

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k83-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device specific information for the following devices:

- PIC18F25K83 PIC18LF25K83
- PIC18F26K83 PIC18LF26K83

This family offers the advantages of all PIC18 microcontrollers – namely, high computational performance at an economical price – with the addition of high-endurance Program Flash Memory, Universal Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), Inter-integrated Circuit (I²C), Direct Memory Access (DMA), Configurable Logic Cells (CLC), Signal Measurement Timer (SMT), Numerically Controlled Oscillator (NCO), and Analog-to-Digital Converter with Computation (ADC²).

1.1 New Features

- Direct Memory Access Controller: The Direct Memory Access (DMA) Controller is designed to service data transfers between different memory regions directly without intervention from the CPU. By eliminating the need for CPU-intensive management of handling interrupts intended for data transfers, the CPU now can spend more time on other tasks.
- Vectored Interrupt Controller: The Vectored Interrupt Controller module reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It assembles all of the interrupt request signals and resolves the interrupts based on both a fixed natural order priority and a user-assigned priority, thereby eliminating scanning of interrupt sources.
- Universal Asynchronous Receiver Transmitter: The Universal Asynchronous Receiver Transmitter (UART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer, independent of device program execution. The UART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or one of several automated protocols. Full-Duplex mode is useful for communications with peripheral systems, with DMA/DALI/LIN support.

- Serial Peripheral Interface: The Serial Peripheral Interface (SPI) module is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select. Example slave devices include serial EEPROMs, shift registers, display drivers, A/D converters, or another PIC.
- I²C Module: The I²C module provides a synchronous interface between the microcontroller and other I²C-compatible devices using the two-wire I²C serial bus. Devices communicate in a master/slave environment. The I²C bus specifies two signal connections Serial Clock (SCL) and Serial Data (SDA). Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors to the supply voltage.
- **12-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.

1.2 Details on Individual Family Members

Devices in the PIC18(L)F25/26K83 family are available in 28-pin packages. The block diagram for this device is shown in Figure 3-1.

The similarities and differences among the devices are listed in the PIC18(L)F25/26K83 Family Types Table (page 4). The pinouts for all devices are listed in Table 3.

REGISTER 1	0-2: CPUDOZ	E: DOZE AN	D IDLE REG	SISTER			
R/W-0/u	R/W/HC/HS-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>	
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, r	ead as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value Resets	at POR and	BOR/Value at a	Ill other
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is c	cleared by ha	rdware	
bit 7 bit 6 bit 5 bit 4	IDLEN: Idle Ena 1 = A SLEEP ins 0 = A SLEEP ins DOZEN: Doze E 1 = The CPU ex 0 = The CPU ex ROI: Recover-O 1 = Entering the operation 0 = Interrupt ent DOE: Doze-On-1 1 = Executing F	ble bit struction inhibit struction places inable bit ^(1,2) cecutes instruc cecutes all instruction n-Interrupt bit Interrupt Servit try does not ch Exit bit RETFIE makes	s the CPU clos the device in tion cycles acc ruction cycles ice Routine (IS ange DOZEN DOZEN = 1, t	ck, but not the to full Sleep n cording to DO (fastest, highe SR) makes DO	e peripheral c node ZE setting est power ope ZEN = 0 bit, I PU to reduce	lock(s) eration) pringing the CP d speed operat	U to full-speed
	0 = RETFIE doe	es not change	DOZEN	5 5			
bit 3	Unimplemented	1: Read as '0'					
bit 2-0	DOZE<2:0>: Ra 111 =1:256 110 =1:128 101 =1:64 100 =1:32 011 =1:16 010 =1:8 001 =1:4 000 =1:2	tio of CPU Inst	ruction Cycles	to Peripheral	I Instruction C	Cycles	

Note 1: When ROI = 1 or DOE = 1, DOZEN is changed by hardware interrupt entry and/or exit.

2: Entering ICD overrides DOZEN, returning the CPU to full execution speed; this bit is not affected.

TABLE 10-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
VREGCON ⁽¹⁾	-	—	_	—	_	_	VREGPM	Reserved	166
CPUDOZE	IDLEN	DOZEN	ROI	DOE	_		DOZE<2:0>		167

 Legend:
 --= unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

 Note
 1:
 Not present in LF parts.

