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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Number of I/O 25

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount
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39 393Fh — 391Fh —

39 393Eh — 391Eh —
39 393Dh — 391Dh —
39 393Ch — 391Ch —
39 393Bh — 391Bh —
39 393Ah — 391Ah —
39 3939h — 3919h —
39 3938h — 3918h —
39 3937h — 3917h —
39 3936h — 3916h —
39 3935h — 3915h —
39 3934h — 3914h —
39 3933h — 3913h —
39 3932h — 3912h —
39 3931h — 3911h —
39 3930h — 3910h —
39 392Fh — 390Fh —
39 392Eh — 390Eh —
39 392Dh — 390Dh —
39 392Ch — 390Ch —
39 392Bh — 390Bh —
39 392Ah — 390Ah —
39 3929h — 3909h —
39 3928h — 3908h —
39 3927h — 3907h —
39 3926h — 3906h —
39 3925h — 3905h —
39 3924h — 3904h —
39 3923h — 3903h —
39 3922h — 3902h —
39 3921h — 3901h —
39 3920h — 3900h —

Leg
No
BLE 4-9: SPECIAL FUNCTION REGISTER MAP FOR PIC18(L)F25/26K83 DEVICES BANK 57 

FFh — 39DFh OSCFRQ 39BFh — 399Fh — 397Fh — 395Fh WDTU

FEh — 39DEh OSCTUNE 39BEh — 399Eh — 397Eh — 395Eh WDTH
FDh — 39DDh OSCEN 39BDh — 399Dh — 397Dh SCANTRIG 395Dh WDTL
FCh — 39DCh OSCSTAT 39BCh — 399Ch — 397Ch SCANCON0 395Ch WDTCON1
FBh — 39DBh OSCCON3 39BBh — 399Bh — 397Bh SCANHADRU 395Bh WDTCON0
FAh — 39DAh OSCCON2 39BAh — 399Ah — 397Ah SCANHADRH 395Ah —
F9h — 39D9h OSCCON1 39B9h — 3999h PIE9 3979h SCANHADRL 3959h —
F8h — 39D8h CPUDOZE 39B8h — 3998h PIE8 3978h SCANLADRU 3958h —
F7h SCANPR 39D7h — 39B7h — 3997h PIE7 3977h SCANLADRH 3957h —
F6h — 39D6h — 39B6h — 3996h PIE6 3976h SCANLADRL 3956h —
F5h — 39D5h — 39B5h — 3995h PIE5 3975h — 3955h —
F4h DMA2PR 39D4h — 39B4h — 3994h PIE4 3974h — 3954h —
F3h DMA1PR 39D3h — 39B3h — 3993h PIE3 3973h — 3953h —
F2h MAINPR 39D2h — 39B2h — 3992h PIE2 3972h — 3952h —
F1h ISRPR 39D1h VREGCON(1) 39B1h — 3991h PIE1 3971h — 3951h —
F0h — 39D0h BORCON 39B0h — 3990h PIE0 3970h — 3950h —
EFh PRLOCK 39CFh — 39AFh — 398Fh — 396Fh — 394Fh —
EEh — 39CEh — 39AEh — 398Eh — 396Eh — 394Eh —
EDh — 39CDh — 39ADh — 398Dh — 396Dh — 394Dh —
ECh — 39CCh — 39ACh — 398Ch — 396Ch — 394Ch —
EBh — 39CBh — 39ABh — 398Bh — 396Bh — 394Bh —
EAh — 39CAh — 39AAh — 398Ah — 396Ah — 394Ah —
E9h — 39C9h — 39A9h PIR9 3989h IPR9 3969h CRCCON1 3949h —
E8h — 39C8h — 39A8h PIR8 3988h IPR8 3968h CRCCON0 3948h —
E7h — 39C7h PMD7 39A7h PIR7 3987h IPR7 3967h CRCXORH 3947h —
E6h NVMCON2 39C6h PMD6 39A6h PIR6 3986h IPR6 3966h CRCXORL 3946h —
E5h NVMCON1 39C5h PMD5 39A5h PIR5 3985h IPR5 3965h CRCSHIFTH 3945h —
E4h — 39C4h PMD4 39A4h PIR4 3984h IPR4 3964h CRCSHIFTL 3944h —
E3h NVMDAT 39C3h PMD3 39A3h PIR3 3983h IPR3 3963h CRCACCH 3943h —
E2h — 39C2h PMD2 39A2h PIR2 3982h IPR2 3962h CRCACCL 3942h —
E1h — 39C1h PMD1 39A1h PIR1 3981h IPR1 3961h CRCDATH 3941h —
E0h NVMADRL 39C0h PMD0 39A0h PIR0 3980h IPR0 3960h CRCDATL 3940h —

end: Unimplemented data memory locations and registers, read as ‘0’. 
te 1: Unimplemented in LF devices.



