINTOSC (32 kHz) MFINTOSC (32 kHz) MFINTOSC (32 kHz)

00101 MFINTOSC (500 kHz) MFINTOSC (500 kHz) MFINTOSC (500 kHz)

00100 LFINTOSC LFINTOSC LFINTOSC

00011 HFINTOSC HFINTOSC HFINTOSC

00010 Fosc Fosc Fosc

00001 Fosc/4 Fosc/4 Fosc/4

00000 T1CKIPPS T3CKIPPS T5CKIPPS
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 300

P
IC

18(L
)F

25/26K
83


 2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
9

4
3

A
-p

a
g

e
 3

6
6

Rev. 10-000 183A
12/19/201 3

6

6

FIGURE 25-13: GATED WINDOWED MEASURE MODE SINGLE ACQUISITION TIMING DIAGRAMS

SMTx Clock

SMTxEN

SMTxWIN

SMTxWIN_sync

0 1

SMTxGO

SMTxTMR

SMTxGO_sync

2

SMTxPRAIF

SMTxCPR

SMTx_signal

SMTx_signalsync

3 4 5

PIC18(L)F25/26K83
26.2.3.1 Direction Change in Full-Bridge
Mode

In Full-Bridge mode, changing MODE<2:0> controls
the forward/reverse direction. Changes to MODE<2:0>
change to the new direction on the next rising edge of
the modulated input.

A direction change is initiated in software by changing
the MODE<2:0> bits of the CWGxCON0 register. The
sequence is illustrated in Figure 26-8.

• The associated active output CWGxA and the
inactive output CWGxC are switched to drive in
the opposite direction.

• The previously modulated output CWGxD is
switched to the inactive state, and the previously
inactive output CWGxB begins to modulate.

• CWG modulation resumes after the direction-
switch dead band has elapsed.

26.2.3.2 Dead-Band Delay in Full-Bridge
Mode

Dead-band delay is important when either of the
following conditions is true:

1. The direction of the CWG output changes when
the duty cycle of the data input is at or near
100%, or

2. The turn-off time of the power switch, including
the power device and driver circuit, is greater
than the turn-on time.

The dead-band delay is inserted only when changing
directions, and only the modulated output is affected.
The statically-configured outputs (CWGxA and
CWGxC) are not afforded dead band, and switch
essentially simultaneously.

Figure 26-8 shows an example of the CWG outputs
changing directions from forward to reverse, at near
100% duty cycle. In this example, at time t1, the output
of CWGxA and CWGxD become inactive, while output
CWGxC becomes active. Since the turn-off time of the
power devices is longer than the turn-on time, a shoot-
through current will flow through power devices QC and
QD for the duration of ‘t’. The same phenomenon will
occur to power devices QA and QB for the CWG
direction change from reverse to forward.

When changing the CWG direction at high duty cycle is
required for an application, two possible solutions for
eliminating the shoot-through current are:

1. Reduce the CWG duty cycle for one period
before changing directions.

2. Use switch drivers that can drive the switches off
faster than they can drive them on.

FIGURE 26-8: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

Forward Period Reverse Period
t1

Pulse Width

Pulse Width

TON

TOFF

T = TOFF - TON

CWG1A

CWG1B

CWG1C

CWG1D

External Switch C

External Switch D

Potential Shoot-
Through Current
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 398

PIC18(L)F25/26K83
26.12 Operation During Sleep

The CWG module operates independently from the
system clock and will continue to run during Sleep,
provided that the clock and input sources selected
remain active.

The HFINTOSC remains active during Sleep when all
the following conditions are met:

• CWG module is enabled

• Input source is active

• HFINTOSC is selected as the clock source,
regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously
selected as system clock and CWG clock, when the
CWG is enabled and the input source is active, then the
CPU will go Idle during Sleep, but the HFINTOSC will
remain active and the CWG will continue to operate.
This will have a direct effect on the Sleep mode current.

26.13 Configuring the CWG

1. Ensure that the TRIS control bits corresponding
to CWG outputs are set so that all are
configured as inputs, ensuring that the outputs
are inactive during setup. External hardware
should ensure that pin levels are held to safe
levels.