REGISTE	ER 15-2: DI	MAxCON1: D	MAx CONTRO	OL REGISTER	1		
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
DMC	DE<1:0>	DSTP	SMR	<1:0>	SMOD	E<1:0>	SSTP
bit 7	bit 7						
Legend:							
R = Reada	ble bit	W = Writable bit	:	U = Unimplemen	ted bit, read as '0	,	
u = Bit is u	nchanged	x = Bit is unknow	wn	-n/n = Value at P	OR and BOR/Valu	ue at all other Re	sets
bit 5	10 = DMAx 01 = DMAx 00 = DMAx DSTP: Destir 1 = SIROEN	DPTR<15:0> is DPTR<15:0> is DPTR<15:0> re nation Counter F	decremented a incremented at mains unchang Reload Stop bit when Destinatio	fter each transfe ter each transfer ed after each tra n Counter reloac	er completion completion ansfer completio	n	
	0 = SIRQEN	bit is not clear	ed when Destin	ation Counter re	loads		
bit 4-3	SMR[1:0]: So	ource Memory F	Region Select bi	ts			
	1x = DMAx 01 = DMAx 00 = DMAx	SSA<21:0> poi SSA<21:0> poi SSA<21:0> poi	nts to Data EEF nts to Program nts to SFR/GPF	ROM Flash Memory Data Space			
bit 2-1	SMODE[1:0]	: Source Addres	ss Mode Selecti	on bits			
	11 = Reser	ved, Do not use	; 				

- 10 = DMAxSPTR<21:0> is decremented after each transfer completion
- 01 = DMAxSPTR<21:0> is incremented after each transfer completion
- 00 = DMAxSPTR<21:0> remains unchanged after each transfer completion
- bit 0 **SSTP:** Source Counter Reload Stop bit
 - 1 = SIRQEN bit is cleared when Source Counter reloads
 - 0 = SIRQEN bit is not cleared when Source Counter reloads

REGISTER 15-12: DMAxSCNTL: DMAx SOURCE COUNT LOW REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
SCNT<7:0>								
bit 7							bit 0	
Legend:								

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n/n = Value at POR and BOR/Value at all other	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged
Resets			

bit 7-0 **SCNT<7:0>:** Current Source Byte Count

REGISTER 15-13: DMAxSCNTH: DMAx SOURCE COUNT HIGH REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_		—	—	SCNT<11:8>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **SCNT<11:8>:** Current Source Byte Count

REGISTER 15-14: DMAxDSAL: DMAx DESTINATION START ADDRESS LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | DSA | \<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as '0'
-n/n = Value at POR and BOR/Value at all other Resets	1 = bit is set	0 = bit is cleared	x = bit is unknown u = bit is unchanged

bit 7-0 **DSA<7:0>:** Destination Start Address bits

22.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge Start and Reset (MODE<4:0> = 01100)
- Falling edge Start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the T2PR period value. External signal edges will have no effect until after software sets the ON bit. Figure 22-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated until the timer halts at the T2PR period match unless an external signal edge resets the timer before the match occurs.

FIGURE 22-10: EDGE TRIGGERED HARDWARE LIMIT ONE-SHOT MODE TIMING DIAGRAM (MODE = 01100))

26.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous CCP functions. The PIC18(L)F25/26K83 family has three instances of the CWG module.

Each of the CWG modules has the following features:

- Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart option
 - Auto-shutdown pin override control

26.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 26.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 26.10 "Auto-Shutdown"**.

26.2 Operating Modes

The CWG module can operate in six different modes, as specified by the MODE<2:0> bits of the CWGxCON0 register:

- · Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 26.10 "Auto-Shutdown".

Note: Except as noted for Full-bridge mode (Section 26.2.3 "Full-Bridge Modes"), mode changes should only be performed while EN = 0 (Register 26-1).

26.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 26-2. A non-overlap (dead-band) time is inserted between the two outputs as described in **Section 26.6 "Dead-Band Control"**. The output steering feature cannot be used in this mode. A basic block diagram of this mode is shown in Figure 26-1.

The unused outputs CWGxC and CWGxD drive similar signals as CWGxA and CWGxB, with polarity independently controlled by the POLC and POLD bits of the CWGxCON1 register, respectively.