PIC18(L)F25/26K83
4.7.3.2 FSR Registers, POSTINC, 
POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair
also has four additional indirect operands. Like INDF,
these are “virtual” registers which cannot be directly
read or written. Accessing these registers actually
accesses the location to which the associated FSR
register pair points, and also performs a specific action
on the FSR value. They are:

• POSTDEC: accesses the location to which the 
FSR points, then automatically decrements the 
FSR by 1 afterwards

• POSTINC: accesses the location to which the 
FSR points, then automatically increments the 
FSR by 1 afterwards

• PREINC: automatically increments the FSR by 1, 
then uses the location to which the FSR points in 
the operation

• PLUSW: adds the signed value of the W register 
(range of -127 to 128) to that of the FSR and uses 
the location to which the result points in the 
operation.

In this context, accessing an INDF register uses the
value in the associated FSR register without changing
it. Similarly, accessing a PLUSW register gives the
FSR value an offset by that in the W register; however,
neither W nor the FSR is actually changed in the
operation. Accessing the other virtual registers
changes the value of the FSR register.

FIGURE 4-6: INDIRECT ADDRESSING 

FSR1H:FSR1L

07

Data Memory

0000h

0100h

0200h

0300h

3F00h

3E00h

3FFFh

Bank 0

Bank 1

Bank 2

Bank 62

Bank 63

Bank 3
through
Bank 61

ADDWF, INDF1, 1

07

Using an instruction with one of the
indirect addressing registers as the
operand....

...uses the 14-bit address stored in
the FSR pair associated with that
register....

...to determine the data memory
location to be used in that operation.

In this case, the FSR1 pair contains
3ECCh. This means the contents of
location 3ECCh will be added to that
of the W register and stored back in
3ECCh.

x x 1 1 1 1 1 0 1 1 0 0 1 1 0 0
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 51
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Main routine

E Executed
.4 SIMULTANEOUS LOW AND HIGH PRIORITY 
INTERRUPTS

en both high and low interrupts are active in the same instruction cycle (i.e.,
ultaneous interrupt events), both the high and the low priority requests are

nerated. The high priority ISR is serviced first before servicing the low priority
errupt see Figure 9-5.

URE 9-5: INTERRUPT EXECUTION: SIMULTANEOUS LOW AND HIGH PRIORITY INTERRUPTS

Low Priority 
Interrupt

Main Code Main Code Execution Halted

Low Interrupt 
received

Low ISR

High ISR High ISR

Main routine

Low ISR

High Priority 
Interrupt High Interrupt 

received

RETFIE Executed

RETFI

High Interrupt 
cleared

Low Interrupt 
cleared



PIC18(L)F25/26K83
9.5 Context Saving

The Interrupt controller supports a two-level deep
context saving (Main routine context and Low ISR
context). Refer to state machine shown in Figure 9-6
for details.

The Program Counter (PC) is saved on the dedicated
device PC stack. CPU registers saved include STATUS,
WREG, BSR, FSR0/1/2, PRODL/H and PCLATH/U. 

After WREG has been saved to the context registers,
the resolved vector number of the interrupt source to be
serviced is copied into WREG. Context save and
restore operation is completed by the interrupt
controller based on current state of the interrupts and
the order in which they were sent to the CPU.

Context save/restore works the same way in both
states of MVECEN. When IPEN = 0, there is only one
level interrupt active. Hence, only the main context is
saved when an interrupt is received.

9.5.1 ACCESSING SHADOW REGISTERS

The Interrupt controller automatically saves the context
information in the shadow registers available in Bank
56. Both the saved context values (i.e., main routine
and low ISR) can be accessed using the same set of
shadow registers. By clearing the SHADLO bit in the
SHADCON register (Register 9-40), the CPU register
values saved for main routine context can accessed,
and by setting the SHADLO bit of the CPU register,
values saved for low ISR context can accessed. Low
ISR context is automatically restored to the CPU
registers upon exiting the high ISR. Similarly, the main
context is automatically restored to the CPU registers
upon exiting the low ISR.

