
Microchip Technology - PIC18LF26K83-I/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 64MHz

Connectivity CANbus, I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 25

Program Memory Size 64KB (32K x 16)

Program Memory Type FLASH

EEPROM Size 1K x 8

RAM Size 4K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 24x12b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 28-SSOP (0.209", 5.30mm Width)

Supplier Device Package 28-SSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26k83-i-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic18lf26k83-i-ss-4390422
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC18(L)F25/26K83
2.5 External Oscillator Pins

Many microcontrollers have options for at least two
oscillators: a high-frequency primary oscillator and a
low-frequency secondary oscillator (refer to Section
7.0 “Oscillator Module (with Fail-Safe Clock
Monitor)” for details).

The oscillator circuit should be placed on the same
side of the board as the device. Place the oscillator
circuit close to the respective oscillator pins with no
more than 0.5 inch (12 mm) between the circuit
components and the pins. The load capacitors should
be placed next to the oscillator itself, on the same side
of the board.

Use a grounded copper pour around the oscillator cir-
cuit to isolate it from surrounding circuits. The
grounded copper pour should be routed directly to the
MCU ground. Do not run any signal traces or power
traces inside the ground pour. Also, if using a two-sided
board, avoid any traces on the other side of the board
where the crystal is placed.

Layout suggestions are shown in Figure 2-3. In-line
packages may be handled with a single-sided layout
that completely encompasses the oscillator pins. With
fine-pitch packages, it is not always possible to com-
pletely surround the pins and components. A suitable
solution is to tie the broken guard sections to a mirrored
ground layer. In all cases, the guard trace(s) must be
returned to ground.

In planning the application’s routing and I/O assign-
ments, ensure that adjacent port pins, and other
signals in close proximity to the oscillator, are benign
(i.e., free of high frequencies, short rise and fall times,
and other similar noise).

For additional information and design guidance on
oscillator circuits, refer to these Microchip Application
Notes, available at the corporate website
(www.microchip.com):

• AN826, “Crystal Oscillator Basics and Crystal
Selection for rfPIC™ and PICmicro® Devices”

• AN849, “Basic PICmicro® Oscillator Design”

• AN943, “Practical PICmicro® Oscillator Analysis
and Design”

• AN949, “Making Your Oscillator Work”

2.6 Unused I/Os

Unused I/O pins should be configured as outputs and
driven to a logic low state. Alternatively, connect a 1 kΩ
to 10 kΩ resistor to VSS on unused pins and drive the
output to logic low.

FIGURE 2-3: SUGGESTED
PLACEMENT OF THE
OSCILLATOR CIRCUIT

GND

`

`

`

OSC1

OSC2

SOSCO

SOSCI

Copper Pour Primary Oscillator
Crystal

Secondary Oscillator

Crystal

DEVICE PINS

Primary
Oscillator

C1

C2

SOSC: C1 SOSC: C2

(tied to ground)

Single-Sided and In-Line Layouts:

Fine-Pitch (Dual-Sided) Layouts:

GND

OSCO

OSCI

Bottom Layer
Copper Pour

Oscillator
Crystal

Top Layer Copper Pour

C2

C1

DEVICE PINS

(tied to ground)

(tied to ground)

(SOSC)
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 15


 2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
9

4
3

A
-p

a
g

e
 8

3

P
IC

18(L
)F

25/26K
83

FIG

Rev. 10-000208D
5/10/2016

D

System Clock

Peripheral Clock
URE 7-1: SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM

FRQ<3:0>

HFINTOSC

Secondary
Oscillator
(SOSC)

External
Oscillator

(EXTOSC)