26.3 Clock Source

The clock source is used to drive the dead-band timing circuits. The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC

When the HFINTOSC is selected, the HFINTOSC will be kept running during Sleep. Therefore, CWG modes requiring dead band can operate in Sleep, provided that the CWG data input is also active during Sleep. The clock sources are selected using the CS bit of the CWGxCLKCON register (Register 26-3). The system clock Fosc, is disabled in Sleep and thus dead-band control cannot be used.

26.4 Selectable Input Sources

The CWG generates the output waveforms from the following input sources:

Source Peripheral	Signal Name	ISM<2:0>
CWGxPPS	Pin selected by CWGxPPS	000
CCP1	CCP1 Output	001
CCP2	CCP2 Output	010
PWM3	PWM3 Output	011
PWM4	PWM4 Output	100
CMP1	Comparator 1 Output	101
CMP2	Comparator 2 Output	110
DSM	Data signal modulator output	111

TABLE 26-1: SELECTABLE INPUT SOURCES

The input sources are selected using the IS<4:0> bits in the CWGxISM register (Register 26-4).

26.5 Output Control

26.5.1 CWG OUTPUTS

Each CWG output can be routed to a Peripheral Pin Select (PPS) output via the RxyPPS register (see **Section 17.0 "Peripheral Pin Select (PPS) Module"**).

26.5.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the POLy bits of the CWGxCON1. Auto-shutdown and steering options are unaffected by polarity.

26.6 Dead-Band Control

The dead-band control provides non-overlapping PWM signals to prevent shoot-through current in PWM switches. Dead-band operation is employed for Half-Bridge and Full-Bridge modes. The CWG contains two 6-bit dead-band counters. One is used for the rising edge of the input source control in Half-Bridge mode or for reverse dead-band Full-Bridge mode. The other is used for the falling edge of the input source control in Half-Bridge mode or for forward dead band in Full-Bridge mode.

Dead band is timed by counting CWG clock periods from zero up to the value in the rising or falling deadband counter registers. See CWGxDBR and CWGxDBF registers, respectively.

26.6.1 DEAD-BAND FUNCTIONALITY IN HALF-BRIDGE MODE

In Half-Bridge mode, the dead-band counters dictate the delay between the falling edge of the normal output and the rising edge of the inverted output. This can be seen in Figure 26-2.

26.6.2 DEAD-BAND FUNCTIONALITY IN FULL-BRIDGE MODE

In Full-Bridge mode, the dead-band counters are used when undergoing a direction change. The MODE<0> bit of the CWGxCON0 register can be set or cleared while the CWG is running, allowing for changes from Forward to Reverse mode. The CWGxA and CWGxC signals will change immediately upon the first rising input edge following a direction change, but the modulated signals (CWGxB or CWGxD, depending on the direction of the change) will experience a delay dictated by the dead-band counters.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CWGxCON0	EN	LD	—	—	—		MODE<2:0>		410
CWGxCON1	—	-	IN	—	POLD	POLC	POLB	POLA	411
CWGxCLK	_	_	—	—	—	_	_	CS	412
CWGxISM	—	_	—	—	—		ISM<2:0>		413
CWGxSTR	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA	414
CWGxAS0	SHUTDOWN	REN	LSBD	<1:0>	LSAC	<1:0>	—	—	415
CWGxAS1	—	AS6E	AS5E	AS4E	AS3E	AS2E	AS1E	AS0E	416
CWGxDBR	—	_			DBR<	:5:0>			417
CWGxDBF	—	_			DBF<	:5:0>			417

TABLE 26-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWG

Legend: – = unimplemented locations read as '0'. Shaded cells are not used by CWG.