The Shadow registers in Bank 56 are readable and
writable, so if the user desires to modify the context
then the corresponding shadow register should be
modified and the value will be restored when exiting the
ISR. Depending on the user’s application, other
registers may also need to be saved.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 115
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P

Z+4

Inst @ Z+2

Z+6

Inst @ Z+4

MAIN

11 12

P

URE 9-9: INTERRUPT TIMING DIAGRAM – THREE CYCLE INSTRUCTION

System 
Clock

Program 
Counter Z Z+2 Z+2 0x82 0x218 0x21A 0x21C

Inst @ Z(1) FNOP FNOP FNOP Inst @ 
0x218

Inst @ 
0x21A

Instruction
Register

Interrupt

Z+2

FNO

RETFIE

Routine MAIN ISR

Vector 
Number 1

IVTBASE 0x80

Program Memory 
0x82 0x86

Interrupt Location = Interrupt vector table entry << 2
                                  = 0x86 << 2 = 0x218

1 2 3 4 5 6 7 8 9 10

Z+2

Inst @ Z(1)

Z+2

Inst @ Z(1)

FNOP FNO

BCF

Note 1: Instruction @ Z is a three-cycle instruction.
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REGISTER 9-12: PIR9: PERIPHERAL INTERRUPT REGISTER 9(1)

U-0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0

— CLC4IF CCP4IF CLC3IF CWG3IF CCP3IF TMR6IF TMR5GIF

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 Unimplemented: Read as ‘0’

bit 6 CLC4IF: CLC4 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 5 CCP4IF: CCP4 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 4 CLC3IF: CLC3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 3 CWG3IF: CWG3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 2 CCP3IF: CCP3 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 1 TMR6IF: TMR6 Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

bit 0 TMR5GIF: TMR5 Gate Interrupt Flag bit

1 = Interrupt has occurred (must be cleared by software)
0 = Interrupt event has not occurred

Note 1: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding 
enable bit, or the global enable bit. User software should ensure the appropriate interrupt flag bits are 
clear prior to enabling an interrupt.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 136
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TABLE 9-3: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reg
on 