2. Clear the EN bit, if not already cleared.
3. Configure the MODE<2:0> bits of the CWGx-

CON0 register to set the output operating mode.
4. Configure the POLy bits of the CWGxCON1

register to set the output polarities.
5. Configure the ISM<4:0> bits of the CWGxISM

register to select the data input source.
6. If a steering mode is selected, configure the

STRx bits to select the desired output on the
CWG outputs.

7. Configure the LSBD<1:0> and LSAC<1:0> bits
of the CWGxASD0 register to select the auto-
shutdown output override states (this is
necessary even if not using auto-shutdown
because start-up will be from a shutdown state).

8. If auto-restart is desired, set the REN bit of
CWGxAS0.

9. If auto-shutdown is desired, configure the ASxE
bits of the CWGxAS1 register to select the shut-
down source.

10. Set the desired rising and falling dead-band
times with the CWGxDBR and CWGxDBF
registers.

11. Select the clock source in the CWGxCLKCON
register.

12. Set the EN bit to enable the module.
13. Clear the TRIS bits that correspond to the CWG

outputs to set them as outputs.

If auto-restart is to be used, set the REN bit and the
SHUTDOWN bit will be cleared automatically. Other-
wise, clear the SHUTDOWN bit in software to start the
CWG.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 407

PIC18(L)F25/26K83
28.0 NUMERICALLY CONTROLLED
OSCILLATOR (NCO) MODULE

The Numerically Controlled Oscillator (NCO) module is
a timer that uses overflow from the addition of an
increment value to divide the input frequency. The
advantage of the addition method over simple counter
driven timer is that the output frequency resolution
does not vary with the divider value. The NCO is most
useful for application that requires frequency accuracy
and fine resolution at a fixed duty cycle.

Features of the NCO include:

• 20-bit Increment Function
• Fixed Duty Cycle mode (FDC) mode
• Pulse Frequency (PF) mode
• Output Pulse-Width Control
• Multiple Clock Input Sources
• Output Polarity Control
• Interrupt Capability

Figure 28-1 is a simplified block diagram of the NCO
module.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 434

PIC18(L)F25/26K83
31.6 DALI Mode

DALI is a protocol used for intelligent lighting control for
building automation. The protocol consists of ‘Control
Devices’ and ‘Control Gear’. A Control Device is an
application controller that sends out commands to the
light fixtures. The light fixture itself is termed as a con-
trol gear. The communication is done using Manches-
ter encoding, which is performed by the UART
hardware.

Manchester encoding consists of the clock and data in
a single bit stream. A high-to-low or a low-to-high tran-
sition always occurs in the middle of the bit period and
is not guaranteed to occur at the bit period boundaries.

When the consecutive bits in the bit stream are of the
same value (i.e., consecutive ‘1’s or consecutive ‘0’s),
a transition occurs at the bit boundary. However, when
the bit value changes, there is no transition at the bit
boundary. According to the standard, a half-bit time is
typically 416.7 s long. A double half-bit time or a single
bit is typically 833.3 s.

The protocol is inherently half-duplex. Communication
over the bus occurs in the form of forward and back-
ward frames. Wait times between the frames are
defined in the standard to prevent collision between the
frames.

A Control Device transmission is termed as the ‘For-
ward Frame’. In the DALI 2.0 standard, a forward frame
can be two or three bytes in length. The two-byte for-
ward frame is used for communication between control
device and control gear, whereas the three-byte for-
ward frame is used for communication between Control
Devices on the bus. The first byte in the forward frame
is the control byte and is followed by either one or two
data bytes. The transaction begins when the Control
Device starts a transmission. Unlike other protocols,
each byte in the frame is transmitted MSB first. Typical
frame timing is as shown in Figure 31-8.

During communication between two control devices,
three bytes are required to be transmitted. In this case,
the software must write the third byte to UxTXB as soon
as UxTXIF goes True and before the output shifter
becomes empty. This ensures that the three bytes of
the forward frame are transmitted back-to-back, with-
out any interruption.