G3D4T G3D4N G3D3T	G3D3N				
	CODON	G3D2T	G3D2N	G3D1T	G3D1N
bit 7	-			·	bit 0
Legend:					
R = Readable bit W = Writable	e bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unchanged x = Bit is un	known	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set '0' = Bit is cl	eared				
bit 7 G3D4T: Gate 2 Data 4 True	e (noninverted)	bit			
1 = CLCIN3 (true) is gated	l into CLCx Gat	te 2			
0 = CLCIN3 (true) is not g	ated into CLCx	Gate 2			
bit 6 G3D4N: Gate 2 Data 4 Ne	gated (inverted)) bit			
1 = CLCIN3 (inverted) is g 0 = CLCIN3 (inverted) is r	ated into CLCx	: Gate 2 I Cx Gate 2			
bit 5 G3D3T : Gate 2 Data 3 Tru	e (noninverted)	bit			
1 = CLCIN2 (true) is gated	l into CLCx Gat	te 2			
0 = CLCIN2 (true) is not g	ated into CLCx	Gate 2			
bit 4 G3D3N: Gate 2 Data 3 Ne	gated (inverted)) bit			
1 = CLCIN2 (inverted) is g	ated into CLCx	Gate 2			
0 = CLCIN2 (inverted) is r	ot gated into C	LCx Gate 2			
bit 3 G3D2T: Gate 2 Data 2 Tru	e (noninverted)	bit			
1 = CLCIN1 (true) is gated	l into CLCx Gat	te 2			
0 = CECINI (true) IS Not g	aled Into CLCX				
bit 2 G3D2N: Gate 2 Data 2 Ne $1 = CLCIN1 (invorted)$ is c	yaleu (inverteu)) DIL			
0 = CLCIN1 (inverted) is g	ot gated into CLCX	LCx Gate 2			
bit 1 G3D1T: Gate 2 Data 1 Tru	e (noninverted)	bit			
1 = CLCIN0 (true) is gated	l into CLCx Gat	te 2			
0 = CLCIN0 (true) is not g	ated into CLCx	Gate 2			
bit 0 G3D1N: Gate 2 Data 1 Ne	gated (inverted)) bit			
1 = CLCIN0 (inverted) is g	ated into CLCx	Gate 2			
0 = CLCIN0 (inverted) is r	ot gated into C	LCx Gate 2			

REGISTER 27-9: CLCxGLS2: GATE 2 LOGIC SELECT REGISTER

REGISTER 28-5: NCO1ACCU: NCO1 ACCUMULATOR REGISTER – UPPER BYTE⁽¹⁾

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		ACC<	19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ACC<19:16>: NCO1 Accumulator, Upper Byte

Note 1: The accumulator spans registers NCO1ACCU:NCO1ACCH: NCO1ACCL. The 24 bits are reserved but not all are used. This register updates in real time, asynchronously to the CPU; there is no provision to guarantee atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

REGISTER 28-6: NCO1INCL: NCO1 INCREMENT REGISTER – LOW BYTE^(1,2)

R/W-0/0	R/W-1/1						
			INC	<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INC<7:0>: NCO1 Increment, Low Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

2: NCO1INC is double-buffered as INCBUF; INCBUF is updated on the next falling edge of NCOCLK after writing to NCO1INCL; NCO1INCU and NCO1INCH should be written prior to writing NCO1INCL.

REGISTER 28-7: NCO1INCH: NCO1 INCREMENT REGISTER – HIGH BYTE⁽¹⁾

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | INC< | 15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INC<15:8>: NCO1 Increment, High Byte

Note 1: The logical increment spans NCO1INCU:NCO1INCH:NCO1INCL.

The operation of the UART module is controlled through nineteen registers:

- Three control registers (UxCON0-UxCON2)
- Error enable and status (UxERRIE, UxERRIR, UxUIR)
- UART buffer status and control (UxFIFO)
- Three 9-bit protocol parameters (UxP1-UxP3)
- 16-bit baud rate generator (UxBRGH:L)
- Transmit buffer write (UxTXB)
- Receive buffer read (UxRXB)
- Receive checksum (UxRXCHK)
- Transmit checksum (UxTXCHK)

These registers are detailed in Section 31.21 "Register Definitions: UART Control".

31.1 UART I/O Pin Configuration

The RX input pin is selected with the UxRPPS register. The TX output pin is selected with each pin's RxyPPS register. When the TRIS control for the pin corresponding to the TX output is cleared, then the UART will maintain control and the logic level on the TX pin. Changing the TXPOL bit in UxCON2 will immediately change the TX pin logic level regardless of the value of EN or TXEN.