INTCON0 GIE/GIEH GIEL IPEN — — INT2EDG INT1EDG INT0EDG 1

INTCON1 STAT<1:0> — — — — — — 1

PIE0 IOCIE CRCIE SCANIE NVMIE CSWIE OSFIE HLVDIE SWIE 1

PIE1 SMT1PWAIE SMT1PRAIE SMT1IE C1IE ADTIE ADIE ZCDIE INT0IE 1

PIE2 I2C1RXIE SPI1IE SPI1TXIE SPI1RXIE DMA1AIE DMA1ORIE DMA1DCNTIE DMA1SCNTIE 1

PIE3 TMR0IE U1IE U1EIE U1TXIE U1RXIE I2C1EIE I2C1IE I2C1TXIE 1

PIE4 INT1IE CLC1IE CWG1IE NCO1IE CCP1IE TMR2IE TMR1GIE TMR1IFE 1

PIE5 IRXIE WAKIE ERRIE TXB2IE/TXBnIE TXB1IE TXB0IE RXB1IE/RXBnIE RXB0IE/FIFOFIE 1

PIE6 DMA2AIE DMA2ORIE DMA2DCNTIE DMA2SCNTIE SMT2PWAIE SMT2PRAIE SMT2IE C2IE 1

PIE7 U2IE U2EIE U2TXIE U2RXIE I2C2EIE I2C2IE I2C2TXIE I2C2RXIE 1

PIE8 TMR5IE INT2IE CLC2IE CWG2IE CCP2IE TMR4IE TMR3GIE TMR3IE 1

PIE9 — CLC4IE CCP4IE CLC3IE CWG3IE CCP3IE TMR6IE TMR5IE 1

PIR0 IOCIF CRCIF SCANIF NVMIF CSWIF OSFIF HLVDIF SWIF 1

PIR1 SMT1PWAIF SMT1PRAIF SMT1IF C1IF ADTIF ADIF ZCDIF INT0IF 1

PIR2 I2C1RXIF SPI1IF SPI1TXIF SPI1RXIF DMA1AIF DMA1ORIF DMA1DCNTIF DMA1SCNTIF 1

PIR3 TMR0IF U1IF U1EIF U1TXIF U1RXIF I2C1EIF I2C1IF I2C1TXIF 1

PIR4 INT1IF CLC1IF CWG1IF NCO1IF CCP1IF TMR2IF TMR1GIF TMR1IF 1

PIR5 IRXIF WAKIF ERRIF TXB2IF/TXBnIF TXB1IF TXB0IF RXB1IF/RXBnIF RXB0IF/FIFOFIF 1

PIR6 DMA2AIF DMA2ORIF DMA2DCNTIF DMA2SCNTIF SMT2PWAIF SMT2PRAIF SMT2IF C2IF 1

PIR7 U2IF U2EIF U2TXIF U2RXIF I2C2EIF I2C2IF I2C2TXIF I2C2RXIF 1

PIR8 TMR5IF INT2IF CLC2IF CWG2IF CCP2IF TMR4IF TMR3GIF TMR3IF 1

PIR9 — CLC4IF CCP4IF CLC3IF CWG3IF CCP3IF TMR6IF TMR5IF 1

IPR0 IOCIP CRCIP SCANIP NVMIP CSWIP OSFIP HLVDIP SWIP 1

IPR1 SMT1PWAIP SMT1PRAIP SMT1IP C1IP ADTIP ADIP ZCDIP INT0IP 1

IPR2 I2C1RIP SPI1IP SPI1TIP SPI1RIP DMA1AIP DMA1ORIP DMA1DCNTIP DMA1SCNTIP 1

IPR3 TMR0IP U1IP U1EIP U1TXIP U1RXIP I2C1EIP I2C1IP I2C1TXIP 1

IPR4 INT1IP CLC1IP CWG1IP NCO1IP CCP1IP TMR2IP TMR1GIP TMR1IP 1

IPR5 IRXIP WAKIP ERRIP TXB2IP/TXBnIP TXB1IP TXB0IP RXB1IP/RXBnIP RXB0IP/FIFOFIP 1

IPR6 DMA2AIP DMA2ORIP DMA2DCNTIP DMA2SCNTIP SMT2PWAIP SMT2PRAIP SMT2IP C2IP 1

IPR7 U2IP U2EIP U2TXIP U2RXIP I2C2EIP I2C2IP I2C2TXIP I2C2RXIP 1

IPR8 TMR5IP INT2IP CLC2IP CWG2IP CCP2IP TMR4IP TMR3GIP TMR3IP 1

IPR9 — CLC4IP CCP4IP CLC3IP CWG3IP CCP3IP TMR6IP TMR5IP 1

IVTBASEU — — — BASE<20:16> 1

IVTBASEH BASE<15:8> 1

IVTBASEL BASE<7:0> 1

IVTADU — — — AD<20:16> 1

IVTADH AD<15:8> 1

IVTADL AD<7:0> 1

IVTLOCK — — — — — — — IVTLOCKED 1

Legend:  — = unimplemented locations, read as ‘0’. Shaded bits are not used for interrupts.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 160
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REGISTER 11-3: WDTPSL: WWDT PRESCALE SELECT LOW BYTE REGISTER (READ-ONLY) 

R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0

PSCNT<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PSCNT<7:0>: Prescale Select Low Byte bits(1)

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the 
WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during 
normal operation.

REGISTER 11-4: WDTPSH: WWDT PRESCALE SELECT HIGH BYTE REGISTER (READ-ONLY) 

R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0

PSCNT<15:8>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 PSCNT<15:8>: Prescale Select High Byte bits(1)

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the 
WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during 
normal operation.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 174
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REGISTER 11-5: WDTTMR: WDT TIMER REGISTER (READ-ONLY) 

R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0 R-0/0

WDTTMR<4:0> STATE PSCNT<17:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-3 WDTTMR<4:0>: Watchdog Window Value bits

bit 2 STATE: WDT Armed Status bit
1 = WDT is armed
0 = WDT is not armed

bit 1-0 PSCNT<17:16>: Prescale Select Upper Byte bits(1)

Note 1: The 18-bit WDT prescale value, PSCNT<17:0> includes the WDTPSL, WDTPSH and the lower bits of the 
WDTTMR registers. PSCNT<17:0> is intended for debug operations and should not be read during 
normal operation.