CLKIN/OSC1

CLKOUT/OSC2

SOSCIN/SOSCI

SOSCO

31 kHz
Oscillator

4x PLL

000

110
011
001

101
100
010
111

COSC<2:0>

LFINTOSC

1,2,4,8,12,16,32,48,64
MHz

Oscillator

 P
os

t D
iv

id
er

1000
1001

0000

0011
0010
0001

0100
0101
0110
0111

512

256

128

64

32

16

8

4

2

1

CDIV<4:0>

Sleep

Idle

Sleep

SYSCM

FSCM

To Peripherals
To Peripherals

To PeripheralsMFINTOSC

31.25 kHz and 500 kHz
Oscillator

To Peripherals

Reserved

Reserved

Reserved

LFINTOSC is used to
monitor system clock


 2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
9

4
3

A
-p

a
g

e
 1

1
8

P
IC

18(L
)F

25/26K
83

FIG

Rev. 10-000269A
9/12/2016

X+4

Inst @ X+2

X+6

Inst @ X+4

9 10

MAIN
URE 9-7: INTERRUPT TIMING DIAGRAM – ONE CYCLE INSTRUCTION

System
Clock

Program
Counter X X+2 X+2 0x82 0x218 0x21A 0x21C

Inst @ X(1) FNOP FNOP FNOP Inst @ 0x218 Inst @ 0x21AInstruction
Register

Interrupt

X+2

FNOP

RETFIE

Vector
Number 1

IVTBASE 0x80

Program Memory
0x82 0x86

Interrupt Location = Interrupt vector table entry << 2
 = 0x86 << 2 = 0x218

1 2 3 4 5 6 7 8

Routine MAIN ISRFNOP FNOP

BCF

Note 1: Instruction @ X is a one-cycle Instruction

PIC18(L)F25/26K83
REGISTER 9-39: IVTLOCK: INTERRUPT VECTOR TABLE LOCK REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0

— — — — — — — IVTLOCKED(1,2)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-1 Unimplemented: Read as ‘0’

bit 0 IVTLOCKED: IVT Registers Lock bits(1,2)

1 = IVTBASE Registers are locked and cannot be written
0 = IVTBASE Registers can be modified by write operations

Note 1: The IVTLOCK bit can only be set or cleared after the unlock sequence in Example 9-1.
2: If IVT1WAY = 1, the IVTLOCK bit cannot be cleared after it has been set. See Register 5-3.

REGISTER 9-40: SHADCON: SHADOW CONTROL REGISTER

U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0/0

— — — — — — — SHADLO

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-1 Unimplemented: Read as ‘0’

bit 0 SHADLO: Interrupt Shadow Register Access Switch bit
0 = Access Main Context for Interrupt Shadow Registers
1 = Access Low-Priority Interrupt Context for Interrupt Shadow Registers
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 159

PIC18(L)F25/26K83
13.1.4 NVM UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the
NVM from unintended self-write programming or
erasing. The sequence must be executed and
completed without interruption to successfully
complete any of the following operations:

• PFM Row Erase
• Write of PFM write latches to PFM memory
• Write of PFM write latches to User IDs
• Write to Data EEPROM Memory
• Write to Configuration Words

The unlock sequence consists of the following steps
and must be completed in order:

• Write 55h to NVMCON2
• Write AAh to NMVCON2
• Set the WR bit of NVMCON1

Once the WR bit is set, the processor will stall internal
operations until the operation is complete and then
resume with the next instruction.

Since the unlock sequence must not be interrupted,
global interrupts should be disabled prior to the unlock
sequence and re-enabled after the unlock sequence is
completed.

FIGURE 13-6: NVM UNLOCK
SEQUENCE FLOWCHART

EXAMPLE 13-2: NVM UNLOCK SEQUENCE

End Unlock Operation

Write 55h to NVMCON2

Write AAh to NVMCON2

Initiate Write or Erase Operation

(WR = 1)

Start Unlock Sequence

BCF INTCON0,GIE ; Recommended so sequence is not interrupted
BANKSEL NVMCON1
BSF NVMCON1,WREN ; Enable write/erase
MOVLW 55h ; Load 55h

MOVWF NVMCON2 ; Step 1: Load 55h into NVMCON2
MOVLW AAh ; Step 2: Load W with AAh
MOVWF NVMCON2 ; Step 3: Load AAh into NVMCON2
BSF INTCON1,WR ; Step 4: Set WR bit to begin write/erase

BSF INTCON0,GIE ; Re-enable interrupts

Note 1: Sequence begins when NVMCON2 is written; steps 1-4 must occur in the cycle-accurate order
shown. If the timing of the steps 1 to 4 is corrupted by an interrupt or a debugger Halt, the action
will not take place.

2: Opcodes shown are illustrative; any instruction that has the indicated effect may be used.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 186

PIC18(L)F25/26K83
15.0 DIRECT MEMORY ACCESS
(DMA)

15.1 Introduction

The Direct Memory Access (DMA) module is designed
to service data transfers between different memory
regions directly without intervention from the CPU. By
eliminating the need for CPU-intensive management of
handling interrupts intended for data transfers, the CPU
now can spend more time on other tasks.

PIC18(L)F25/26K83 family has two DMA modules
which can be independently programmed to transfer
data between different memory locations, move differ-
ent data sizes, and use a wide range of hardware trig-
gers to initiate transfers. The two DMA registers can
even be programmed to work together, in order to carry
out more complex data transfers without CPU over-
head.