All control gear on the bus receive the forward frame. If
the forward frame requires a reply to be sent, one of the
control gear may respond with a single byte, called the
‘Backward Frame’. The 2.0 standard requires the con-
trol gear to begin transmission of the backward frame
between 5.5 ms to 10.5 ms (~14 to 22 half-bit times)
after reception of the forward frame. Once the back-
ward frame is received by the Control Device, it is
required to wait a minimum of 2.4 ms (~6 half-bit times).
After this wait time, the Control Device is free to trans-
mit another forward frame (see Figure 31-9).

A Start bit is used to indicate the start of the forward and
backward frames. When ABDEN = 0, the receiver bit
rate is determined by the BRG register. When
ABDEN = 1, the first bit synchronizes the receiver with
the transmitter and sets the receiver bit rate. The low
period of the Start bit is measured and is used as the
timing reference for all data bits in the forward and
backward frames. The ABDOVF bit is set if the Start bit
low period causes the measurement counter to over-
flow. All bits following the Start bit are data bits. The bit
stream terminates when no transition is detected in the
middle of a bit period (see Figure 31-7).

Forward and backward frames are terminated by two
Idle bit periods or Stop bits. Normally, these start in the
first bit period of a byte. If both Stop bits are valid, the
byte reception is terminated.

If either of the Stop bits is invalid, the frame is tagged
as invalid by saving it as a null byte and setting the
framing error in the receive FIFO.

A framing error also occurs when no transition is
detected on the bus in the middle of a bit period when
the byte reception is not complete. In such a scenario,
the byte will be saved with the FERIF bit.

31.6.1 CONTROL DEVICE

Control Device mode is configured with the following
settings:

• MODE<3:0> = 1000
• TXEN = 1
• RXEN = 1
• UxP1 = Forward frames are held for transmission

this number of half-bit periods after the completion
of a forward or backward frame.

• UxP2 = Forward/backward frame threshold delim-
iter. Any reception that starts this number of half
bit periods after the completion of a forward or
backward frame is detected as forward frame and
sets the PERIF flag of the corresponding received
byte.

• UxBRGH:L = Value to achieve 1200 baud rate
• TXPOL = appropriate polarity for interface circuit
• STP<1:0> = 10 for two Stop bits
• RxyPPS = TX pin selection code
• TX pin TRIS control = 0
• ON = 1

A forward frame is initiated by writing the control byte to
the UxTXB register. Each data byte after the control
byte must be written to the UxTXB register as soon as
UxTXIF goes true. It is necessary to perform every
write after UxTXIF goes true to ensure the transmit
buffer is ready to accept the byte. Each write must also
occur before the TXMTIF bit goes true, to ensure that
the bit stream of forward frame is generated without
interruption.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 471

PIC18(L)F25/26K83
31.16 Clock Accuracy with
Asynchronous Operation

The factory calibrates the internal oscillator block
output (INTOSC). However, the INTOSC frequency
may drift as VDD or temperature changes, and this
directly affects the asynchronous baud rate. Two
methods may be used to adjust the baud rate clock, but
both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE
register to adjust the INTOSC output. Adjusting the
value of the OSCTUNE register allows for fine resolution
changes to the system clock source. See Section
7.2.2.3 “Internal Oscillator Frequency Adjustment”
for more information.

The other method adjusts the value of the Baud Rate
Generator. This can be done automatically with the
Auto-Baud Detect feature (see Section
31.17.1 “Auto-Baud Detect”). There may not be fine
enough resolution when adjusting the Baud Rate
Generator to compensate for a gradual change of the
peripheral clock frequency.

31.17 UART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is a 16-bit timer that
is dedicated to the support of the UART operation.

The UxBRGH, UxBRGL register pair determines the
period of the free running baud rate timer. The multiplier
of the baud rate period is determined by the BRGS bit in
the UxCON0 register.

Table 31-1 contains the formulas for determining the
baud rate. Example 31-1 provides a sample calculation
for determining the baud rate and baud rate error.

The high baud rate range (BRGS = 1) is intended to
extend the baud rate range up to a faster rate when the
desired baud rate is not possible otherwise. Using the
normal baud rate range (BRGS = 0) is recommended
when the desired baud rate is achievable with either
range.