WINDOW
WDT Window State

Open Percent
Closed Open

111 N/A 00000-11111 100

110 00000-00011 00100-11111 87.5

101 00000-00111 01000-11111 75

100 00000-01011 01100-11111 62.5

011 00000-01111 10000-11111 50

010 00000-10011 10100-11111 37.5

001 00000-10111 11000-11111 25

000 00000-11011 11100-11111 12.5
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 175
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30.1 DSM Operation

The DSM module can be enabled by setting the EN bit
in the MD1CON0 register. Clearing the EN bit in the
MD1CON0 register, disables the DSM module output
and switches the carrier high and carrier low signals to
the default option of MD1CARHPPS and
MD1CARLPPS, respectively. The modulator signal
source is also switched to the BIT in the MD1CON0
register. 

The values used to select the carrier high, carrier low,
and modulator sources held by the Modulation Source,
Modulation High Carrier, and Modulation Low Carrier
control registers are not affected when the EN bit is
cleared and the DSM module is disabled. The values
inside these registers remain unchanged while the
DSM is inactive. The sources for the carrier high, car-
rier low and modulator signals will once again be
selected when the EN bit is set and the DSM module is
again enabled and active.

30.2 Modulator Signal Sources

The modulator signal can be supplied from the sources
specified in Table 30-3.

The modulator signal is selected by configuring the
MS<4:0> bits in the MD1SRC register. 

30.3 Carrier Signal Sources

The carrier high signal and carrier low signal can be
supplied from the sources specified in Table 30-1.

The carrier high signal is selected by configuring the
CH<4:0> bits in the MD1CARH register. The carrier low
signal is selected by configuring the CL<4:0> bits in the
MD1CARL register.

30.4 Carrier Synchronization

During the time when the DSM switches between car-
rier high and carrier low signal sources, the carrier data
in the modulated output signal can become truncated.
To prevent this, the carrier signal can be synchronized
to the modulator signal. When synchronization is
enabled, the carrier pulse that is being mixed at the
time of the transition is allowed to transition low before
the DSM switches over to the next carrier source.

Synchronization is enabled separately for the carrier
high and carrier low signal sources. Synchronization for
the carrier high signal is enabled by setting the
CHSYNC bit in the MD1CON1 register.
Synchronization for the carrier low signal is enabled by
setting the CLSYNC bit in the MD1CON1 register. 

Figure 30-2 through Figure 30-6 show timing diagrams
of using various synchronization methods.
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FIGURE 32-2: SPI MASTER/SLAVE CONNECTION WITH FIFOs
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32.3.1 ENABLING AND DISABLING THE 
SPI MODULE

To enable the serial peripheral, the SPI enable bit (EN
in SPIxCON0) must be set. To reset or reconfigure SPI
mode, clear the EN bit, re-initialize the SSPxCONx
registers and then set the EN bit. Setting the EN bit
enables the SPI inputs and outputs: SDI, SDO,
SCK(out), SCK(in), SS(out), and SS(in). All of these
inputs and outputs are steered by PPS, and thus must
have their functions properly mapped to device pins to
function (see Section 17.0 “Peripheral Pin Select
(PPS) Module”). In addition, SS(out) and SCK(out)
must have the pins they are steered to set as outputs
(TRIS bits must be ‘0’) in order to properly output.
Clearing the TRIS bit of the SDO pin will cause the SPI
module to always control that pin, but is not necessary
for SDO functionality. (see Section 32.3.5 “Input and
Output Polarity Bits”). Configurations selected by the
following registers should not be changed while the EN
bit is set:

• SPIxBAUD

• SPIxCON1

• SPIxCON0 (except to clear the EN bit)

Clearing the EN bit aborts any transmissions in
progress, disables the setting of interrupt flags by
hardware, and resets the FIFO occupancy (see
Section 32.3.3 “Transmit and Receive FIFOs” for
more FIFO details).

32.3.2 BUSY BIT

While a data transfer is in progress, the SPI module
sets the BUSY bit of SPIxCON2. This bit can be polled
by the user to determine the current status of the SPI
module, and to know when a communication is
complete. The following registers/bits should not be
written by software while the BUSY bit is set:

• SPIxTCNTH/L

• SPIxTWIDTH

• SPIxCON2

• The CLRBF bit of SPIxSTATUS

32.3.3 TRANSMIT AND RECEIVE FIFOS

The transmission and reception of data from the SPI
module is handled by two FIFOs, one for reception and
one for transmission (addressed by the SFRs SPIxRXB
and SPIxTXB, respectively.). The TXFIFO is written by
software and is read by the SPI module to shift the data
onto the SDO pin. The RXFIFO is written by the SPI
module as it shifts in the data from the SDI pin and is
read by software. Setting the CLRBF bit of
SPIxSTATUS resets the occupancy for both FIFOs,
emptying both buffers. The FIFOs are also reset by dis-
abling the SPI module.