Key features of the DMA module include:

• Support access to the following memory regions:

- GPR and SFR space (R/W)

- Program Flash Memory (R only)

- Data EEPROM Memory (R only)

• Programmable priority between the DMA and
CPU Operations. Refer to Section 3.1 “System
Arbitration” for details.

• Programmable Source and Destination address
modes

- Fixed address

- Post-increment address

- Post-decrement address

• Programmable Source and Destination sizes

• Source and destination pointer register,
dynamically updated and reloadable

• Source and destination count register,
dynamically updated and reloadable

• Programmable auto-stop based on Source or
Destination counter

• Software triggered transfers

• Multiple user selectable sources for hardware
triggered transfers

• Multiple user selectable sources for aborting DMA
transfers

15.2 DMA Registers

The operation of the DMA module has the following
registers:

• Control registers (DMAxCON0, DMAxCON1)

• Data buffer register (DMAxBUF)

• Source Start Address Register (DMAxSSAU:H:L)

• Source Pointer Register (DMAxSPTRU:H:L)

• Source Message Size Register (DMAxSSZH:L)

• Source Count Register (DMAxSCNTH:L)

• Destination Start Address Register
(DMAxDSAH:L)

• Destination Pointer Register (DMAxDPTRH:L)

• Destination Message Size Register
(DMAxDSZH:L)

• Destination Count Register (DMAxDCNTH:L)

• Start Interrupt Request Source Register
(DMAxSIRQ)

• Abort Interrupt Request Source Register
(DMAxAIRQ)

These registers are detailed in Section 15.13 “Regis-
ter definitions: DMA”.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 218

PIC18(L)F25/26K83
FIGURE 18-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)

IOCANx

IOCAPx

Q2

Q4Q1

data bus =
0 or 1

write IOCAFx

IOCIE

to data bus
IOCAFx

edge
detect

IOC interrupt
to CPU core

from all other
IOCnFx individual

pin detectors

D Q
S

D Q

R

D Q

R

RAx

Rev. 10-000037D
10/3/2016
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 271

PIC18(L)F25/26K83
22.6 Timer2 Operation During Sleep

When PSYNC = 1, Timer2 cannot be operated while
the processor is in Sleep mode. The contents of the
T2TMR and T2PR registers will remain unchanged
while processor is in Sleep mode.

When PSYNC = 0, Timer2 will operate in Sleep as long
as the clock source selected is also still running.
Selecting the LFINTOSC, MFINTOSC, or HFINTOSC
oscillator as the timer clock source will keep the
selected oscillator running during Sleep.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 319

PIC18(L)F25/26K83
23.5 Register Definitions: CCP Control

Long bit name prefixes for the CCP peripherals are
shown below. Refer to Section 1.3.2.2 “Long Bit
Names” for more information.

Peripheral Bit Name Prefix

CCP1 CCP1

CCP2 CCP2

CCP3 CCP3

CCP4 CCP4

REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER
R/W-0/0 U-0 R-x R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0

EN — OUT FMT MODE<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 EN: CCP Module Enable bit
1 = CCP is enabled
0 = CCP is disabled

bit 6 Unimplemented: Read as ‘0’

bit 5 OUT: CCPx Output Data bit (read-only)

bit 4 FMT: CCPW (pulse-width) Alignment bit
MODE = Capture mode:
Unused
MODE = Compare mode:
Unused
MODE = PWM mode:
1 = Left-aligned format
0 = Right-aligned format

bit 3-0 MODE<3:0>: CCPx Mode Select bits

Note 1: The set and clear operations of the Compare mode are reset by setting MODE = 4’b0000 or EN = 0.
2: When MODE = 0001 or 1011, then the timer associated with the CCP module is cleared. TMR1 is the default selection

for the CCP module, so it is used for indication purpose only.