31.2 UART Asynchronous Modes

The UART has five asynchronous modes:

- 7-bit
- 8-bit
- 8-bit with even parity in the 9th bit
- 8-bit with odd parity in the 9th bit
- 8-bit with address indicator in the 9th bit

The UART transmits and receives data using the standard Non-Return-to-Zero (NRZ) format. NRZ is implemented with two levels: a VOH Mark state, which

represents a '1' data bit, and a VoL Space state, which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the Mark state. Each character transmission consists of one Start bit followed by seven or eight data bits, one optional parity or address bit, and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits with no parity. Each transmitted bit persists for a period of 1/ (Baud Rate). An on-chip dedicated 16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Section 31.17 "UART Baud Rate Generator (BRG)" for more information.

In all the Asynchronous modes, the UART transmits and receives the LSb first. The UART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is supported by the hardware by even and odd parity modes.

31.2.1 UART ASYNCHRONOUS TRANSMITTER

The UART transmitter block diagram is shown in Figure 31-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the UxTXB register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
		_			_	—	P1<8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplement	ted: Read as '	0'				
bit 0	P1<8>: Most	Significant Bit	of Parameter	1			
	DMX mode:						
	Most Significa	ant bit of numbe	r of bytes to tra	ansmit betwee	n Start Code and	d automatic Bre	ak generation
	DALI Control	Device mode:					
	Most Significa	ant bit of idle tim	ne delay after v	which a Forwar	d Frame is sent	. Measured in h	alf-bit periods
	DALI Control	<u>Gear mode</u> :					
	Most Significa	ant bit of delay	between the e	end of a Forwa	rd Frame and th	e start of the B	ack Frame
	Measured in h	half-bit periods					
	Other modes:						
	Not used						

REGISTER 31-12: UxP1H: UART PARAMETER 1 HIGH REGISTER

REGISTER 31-13: UxP1L: UART PARAMETER 1 LOW REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | P1< | 7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 P1<

P1<7:0>: Least Significant Bits of Parameter 1

DMX mode:

Least Significant Byte of number of bytes to transmit between Start Code and automatic Break generation

DALI Control Device mode:

Least Significant Byte of idle time delay after which a Forward Frame is sent. Measured in half-bit periods DALI Control Gear mode:

Least Significant Byte of delay between the end of a Forward Frame and the start of the Back Frame Measured in half-bit periods

LIN mode:

PID to transmit (Only Least Significant 6 bits used) <u>Asynchronous Address mode:</u> Address to transmit (9th transmit bit automatically set to '1') <u>Other modes</u>: Not used

34.14 CAN Interrupts

The module has several sources of interrupts. Each of these interrupts can be individually enabled or disabled. The PIR5 register contains interrupt flags. The PIE5 register contains the enables for the eight main interrupts. A special set of read-only bits in the CANSTAT register, the ICODE bits, can be used in combination with a jump table for efficient handling of interrupts.

All interrupts have one source, with the exception of the error interrupt and buffer interrupts in Mode 1 and 2. Any of the error interrupt sources can set the error interrupt flag. The source of the error interrupt can be determined by reading the Communication Status register, COMSTAT. In Mode 1 and 2, there are two interrupt enable/disable and flag bits – one for all transmit buffers and the other for all receive buffers.

The interrupts can be broken up into two categories: receive and transmit interrupts.

The receive related interrupts are:

- Receive Interrupts
- · Wake-up Interrupt
- Receiver Overrun Interrupt
- Receiver Warning Interrupt
- · Receiver Error-Passive Interrupt

The transmit related interrupts are:

- Transmit Interrupts
- Transmitter Warning Interrupt
- Transmitter Error-Passive Interrupt
- · Bus-Off Interrupt

34.14.1 INTERRUPT CODE BITS

To simplify the interrupt handling process in user firmware, the ECAN module encodes a special set of bits. In Mode 0, these bits are ICODE<3:1> in the CANSTAT register. In Mode 1 and 2, these bits are EICODE<4:0> in the CANSTAT register. Interrupts are internally prioritized such that the higher priority interrupts are assigned lower values. Once the highest priority interrupt condition has been cleared, the code for the next highest priority interrupt that is pending (if any) will be reflected by the ICODE bits (see Table 34-4). Note that only those interrupt sources that have their associated interrupt enable bit set will be reflected in the ICODE bits.