The SPIxRXB register addresses the receive FIFO and
is read-only. Reading from this register will read from
the first FIFO location that was written to by hardware
and decrease the RXFIFO occupancy. If the FIFO is
empty, reading from this register will instead return a
value of zero and set the RXRE (Receive Buffer Read
Error) bit of the SPIxSTATUS register. The RXRE bit
must then be cleared in software in order to properly
reflect the status of the read error. When RXFIFO is full,
the RXBF bit of the SPIxSTATUS register will be set.
When the device receives data on the SDI pin, the
receive FIFO may be written to by hardware and the
occupancy increased, depending on the mode and
receiver settings, as summarized in Table 32-1.   

The SPIxTXB register addresses the transmit FIFO
and is write-only. Writing to the register will write to the
first empty FIFO location and increase the occupancy.
If the FIFO is full, writing to this register will not affect
the data and will set the TXWE bit of the SPIxSTATUS
register. When the TXFIFO is empty, the TXBE bit of
SPIxSTATUS will be set. When a data transfer occurs,
data may be read from the first FIFO location written to
and the occupancy decreases, depending on mode
and transmitter settings, as summarized in Table 32-1
and Section 32.6.1 “Slave Mode Transmit options”.

32.3.4 LSB VS. MSB-FIRST OPERATION

Typically, SPI communication is output Most-Significant
bit first, but some devices/buses may not conform to
this standard. In this case, the LSBF bit may be used to
alter the order in which bits are shifted out during the
data exchange. In both Master and Slave mode, the
LSBF bit of SPIxCON0 controls if data is shifted MSb or
LSb first. Clearing the bit (default) configures the data
to transfer MSb first, which is traditional SPI operation,
while setting the bit configures the data to transfer LSb
first.

Note: It is also not recommended to read SPIx-
TCNTH/L while the BUSY bit is set, as the
value in the registers may not be a reliable
indicator of the Transfer Counter. Use the
Transfer Count Zero Interrupt Flag (the
TCZIF bit of SPIxINTF) to accurately
determine that the Transfer Counter has
reached zero.

Note: TXFIFO occupancy and RXFIFO
occupancy simply refer to the number of
bytes that are currently being stored in
each FIFO. These values are used in this
chapter to illustrate the function of these
FIFOs and are not directly accessible
through software.
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REGISTER 32-4: SPIxTCNTH: SPI TRANSFER COUNTER MSB REGISTER

REGISTER 32-5: SPIxTWIDTH: SPI TRANSFER WIDTH REGISTER

U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — — TCNT10 TCNT9 TCNT8

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 TCNT<10:8>:

BMODE = 0

Bits 13-11 of the Transfer Counter, counting the total number of bits to transfer

BMODE = 1

Bits 10-8 of the Transfer Counter, counting the total number of bytes to transfer

Note: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).

U-0 U-0 U-0 U-0 U-0 R/W-0/0 R/W-0/0 R/W-0/0

— — — — — TWIDTH2 TWIDTH1 TWIDTH0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

bit 7-3 Unimplemented: Read as ‘0’

bit 2-0 TWIDTH<2:0>: 

BMODE = 0

Bits 2-0 of the Transfer Counter, counting the total number of bits to transfer

BMODE = 1

Size (in bits) of each transfer counted by the transfer counter

111 = 7 bits

110 = 6 bits

101 = 5 bits

100 = 4 bits

011 = 3 bits

010 = 2 bits

001 = 1 bit

000 = 8 bits

Note: This register should not be written to while a transfer is in progress (BUSY bit of SPIxCON2 is set).
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REGISTER 33-11: I2CxPIE: I2CxIE INTERRUPT AND HOLD ENABLE REGISTER