MODE Operating Mode Operation Set CCPxIF

11xx PWM PWM operation Yes

1011

Compare

Pulse output; clear TMR1(2) Yes

1010 Pulse output Yes

1001 Clear output(1) Yes

1000 Set output(1) Yes

0111

Capture

Every 16th rising edge of CCPx input Yes

0110 Every 4th rising edge of CCPx input Yes

0101 Every rising edge of CCPx input Yes

0100 Every falling edge of CCPx input Yes

0011 Every edge of CCPx input Yes

0010
Compare

Toggle output Yes

0001 Toggle output; clear TMR1(2) Yes

0000 Disabled —
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 335


 2

0
1

7
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

P
relim

in
ary

D
S

4
0

0
0

1
9

4
3

A
-p

a
g

e
 3

5
7

P
IC

18(L
)F

25/26K
83

FIG

Rev. 10-000 178A
12/19/201 3

5

11
URE 25-7: PERIOD AND DUTY-CYCLE SINGLE ACQUISITION TIMING DIAGRAM

0 1 2 3 4 5 6 7 8 9 10 11

SMTx Clock

SMTxEN

SMTxGO

SMTxTMR

SMTxPWAIF

SMTxGO_sync

SMTx_signal

SMTx_signalsync

SMTxCPW

SMTxPRAIF

SMTxCPR

PIC18(L)F25/26K83
FIGURE 33-16: REPEATED START CONDITION TIMING

33.5.7 ACKNOWLEDGE SEQUENCE
TIMING

An Acknowledge sequence is enabled automatically
following an address/data byte transmission. The SCL
pin is pulled low and the contents of the Acknowledge
Data bits (ACKDT/ACKCNT) are presented on the SDA
pin. If the user wishes to generate an Acknowledge,
then the ACKDT bit should be cleared. If not, the user

should set the ACKDT bit before starting an Acknowl-
edge sequence. The master then waits one clock
period (TSCL) and the SCL pin is released high. When
the SCL pin is sampled high (clock arbitration), the
master counts another TSCL. The SCL pin is then pulled
low. Figure 33-17 shows the timings for Acknowledge
sequence.

FIGURE 33-17: ACKNOWLEDGE SEQUENCE TIMING

33.5.8 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of
receive/transmit when I2CxCNT = 0. After the last byte
of a receive/transmit sequence, the SCL line is held
low. The master asserts the SDA line low. The SCL pin
is then released high TSCL/2 later and is detected high.
The SDA pin is then released. When the SDA pin tran-

sitions high while SCL is high, the PCIF bit of the I2CxIF
register is set. Figure 33-18 shows the timings for a
Stop condition.

Rev. 10-000 308A
8/16/201 6

SDA

SCL

Repeated Start

Write to I2CCON0<START>

I2CTSR loaded from I2CADB0/1

Completion of Restart

1st bit

RSCIF bit set

Sr

I2C_clk 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

Rev. 10-000 309A
8/16/201 6

SDA

SCL

WRIF set at
the end of receive

Acknowledge sequence starts here,
ACKDT = 0

Cleared in
software

TSCL

8

D0

9

xxxIF

ASTIF set at the end
of Acknowledge sequence

Cleared in
software

ACK
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 551

PIC18(L)F25/26K83
REGISTER 33-7: I2CxSTAT1: I2C STATUS REGISTER 1

R/W/HS-0 U-0 R-1 U-0 R/W/HS-0 R/S-0/0 U-0 R-0

TXWE(2) — TXBE(1, 3) — RXRE(2) CLRBF — RXBF(1,3)

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared HS = Hardware set HC = Hardware clear

bit 7 TXWE: Transmit Write Error Status bit (2)

1 = A new byte of data was written to I2CTXB when it was full (Must be cleared by software)
0 = No transmit write error

bit 6 Unimplemented: Read as ‘0’

bit 5 TXBE: Transmit Buffer Empty Status bit
1 = I2CTXB is empty (Cleared by writing the I2CTXB register)
0 = I2CTXB is full

bit 4 Unimplemented: Read as ‘0’

bit 3 RXRE: Receive Read Error Status bit
1 = A byte of data was read from I2CxRXB when it was empty. (Must be cleared by software)
0 = No receive overflow

bit 2 CLRBF: Clear Buffer bit
Setting this bit clears/empties the receive and transmit buffers, causing reset of RXBF and TXBE.
Setting this bit clears the RXIF and TXIF interrupt flags.
This bit is set-only special function, and always reads ‘0’

bit 1 Unimplemented: Read as ‘0’

bit 0 RXBF: Receive Buffer Full Status bit
1 = I2CRXB has received new data (Cleared by reading the I2CRXB register)
0 = I2CRXB is empty

Note 1: The bits are held in Reset when I2CEN = 0.

2: Will cause NACK to be sent for slave address and master/slave data read bytes.