In Mode 2, when a receive message interrupt occurs, the EICODE bits will always consist of '10000'. User firmware may use FIFO Pointer bits to actually access the next available buffer.

34.14.2 TRANSMIT INTERRUPT

When the transmit interrupt is enabled, an interrupt will be generated when the associated transmit buffer becomes empty and is ready to be loaded with a new message. In Mode 0, there are separate interrupt enable/ disable and flag bits for each of the three dedicated transmit buffers. The TXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the TXBnIF bit to a '0'. In Mode 1 and 2, all transmit buffers share one interrupt enable/disable bit and one flag bit. In Mode 1 and 2, TXBnIE in PIE5 and TXBnIF in PIR5 indicate when a transmit buffer has completed transmission of its message. TXBnIF, TXBnIE and TXBnIP in PIR5, PIE5 and IPR5, respectively, are not used in Mode 1 and 2. Individual transmit buffer interrupts can be enabled or disabled by setting or clearing TXBnIE and B0IE register bits. When a shared interrupt occurs, user firmware must poll the TXREQ bit of all transmit buffers to detect the source of interrupt.

34.14.3 RECEIVE INTERRUPT

When the receive interrupt is enabled, an interrupt will be generated when a message has been successfully received and loaded into the associated receive buffer. This interrupt is activated immediately after receiving the End-of-Frame (EOF) field.

In Mode 0, the RXBnIF bit is set to indicate the source of the interrupt. The interrupt is cleared by the MCU, resetting the RXBnIF bit to a '0'.

In Mode 1 and 2, all receive buffers share RXBnIE, RXBnIF and RXBnIP in PIE5, PIR5 and IPR5, respectively. Individual receive buffer interrupts can be controlled by the TXBnIE and BIE0 registers. In Mode 1, when a shared receive interrupt occurs, user firmware must poll the RXFUL bit of each receive buffer to detect the source of interrupt. In Mode 2, a receive interrupt indicates that the new message is loaded into FIFO. FIFO can be read by using FIFO Pointer bits, FP.

REGISTER 34-19: RXBnDLC: RECEIVE BUFFER 'n' DATA LENGTH CODE REGISTERS [0 \leq n \leq 1]

U-0	R-x	R-x	R-x	R-x	R-x	R-x	R-x
_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 7	Unimplement	ted: Read as '	0'				
bit 6	RXRTR: Rece	eiver Remote T	ransmission	Request bit			
	1 = Remote tr 0 = No remote	ansfer request e transfer reque	est				
bit 5	RB1: Reserve	ed bit 1					
	Reserved by 0	CAN Spec and	read as '0'.				
bit 4	RB0: Reserve	ed bit 0					
	Reserved by (CAN Spec and	read as '0'.				
bit 3-0	DLC<3:0>: Da	ata Length Coo	de bits				
	1111 = Invalio	b					
	1110 = Invalio	b					
	1101 = Invalio	d					
	1100 = Invalid]					
	1011 = Invalid	4					
	1001 = Invalio	ź					
	1000 = Data I	ength = 8 byte	s				
	0111 = Data I	ength = 7 byte	s				
	0110 = Data I	ength = 6 byte	S				
	0101 = Data I	ength = 5 byte	S				
	0100 = Data I	engin = 4 byle	S				
	0011 = Data I	ength = 2 byte	3 S				
	0001 = Data I	ength = 1 byte	~				
	0000 = Data I	ength = 0 byte	s				

REGISTER 34-20: RXBnDm: RECEIVE BUFFER 'n' DATA FIELD BYTE 'm' REGISTERS $[0 \le n \le 1, \, 0 \le m \le 7]$

| R-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXBnDm7 | RXBnDm6 | RXBnDm5 | RXBnDm4 | RXBnDm3 | RXBnDm2 | RXBnDm1 | RXBnDm0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **RXBnDm<7:0>:** Receive Buffer n Data Field Byte m bits (where $0 \le n < 1$ and 0 < m < 7) Each receive buffer has an array of registers. For example, Receive Buffer 0 has eight registers: RXB0D0 to RXB0D7.

© 2017 Microchip Technology Inc.