R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

CNTIE ACKTIE — WRIE ADRIE PCIE RSCIE SCIE

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set      HC = Hardware clear

bit 7 CNTIE: Byte Count Interrupt Enable bit

1 = When CNTIF is set
0 = Byte count interrupts are disabled

bit 6 ACKTIE: Acknowledge Interrupt and Hold Enable bit

1 = When ACKTIF is set
         If ACK is generated, CSTR is also set.
         If NACK is generated, CSTR is unchanged
0 = Acknowledge holding and interrupt is disabled

bit 5 Unimplemented: Read as ‘0’

bit 4 WRIE: Data Write Interrupt and Hold Enable bit

1 = When WRIF is set; CSTR is set
0 = Data Write holding and interrupt is disabled

bit 3 ADRIE: Address Interrupt and Hold Enable bit

1 = When ADRIF is set; CSTR is set
0 = Address holding and interrupt is disabled

bit 2 PCIE: Stop Condition Interrupt Enable bit

1 = Enable interrupt on detection of Stop condition
0 = Stop detection interrupts are disabled

bit 1 RSCIE: Restart Condition Interrupt Enable bit

1 = Enable interrupt on detection of Restart condition
0 = Start detection interrupts are disabled

bit 0 SCIE: Start Condition Interrupt Enable bit

1 = Enable interrupt on detection of Start condition
0 = Start detection interrupts are disabled

Note 1: Enabled interrupt flags are OR’d to produce the PIRx<I2CxIF> bit.
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REGISTER 33-13: I2CxADR1: I2C ADDRESS 1 REGISTER

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U-0 

ADR14 ADR13 ADR12 ADR11 ADR10 ADR9 ADR8 —

bit 7 bit 0

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 U-0 

ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set      HC = Hardware clear

bit 7-1 ADR[7-1]: Address or Divider bits 

MODE<2:0> = 000 | 110 - 7-bit Slave/Multi-Master Modes
ADR<7:1>:7-bit Slave Address
ADR<0>: Unused in this mode; bit state is a “don’t care”

MODE<2:0> = 001 | 111 - 7-bit Slave/Multi-Master modes w/Masking
MSK0<7:1>:7-bit Slave Address
MSK0<0>: Unused in this mode; bit state is a “don’t care”

MODE<2:0> = 01x - 10-bit Slave Modes
ADR<14-10>:Bit pattern sent by master is fixed by I2C specification and must be equal to

‘11110’. However, these bit values are compared by hardware to the received
data to determine a match. It is up to the user to set these bits as ‘11110’.

ADR<9-8>:Two Most Significant bits of 10-bit address

bit 0 Unimplemented: Read as ‘0’.
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TABLE 33-18:  SUMMARY OF REGISTERS FOR I2C 8-BIT MACRO 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on page

I2CxBTO — — — — — BTO<2:0> 567

I2CxCLK — — — — — CLK<2:0> 566

I2CxPIE CNTIE ACKTIE — WRIE ADRIE PCIE RSCIE SCIE 573

I2CxPIR CNTIF ACKTIF — WRIF ADRIF PCIF RSCIF SCIF 572

I2CxERR — BTOIF BCLIF NACKIF — BTOIE BCLIE NACKIE 570

I2CxSTAT0 BFRE SMA MMA R D — — — 568

I2CxSTAT1 TXWE — TXBE — RXRE CLRBF — RXBF 569

I2CxCON0 EN RSEN S CSTR MDR MODE<2:0> 562

I2CxCON1 ACKCNT ACKDT ACKSTAT ACKT — RXOV TXU CSD 564

I2CxCON2 ACNT GCEN FME ADB SDAHT<3:2> BFRET<1:0> 565

I2CxADR0 ADR<7:0> 574

I2CxADR1                      ADR<7:1> — 575

I2CxADR2 ADR<7:0> 576

I2CxADR3                      ADR<7:1> — 577

I2CxADB0 ADB<7:0> 578

I2CxADB1 ADB<7:0> 579

I2CxCNT CNT<7:0> 571

I2CxRXB RXB<7:0> —

I2CxTXB TXB<7:0> —

Legend: — = unimplemented, read as ‘0’. Shaded cells are unused by the I2C module.
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FIGURE 34-5: EFFECTS OF PHASE JITTER ON THE MICROCONTROLLER CLOCK 
AND CAN BIT TIME

Once these considerations are taken into account, it is
possible to show that the relation between the jitter and
the total frequency error can be defined as: 

EQUATION 34-4: JITTER AND TOTAL 
FREQUENCY ERROR

where jitter is expressed in terms of time and NBT is the
Nominal Bit Time. 