Writing a new value to the UxBRGH, UxBRGL register
pair causes the BRG timer to be reset (or cleared). This
ensures that the BRG does not wait for a timer overflow
before outputting the new baud rate.

If the system clock is changed during an active receive
operation, a receive error or data loss may result. To
avoid this problem, check the status of the RXIDL bit to
make sure that the receive operation is idle before
changing the system clock.

EXAMPLE 31-1: CALCULATING BAUD
RATE ERROR

TABLE 31-1: BAUD RATE FORMULAS

BRGS BRG/UART Mode Baud Rate Formula

1 High Rate FOSC/[4 (n+1)]

0 Normal Rate FOSC/[16(n+1)]

Legend: n = value of UxBRGH, UxBRGL register pair.

For a device with FOSC of 16 MHz, desired baud rate
of 9600, Asynchronous mode, BRGS = 0:

 X

FOSC

Desired Baud Rate

16
--- 1–=

Desired Baud Rate
FOSC

16 [UxBRG] 1+ 
---=

16000000
9600

16
--------------------------- 1–=

 103.17  103= =

Calculated Baud Rate
16000000

16 103 1+ 
-------------------------------=

 9615=

Error
Calc. Baud Rate Desired Baud Rate –

Desired Baud Rate
--=

9615 9600– 

9600
------------------------------------- 0.16%= =
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 478

PIC18(L)F25/26K83
34.7 Message Acceptance Filters
and Masks

The message acceptance filters and masks are used to
determine if a message in the Message Assembly Buf-
fer should be loaded into any of the receive buffers.
Once a valid message has been received into the MAB,
the identifier fields of the message are compared to the
filter values. If there is a match, that message will be
loaded into the appropriate receive buffer. The filter
masks are used to determine which bits in the identifier
are examined with the filters. A truth table is shown
below in Table 34-1 that indicates how each bit in the
identifier is compared to the masks and filters to
determine if a message should be loaded into a receive
buffer. The mask essentially determines which bits to
apply the acceptance filters to. If any mask bit is set to
a zero, then that bit will automatically be accepted
regardless of the filter bit.

TABLE 34-1: FILTER/MASK TRUTH TABLE

In Mode 0, acceptance filters, RXF0 and RXF1, and
filter mask, RXM0, are associated with RXB0. Filters,
RXF2, RXF3, RXF4 and RXF5, and mask, RXM1, are
associated with RXB1.

In Mode 1 and 2, there are an additional ten
acceptance filters, RXF6-RXF15, creating a total of 16
available filters. RXF15 can be used either as an
acceptance filter or acceptance mask register. Each of
these acceptance filters can be individually enabled or
disabled by setting or clearing the RXFENn bit in the
RXFCONn register. Any of these 16 acceptance filters
can be dynamically associated with any of the receive
buffers. Actual association is made by setting the
appropriate bits in the RXFBCONn register. Each
RXFBCONn register contains a nibble for each filter.
This nibble can be used to associate a specific filter to
any of available receive buffers. User firmware may
associate more than one filter to any one specific
receive buffer.

In addition to dynamic filter to buffer association, in
Mode 1 and 2, each filter can also be dynamically asso-
ciated to available Acceptance Mask registers. The
FILn_m bits in the MSELn register can be used to link
a specific acceptance filter to an acceptance mask reg-
ister. As with filter to buffer association, one can also
associate more than one mask to a specific acceptance
filter.

When a filter matches and a message is loaded into the
receive buffer, the filter number that enabled the
message reception is loaded into the FILHIT bit(s). In
Mode 0 for RXB1, the RXB1CON register contains the
FILHIT<2:0> bits. They are coded as follows:

• 101 = Acceptance Filter 5 (RXF5)

• 100 = Acceptance Filter 4 (RXF4)

• 011 = Acceptance Filter 3 (RXF3)

• 010 = Acceptance Filter 2 (RXF2)

• 001 = Acceptance Filter 1 (RXF1)

• 000 = Acceptance Filter 0 (RXF0)

The coding of the RXB0DBEN bit enables these three
bits to be used similarly to the FILHIT bits and to distin-
guish a hit on filter, RXF0 and RXF1, in either RXB0 or
after a rollover into RXB1.