INCF	Increment f	INCFSZ	Increment f, skip if 0				
Syntax:	INCF f {,d {,a}}	Syntax:	INCFSZ f {,d {,a}}				
Operands:	$\begin{array}{llllllllllllllllllllllllllllllllllll$		0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operation:	(f) + 1 \rightarrow dest	Operation:	(f) + 1 \rightarrow dest,				
Status Affected:	C, DC, N, OV, Z		skip if result = 0				
Encoding:	0010 10da ffff	Status Affected:	None				
Words: Cycles: Q Cycle Activity: Q1	The contents of register 'f' are incremented. If 'd' is '0', the re placed in W. If 'd' is '1', the res placed back in register 'f' (defa If 'a' is '0', the Access Bank is If 'a' is '1', the BSR is used to s GPR bank. If 'a' is '0' and the extended ins set is enabled, this instruction in Indexed Literal Offset Addre mode whenever $f \le 95$ (5Fh). S tion 42.2.3 "Byte-Oriented ar Oriented Instructions in Inde eral Offset Mode" for details. 1 1	Encoding: Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 42.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit- eral Offset Mode" for details.				
Decode	Read Process W	Words:	1				
	register 'f' Data des	Cycles:	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.				
Example:	INCF CNT, I, U	Q Cycle Activity	v:				
CNT	= FFh	Q1	, Q2 Q3 Q4				
Z C	= 0 = ? - 2	Decode	Read Process Write to register 'f' Data destination				
After Instructio	- : n	If skip:					
CNT	= 00h	Q1	Q2 Q3 Q4				
C DC	= 1 = 1	No operation	No No No n operation operation				
		If skip and follow	wed by 2-word instruction:				
		Q1	Q2 Q3 Q4				
		operation	n operation operation operation				
		No	No No No				
		operation	n operation operation operation				
		<u>Example</u> : Before Instru PC After Instru CNT	HERE INCFSZ CNT, 1, 0 NZERO : ZERO : truction = Address (HERE) uction = CNT + 1				
		If CNT PC					
			$ \begin{array}{l} F \neq 0; \\ = \text{Address} \left(NZEDO \right) \end{array} $				
		FU	$ \pi u (1) 2 E K (1)$				

RET	RETURN Return from Subroutine								
Synta	ax:	RETURN	{s}						
Oper	ands:	s ∈ [0,1]							
Oper	ation:	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow Status,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged							
Statu	is Affected:	None							
Encoding: 0000 0000 0001 001s									
Desc	ription:	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the Program Counter. If 's'= 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers							
Word	ls:	1	1						
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3	}	Q4				
	Decode	No	Proce	ess	POP PC				
		operation	Dat	a i	from stack				
	No	No No No							
	operation	operation	opera	lion	operation				
Exan	nple:	RETURN	RETURN						
	After Instructio	on:							

PC = TOS

RLC	F	Ro	tate L	.eft f	thro	ugh	Ca	rry	
Synta	ax:	RL	CF	f {,d {	[,a}}				
Oper	ands:	0 ≤ d ∈ a ∈	f ≤ 258 [0,1] [0,1]	5					
Oper	ation:	(f <r (f<7 (C)</r 	$(>) \rightarrow ($ $(>) \rightarrow ($ $\rightarrow des$	dest< C, st<0>	n + 1:	>,			
Statu	is Affected:	C, I	C, N, Z						
Enco	oding:	0	0011 01da ffff ffff						
Desc	ription:	The one flag W . in real set set ope Add $f \le 9$ 42.	The contents of register 'f' are rotated one bit to the left through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 42.2.3 "Byte-Oriented and Bit-Ori- ented Instructions in Indexed Literal Offset Mode" for details.						
Word	ls.	1							
Cvcle	es:	1							
QC	ycle Activity:								
	Q1	C	22		Q3			Q4	
	Decode	Re regis	ead ster 'f'	F	Proces Data	SS	\ de	Write to estination	
<u>Exan</u>	nple: Before Instruc REG C After Instructic REG	RL = = on =	CF 1110 0 1110	0110	REG,	0,	0		
	M C	=	1100 1	1100	J				