For example, assume a CAN bit rate of 125 Kb/s, which
gives an NBT of 8 µs. For a 16 MHz clock generated
from a 4x PLL, the jitter at this clock frequency is:

EQUATION 34-5: 16 MHz CLOCK FROM 4x 
PLL JITTER:

and resultant frequency error is:

EQUATION 34-6: RESULTANT FREQUENCY 
ERROR:

Table 34-2 shows the relation between the clock
generated by the PLL and the frequency error from
jitter (measured jitter-induced error of 2%, Gaussian
distribution, within three standard deviations), as a
percentage of the nominal clock frequency.

This is clearly smaller than the expected drift of a
crystal oscillator, typically specified at 100 ppm or
0.01%. If we add jitter to oscillator drift, we have a total
frequency drift of 0.0132%. The total oscillator
frequency errors for common clock frequencies and bit
rates, including both drift and jitter, are shown in
Table 34-3.

TABLE 34-2: FREQUENCY ERROR FROM JITTER AT VARIOUS PLL GENERATED CLOCK SPEEDS

Nominal Clock

Clock with Jitter

CAN Bit Time

Phase Skew (Jitter)

CAN Bit Jitterwith Jitter

f
Tjitter

10 NBT
------------------------

2 Pjitter
10 NBT
------------------------==

2%
1

16 MHz
------------------- 0.02

16
610

----------------- 1.25ns= =

2 1.25
9–10 

10 8
6–10 

--------------------------------------- 3.125
5–10 0.0031%==

PLL 
Output

Pjitter Tjitter

Frequency Error at Various Nominal Bit Times (Bit Rates)

8 s
(125 Kb/s)

4 s
(250 Kb/s)

2 s
(500 Kb/s)

1 s
(1 Mb/s)

40 MHz 0.5 ns 1 ns 0.00125% 0.00250% 0.005% 0.01%

24 MHz 0.83 ns 1.67 ns 0.00209% 0.00418% 0.008% 0.017%

16 MHz 1.25 ns 2.5 ns 0.00313% 0.00625% 0.013% 0.025%
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44.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers (MCU) and dsPIC® digital
signal controllers (DSC) are supported with a full range
of software and hardware development tools:

• Integrated Development Environment

- MPLAB® X IDE Software

• Compilers/Assemblers/Linkers

- MPLAB XC Compiler 

- MPASMTM Assembler

- MPLINKTM Object Linker/
MPLIBTM Object Librarian

- MPLAB Assembler/Linker/Librarian for
Various Device Families

• Simulators

- MPLAB X SIM Software Simulator

• Emulators

- MPLAB REAL ICE™ In-Circuit Emulator

• In-Circuit Debuggers/Programmers

- MPLAB ICD 3

- PICkit™ 3 

• Device Programmers

- MPLAB PM3 Device Programmer

• Low-Cost Demonstration/Development Boards, 
Evaluation Kits and Starter Kits

• Third-party development tools

44.1 MPLAB X Integrated Development 
Environment Software

The MPLAB X IDE is a single, unified graphical user
interface for Microchip and third-party software, and
hardware development tool that runs on Windows®,
Linux and Mac OS® X. Based on the NetBeans IDE,
MPLAB X IDE is an entirely new IDE with a host of free
software components and plug-ins for high-
performance application development and debugging.
Moving between tools and upgrading from software
simulators to hardware debugging and programming
tools is simple with the seamless user interface.

With complete project management, visual call graphs,
a configurable watch window and a feature-rich editor
that includes code completion and context menus,
MPLAB X IDE is flexible and friendly enough for new
users. With the ability to support multiple tools on
multiple projects with simultaneous debugging, MPLAB
X IDE is also suitable for the needs of experienced
users.

Feature-Rich Editor:

• Color syntax highlighting

• Smart code completion makes suggestions and 
provides hints as you type

• Automatic code formatting based on user-defined 
rules

• Live parsing

User-Friendly, Customizable Interface:

• Fully customizable interface: toolbars, toolbar 
buttons, windows, window placement, etc.

• Call graph window

Project-Based Workspaces:

• Multiple projects

• Multiple tools

• Multiple configurations

• Simultaneous debugging sessions

File History and Bug Tracking:

• Local file history feature

• Built-in support for Bugzilla issue tracker
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FIGURE 45-3: POR AND POR REARM WITH SLOW RISING VDD 
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VSS

VSS
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Note 1: When NPOR is low, the device is held in Reset.
2: TPOR 1 s typical.
3: TVLOW 2.7 s typical.
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