• 111 = Acceptance Filter 1 (RXF1)

• 110 = Acceptance Filter 0 (RXF0)

• 001 = Acceptance Filter 1 (RXF1)

• 000 = Acceptance Filter 0 (RXF0)

If the RXB0DBEN bit is clear, there are six codes
corresponding to the six filters. If the RXB0DBEN bit is
set, there are six codes corresponding to the six filters,
plus two additional codes corresponding to RXF0 and
RXF1 filters, that rollover into RXB1.

In Mode 1 and 2, each buffer control register contains
five bits of filter hit bits (FILHIT<4:0>). A binary value of
‘0’ indicates a hit from RXF0 and 15 indicates RXF15.

If more than one acceptance filter matches, the FILHIT
bits will encode the binary value of the lowest num-
bered filter that matched. In other words, if filter RXF2
and filter RXF4 match, FILHIT will be loaded with the
value for RXF2. This essentially prioritizes the
acceptance filters with a lower number filter having
higher priority. Messages are compared to filters in
ascending order of filter number.

The mask and filter registers can only be modified
when the CAN module is in Configuration mode.

Mask
bit n

Filter
bit n

Message
Identifier
bit n001

Accept or
Reject
bit n

0 x x Accept

1 0 0 Accept

1 0 1 Reject

1 1 0 Reject

1 1 1 Accept

Legend: x = don’t care

Note: ‘000’ and ‘001’ can only occur if the
RXB0DBEN bit is set in the RXB0CON
register, allowing RXB0 messages to
rollover into RXB1.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 591

PIC18(L)F25/26K83
34.15 CAN Module Registers

There are many control and data registers associated
with the CAN module. For convenience, their
descriptions have been grouped into the following
sections:

• Control and Status Registers

• Dedicated Transmit Buffer Registers

• Dedicated Receive Buffer Registers

• Programmable TX/RX and Auto RTR Buffers

• Baud Rate Control Registers

• I/O Control Register

• Interrupt Status and Control Registers

Detailed descriptions of each register and their usage
are described in the following sections.

34.15.1 CAN CONTROL AND STATUS
REGISTERS

The registers described in this section control the
overall operation of the CAN module and show its
operational status.

Note: Not all CAN registers are available in the
Access Bank.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 602

PIC18(L)F25/26K83
39.13 Register Definitions: Comparator Control

Long bit name prefixes for the Comparators are shown
in Table 39-2. Refer to Section 1.3.2.2 “Long Bit
Names” for more information.

TABLE 39-2:

Peripheral Bit Name Prefix

C1 C1

C2 C2

REGISTER 39-1: CMxCON0: COMPARATOR x CONTROL REGISTER 0

R/W-0/0 R-0/0 U-0 R/W-0/0 U-0 U-1 R/W-0/0 R/W-0/0

EN OUT — POL — — HYS SYNC

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EN: Comparator Enable bit

1 = Comparator is enabled
0 = Comparator is disabled and consumes no active power

bit 6 OUT: Comparator Output bit

If POL = 0 (noninverted polarity):
1 = CxVP > CxVN
0 = CxVP < CxVN
If POL = 1 (inverted polarity):
1 = CxVP < CxVN
0 = CxVP > CxVN

bit 5 Unimplemented: Read as ‘0’

bit 4 POL: Comparator Output Polarity Select bit

1 = Comparator output is inverted
0 = Comparator output is not inverted

bit 3 Unimplemented: Read as ‘0’

bit 2 Unimplemented: Read as ‘1’

bit 1 HYS: Comparator Hysteresis Enable bit

1 = Comparator hysteresis enabled
0 = Comparator hysteresis disabled

bit 0 SYNC: Comparator Output Synchronous Mode bit

1 = Comparator output to Timer1/3/5 and I/O pin is synchronous to changes on Timer1 clock source.
0 = Comparator output to Timer1/3/5 and I/O pin is asynchronous

Output updated on the falling edge of Timer1/3/5 clock source.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 700

PIC18(L)F25/26K83

CALLW Subroutine Call Using WREG

Syntax: CALLW

Operands: None

Operation: (PC + 2)  TOS,
(W)  PCL,
(PCLATH)  PCH,
(PCLATU)  PCU

Status Affected: None

Encoding: 0000 0000 0001 0100

Description First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.
Unlike CALL, there is no option to
update W, Status or BSR.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
WREG