MO\	/SS	Move Indexed to Indexed									
Synta	ах:	MOVSS [z	z _s], [z _d]								
Oper	ands:	$0 \le z_s \le 12$ $0 \le z_d \le 12$	7								
Oper	ation:	((FSR2) + z	$z_s) \rightarrow ((FS)$	R2) -	+ z _d))					
Statu	s Affected:	None									
Enco	ding:										
1st w	ord (source)	1110	1011	lzz	z	ZZZZS					
2nd v	word (dest.)	1111	xxxx	XZZ	Z	zzzzd					
moved to the destination register. T addresses of the source and destina registers are determined by adding 7-bit literal offsets 'z _s ' or 'z _d ', respectively, to the value of FSR2. E registers can be located anywhere i the 4096-byte data memory space (000h to FFFh). The MOVSS instruction cannot use t PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address point an indirect addressing register, the value returned will be 00h. If the resultant destination address points an indirect addressing register, the instruction will execute as a NOP.						estination Iding the IR2. Both here in pace use the s the points to the points to the points to the points to					
Cycle	26.	2	2								
QC	ycle Activity:	2									
	Q1	Q2	Q3			Q4					
	Decode	Determine	Determi	ine		Read					
		source addr	source a	lddr	SO	urce reg					
	Decode	Determine dest addr	Determi dest ad	ine Idr	to	Write dest reg					

Example:	MOVSS	[05h],	[06h]
Before Instructio FSR2	on =	80h	
of 85h	=	33h	
of 86h	=	11h	
After Instruction FSR2	=	80h	
of 85h	=	33h	
of 86h	=	33h	

PUSHL	S	tore Liter	al a	t FSR	2, Decr	eme	ent FSR2
Syntax:	Ρ	USHL k					
Operands:	0	$\leq k \leq 255$					
Operation:	k F	→ (FSR2) SR2 – 1 –), → FS	R2			
Status Affected:	Ν	one					
Encoding:		1111	10	010	kkkk		kkkk
	m is Tl OI	decrement his instruct	dres nted tion /are	s spec by 1 a allows stack.	after the susers to	FSR operation pus	2. FSR2 ation. th values
Words:	1						
Cycles:	1						
Q Cycle Activit	y:						
Q1		Q2		(Q3		Q4
Decode	9	Read '	K'	Process data		V des	Vrite to stination
Example: Before Ins FSR2 Mem	truc 2H:F ory	PUSHL tion SR2L (01ECh)	081	n = =	01ECh 00h		
After Instru	uctic	on					

01EBh 08h

= =

FSR2H:FSR2L Memory (01ECh)

FIGURE 45-13: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 45-20: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standa Operati	Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C ≤ TA ≤ +125°C								
Param No.	Sym.	Characteri	stic	Min.	Тур†	Max.	Units	Conditions	
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	$\langle - \rangle$	ns \	$\left \right\rangle$	
			With Prescaler	20	\langle	V	ns		
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20	/-/	1	ns		
			With Prescaler	20⁄	\checkmark	\checkmark	ns		
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N		\triangleright	ns	N = prescale value	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

	A								
Standard	Operating C	onditions (unless othe	rwise stated)						
Param. No.	Symbol	Characte	Min.	Max.	Units	Conditions			
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μs <	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tcy	_		$\langle \rangle$		
SP101*	TLOW	Clock low time	100 kHz mode	4.7	- <	μ\$	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	_ `	Jus J	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tcy		$ \land \langle$			
SP102*	TR	SDA and SCL rise	100 kHz mode		1000	ns			
		time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL fall time	100 kHz mode	$\wedge - \land$	250	ns			
			400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data input hold time	100 kHz mode 🔪	0	> -	ns			
			400 kHz mode	6	0.9	μS			
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)		
			400 kHz mode	100	—	ns			
SP109*	ΤΑΑ	Output valid from	100 kHz mode	\sim –	3500	ns	(Note 1)		
		clock	400 kHz mode	- \		ns			
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free		
			400 kHz mode	1.3	—	μS	before a new transmission can start		
SP111	Св	Bus capacitive loading	\frown	—	400	pF			

TABLE 45-23: I²C BUS DATA REQUIREMENTS

These parameters are characterized but not tested.

Note 1:

As a transmitter the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions. A Fast mode (400 kHz) J^2C bus device can be used in a Standard mode (100 kHz) I^2C bus system, but the requirement TSU:DAT \geq 250 ns must then be refet. This will automatically be the case if the device does not stretch the low period of 2: the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL lipe is released.