PUSH PC
to stack

No
operation

No
operation

No
opera-

tion

No
operation

No
operation

Example: HERE CALLW

Before Instruction
PC = address (HERE)
PCLATH = 10h
PCLATU = 00h
W = 06h

After Instruction
PC = 001006h
TOS = address (HERE + 2)
PCLATH = 10h
PCLATU = 00h
W = 06h

CLRF Clear f

Syntax: CLRF f {,a}

Operands: 0  f  255
a [0,1]

Operation: 000h  f
1  Z

Status Affected: Z

Encoding: 0110 101a ffff ffff

Description: Clears the contents of the specified
register.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 42.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: CLRF FLAG_REG, 1

Before Instruction
FLAG_REG = 5Ah

After Instruction
FLAG_REG = 00h
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 730

PIC18(L)F25/26K83

SUBWF Subtract W from f

Syntax: SUBWF f {,d {,a}}

Operands: 0 f 255
d  [0,1]
a  [0,1]

Operation: (f) – (W) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 11da ffff ffff

Description: Subtract W from register ‘f’ (2’s
complement method). If ‘d’ is ‘0’, the
result is stored in W. If ‘d’ is ‘1’, the
result is stored back in register ‘f’
(default).
If ‘a’ is ‘0’, the Access Bank is
selected. If ‘a’ is ‘1’, the BSR is used
to select the GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction
operates in Indexed Literal Offset
Addressing mode whenever
f 95 (5Fh). See Section
42.2.3 “Byte-Oriented and Bit-Ori-
ented Instructions in Indexed Literal
Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write to
destination

Example 1: SUBWF REG, 1, 0

Before Instruction
REG = 3
W = 2
C = ?

After Instruction
REG = 1
W = 2
C = 1 ; result is positive
Z = 0
N = 0

Example 2: SUBWF REG, 0, 0

Before Instruction
REG = 2
W = 2
C = ?

After Instruction
REG = 2
W = 0
C = 1 ; result is zero
Z = 1
N = 0

Example 3: SUBWF REG, 1, 0

Before Instruction
REG = 1
W = 2
C = ?

After Instruction
REG = FFh ;(2’s complement)
W = 2
C = 0 ; result is negative
Z = 0
N = 1

SUBWFB Subtract W from f with Borrow

Syntax: SUBWFB f {,d {,a}}

Operands: 0  f  255
d  [0,1]
a  [0,1]

Operation: (f) – (W) – (C) dest

Status Affected: N, OV, C, DC, Z

Encoding: 0101 10da ffff ffff

Description: Subtract W and the CARRY flag
(borrow) from register ‘f’ (2’s comple-
ment method). If ‘d’ is ‘0’, the result is
stored in W. If ‘d’ is ‘1’, the result is
stored back in register ‘f’ (default).
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 42.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4
Decode Read

register ‘f’
Process

Data
Write to

destination

Example 1: SUBWFB REG, 1, 0

Before Instruction
REG = 19h (0001 1001)
W = 0Dh (0000 1101)
C = 1

After Instruction
REG = 0Ch (0000 1100)
W = 0Dh (0000 1101)
C = 1
Z = 0
N = 0 ; result is positive

Example 2: SUBWFB REG, 0, 0

Before Instruction
REG = 1Bh (0001 1011)
W = 1Ah (0001 1010)
C = 0

After Instruction
REG = 1Bh (0001 1011)
W = 00h
C = 1
Z = 1 ; result is zero
N = 0

Example 3: SUBWFB REG, 1, 0

Before Instruction
REG = 03h (0000 0011)
W = 0Eh (0000 1110)
C = 1

After Instruction
REG = F5h (1111 0101)

; [2’s comp]
W = 0Eh (0000 1110)
C = 0
Z = 0
N = 1 ; result is negative
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 752

PIC18(L)F25/26K83
42.2.5 SPECIAL CONSIDERATIONS WITH
MICROCHIP MPLAB® IDE TOOLS

The latest versions of Microchip’s software tools have
been designed to fully support the extended instruction
set of the PIC18(L)F25/26K83 family of devices. This
includes the MPLAB C18 C compiler, MPASM
assembly language and MPLAB Integrated
Development Environment (IDE).

When selecting a target device for software
development, MPLAB IDE will automatically set default
Configuration bits for that device. The default setting for
the XINST Configuration bit is ‘0’, disabling the
extended instruction set and Indexed Literal Offset
Addressing mode. For proper execution of applications
developed to take advantage of the extended
instruction set, XINST must be set during
programming.

To develop software for the extended instruction set,
the user must enable support for the instructions and
the Indexed Addressing mode in their language tool(s).
Depending on the environment being used, this may be
done in several ways:

• A menu option, or dialog box within the
environment, that allows the user to configure the
language tool and its settings for the project

• A command line option

• A directive in the source code

These options vary between different compilers,
assemblers and development environments. Users are
encouraged to review the documentation accompanying
their development systems for the appropriate
information.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 766

PIC18(L)F25/26K83

—

264

—

264

264

—

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

264

268

egister
n page
3BC8h -
3AEEh

— Unimplemented

3AEDh CANRXPPS — — — CANRXPPS

3AECh — Unimplemented

3AEBh U2CTSPPS — — — U2CTSPPS

3AEAh U2RXPPS — — — U2RXPPS

3AE9h — Unimplemented

3AE8h U1CTSPPS — — — U1CTSPPS

3AE7h U1RXPPS — — — U1RXPPS

3AE6h I2C2SDAPPS — — — I2C2SDAPPS

3AE5h I2C2SCLPPS — — — I2C2SCLPPS

3AE4h I2C1SDAPPS — — — I2C1SDAPPS

3AE3h I2C1SCLPPS — — — I2C1SCLPPS

3AE2h SPI1SSPPS — — — SPI1SSPPS

3AE1h SPI1SDIPPS — — — SPI1SDIPPS

3AE0h SPI1SCKPPS — — — SPI1SCKPPS

3ADFh ADACTPPS — — — ADACTPPS

3ADEh CLCIN3PPS — — — CLCIN3PPS

3ADDh CLCIN2PPS — — — CLCIN2PPS

3ADCh CLCIN1PPS — — — CLCIN1PPS

3ADBh CLCIN0PPS — — — CLCIN0PPS

3ADAh MD1SRCPPS — — — MD1SRCPPS

3AD9h MD1CARHPPS — — — MD1CARHPPS

3AD8h MD1CARLPPS — — — MD1CARLPPS

3AD7h CWG3INPPS — — — CWG3INPPS

3AD6h CWG2INPPS — — — CWG2INPPS

3AD5h CWG1INPPS — — — CWG1INPPS

3AD4h SMT2SIGPPS — — — SMT2SIGPPS

3AD3h SMT2WINPPS — — — SMT2WINPPS

3AD2h SMT1SIGPPS — — — SMT1SIGPPS

3AD1h SMT1WINPPS — — — SMT1WINPPS

3AD0h CCP4PPS — — — CCP4PPS

3ACFh CCP3PPS — — — CCP3PPS

3ACEh CCP2PPS — — — CCP2PPS

3ACDh CCP1PPS — — — CCP1PPS

3ACCh T6INPPS — — — T6INPPS

3ACBh T4INPPS — — — T4INPPS

3ACAh T2INPPS — — — T2INPPS

3AC9h T5GPPS — — — T5GPPS

3AC8h T5CLKIPPS — — — T5CLKIPPS

3AC7h T3GPPS — — — T3GPPS

3AC6h T3CLKIPPS — — — T3CLKIPPS

3AC5h T1GPPS — — — T1GPPS

3AC4h T1CKIPPS — — — T1CKIPPS

3AC3h T0CKIPPS — — — T0CKIPPS

3AC2h INT2PPS — — — INT2PPS

3AC1h INT1PPS — — — INT1PPS

3AC0h INT0PPS — — — INT0PPS

3ABFh PPSLOCK — — — — — — — PPSLOCKED

TABLE 43-1: REGISTER FILE SUMMARY FOR PIC18(L)F25/26K83 DEVICES (CONTINUED)

Addr Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
R
o

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition
Note 1: Not present in LF devices.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 777

PIC18(L)F25/26K83
TABLE 45-23: I2C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Param.
No.

Symbol Characteristic Min. Max. Units Conditions

SP100* THIGH Clock high time 100 kHz mode 4.0 — s Device must operate at a
minimum of 1.5 MHz

400 kHz mode 0.6 — s Device must operate at a
minimum of 10 MHz

SSP module 1.5TCY —

SP101* TLOW Clock low time 100 kHz mode 4.7 — s Device must operate at a
minimum of 1.5 MHz

400 kHz mode 1.3 — s Device must operate at a
minimum of 10 MHz

SSP module 1.5TCY —

SP102* TR SDA and SCL rise
time

100 kHz mode — 1000 ns

400 kHz mode 20 + 0.1CB 300 ns CB is specified to be from
10-400 pF

SP103* TF SDA and SCL fall time 100 kHz mode — 250 ns

400 kHz mode 20 + 0.1CB 250 ns CB is specified to be from
10-400 pF

SP106* THD:DAT Data input hold time 100 kHz mode 0 — ns

400 kHz mode 0 0.9 s

SP107* TSU:DAT Data input setup time 100 kHz mode 250 — ns (Note 2)

400 kHz mode 100 — ns

SP109* TAA Output valid from
clock

100 kHz mode — 3500 ns (Note 1)

400 kHz mode — — ns

SP110* TBUF Bus free time 100 kHz mode 4.7 — s Time the bus must be free
before a new transmission
can start

400 kHz mode 1.3 — s

SP111 CB Bus capacitive loading — 400 pF

* These parameters are characterized but not tested.
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns)

of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
2: A Fast mode (400 kHz) I2C bus device can be used in a Standard mode (100 kHz) I2C bus system, but the requirement

TSU:DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of
the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA
line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification), before the SCL
line is released.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 820

PIC18(L)F25/26K83
47.1 Package Details

The following sections give the technical details of the packages.

�������	
��

�	�������	����	�
���
�	�
��	�	���	���	����	�
����

!����"
�� !�����"�#$�����%�&�'��($
��)���"�
�*�+$(�)$#(�+����	�(�%�,�(����(�����(��%��
���
�� -������'�	��(�.��
�	(�
�#(�	�
/� ��)��#���#�����%�0��%����(���	�$%��)��%�'��#���
�

�(
$#���#�����%�'��#���
�

�(
$#���#�#�������(��&	��%�����1�
�
�#�%��
�� ��)��#���������%�(���
��	����
�
����0�2������

3�.4 3�#�	���)��#���������
�(�	������&�	(�"��$��#��,��,�(��$(�(���
��	�#�

!���" 5�
�(���)�#(�	$

��(�
�	6����%
�,���#*�
���#��#���(�����	
�	��
�!�	6�������
�	�'�	�(������	�(�%��(�
�((
477,,,�)�	
�	��
�	�)7
�	6�����

8��(# �9.:0�
��)��#����;�)�(# ��9 9<� ��=

9$)+�
��'�!��# 9 �>
!�(� � �����3�.
��
�(�����(����!���� � ? ? ����
���%�%�!�	6�������	6��## �� ���� ��/� ����
3�#��(�����(����!���� �� ���� ? ?
���$�%�
�(�����$�%�
�@�%(� 0 ���� �/�� �//�
���%�%�!�	6����@�%(� 0� ���� ��>� ����
<"�
����;���(� � ��/�� ��/B� �����
��
�(�����(����!���� ; ���� ��/� ����
;��%����	6��## 	 ���> ���� ����
8

�
�;��%�@�%(� +� ���� ���� ����
;�,�
�;��%�@�%(� + ���� ���> ����
<"�
������,��
�	�����- �3 ? ? ��/�

NOTE 1

N

1 2

D

E1

eB

c

E

L

A2

eb

b1A1

A

3

��	
�	��
 ��	������� �
�,��� .������3
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 824

PIC18(L)F25/26K83
Note: For the most current package drawings, please see the Microchip Packaging Specification located at

http://www.microchip.com/packaging
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 826