3: Used as triggers for DMA operation.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 569

PIC18(L)F25/26K83

REGISTER 34-35: BnDLC: TX/RX BUFFER ‘n’ DATA LENGTH CODE REGISTERS IN TRANSMIT MODE
[0  n  5, TXnEN (BSEL<n>) = 1](1)

U-0 R/W-x U-0 U-0 R/W-x R/W-x R/W-x R/W-x

— TXRTR — — DLC3 DLC2 DLC1 DLC0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7 Unimplemented: Read as ‘0’

bit 6 TXRTR: Transmitter Remote Transmission Request bit

1 = Transmitted message will have the RTR bit set
0 = Transmitted message will have the RTR bit cleared

bit 5-4 Unimplemented: Read as ‘0’

bit 3-0 DLC<3:0>: Data Length Code bits

1111-1001 = Reserved
1000 = Data length = 8 bytes
0111 = Data length = 7 bytes
0110 = Data length = 6 bytes
0101 = Data length = 5 bytes
0100 = Data length = 4 bytes
0011 = Data length = 3 bytes
0010 = Data length = 2 bytes
0001 = Data length = 1 byte
0000 = Data length = 0 bytes

Note 1: These registers are available in Mode 1 and 2 only.

REGISTER 34-36: BSEL0: BUFFER SELECT REGISTER 0(1)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0

B5TXEN B4TXEN B3TXEN B2TXEN B1TXEN B0TXEN — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-2 B<5:0>TXEN: Buffer 5 to Buffer 0 Transmit Enable bits

1 = Buffer is configured in Transmit mode
0 = Buffer is configured in Receive mode

bit 1-0 Unimplemented: Read as ‘0’

Note 1: These registers are available in Mode 1 and 2 only.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 629

PIC18(L)F25/26K83

REGISTER 34-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER ‘n’ EXTENDED IDENTIFIER
REGISTERS, HIGH BYTE [0  n  15](1)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID15 EID14 EID13 EID12 EID11 EID10 EID9 EID8

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 EID<15:8>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDH:RXF15EIDH, are available in Mode 1 and 2 only.

REGISTER 34-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER ‘n’ EXTENDED IDENTIFIER
REGISTERS, LOW BYTE [0  n  15](1)

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EID7 EID6 EID5 EID4 EID3 EID2 EID1 EID0

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 EID<7:0>: Extended Identifier Filter bits

Note 1: Registers, RXF6EIDL:RXF15EIDL, are available in Mode 1 and 2 only.

REGISTER 34-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK ‘n’ STANDARD IDENTIFIER MASK
REGISTERS, HIGH BYTE [0  n  1]

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

SID10 SID9 SID8 SID7 SID6 SID5 SID4 SID3

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 7-0 SID<10:3>: Standard Identifier Mask bits or Extended Identifier Mask bits (EID<28:21>)
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 631

PIC18(L)F25/26K83

otes

 exe-

the
ns

ns to

LITERAL INSTRUCTIONS

ADDLW
ANDLW
IORLW
LFSR

ADDFSR
SUBFSR
MOVLB
MOVLW
MULLW
RETLW
SUBLW
XORLW

k
k
k
fn, k

fn, k
fn, k
k
k
k
k
k
k

Add literal and WREG
AND literal with WREG
Inclusive OR literal with WREG
Load FSR(fn) with a 14-bit
 literal (k)
Add FSR(fn) with (k)
Subtract (k) from FSR(fn)
Move literal to BSR<5:0>
Move literal to WREG
Multiply literal with WREG
Return with literal in WREG
Subtract WREG from literal
Exclusive OR literal with WREG

1
1
1
2

1
1
1
1
1
2
1
1

0000
0000
0000
1110
1111
1110
1110
0000
0000
0000
0000
0000
0000

1111
1011
1001
1110
00kk
1000
1001
0001
1110
1101
1100
1000
1010

kkkk
kkkk
kkkk
00ff
kkkk
ffkk
ffkk
00kk
kkkk
kkkk
kkkk
kkkk
kkkk

kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk
kkkk

C, DC, Z, OV, N
Z, N
Z, N
None

None
None
None
None
None
None
C, DC, Z, OV, N
Z, N

DATA MEMORY  PROGRAM MEMORY INSTRUCTIONS

TBLRD*
TBLRD*+
TBLRD*-
TBLRD+*
TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

Table Read
Table Read with post-increment
Table Read with post-decrement
Table Read with pre-increment
Table Write
Table Write with post-increment
Table Write with post-decrement
Table Write with pre-increment

2 - 5

2 - 5

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000

1000
1001
1010
1011
1100
1101
1110
1111

None
None
None
None
None
None
None
None

TABLE 42-2: INSTRUCTION SET (CONTINUED)

Mnemonic,
Operands

Description Cycles
16-Bit Instruction Word Status

Affected
N

MSb LSb

Note 1: If Program Counter (PC) is modified or a conditional test is true, the instruction requires an additional cycle. The extra cycle is
cuted as a NOP.

2: Some instructions are multi word instructions. The second/third words of these instructions will be decoded as a NOP, unless
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory locatio
have a valid instruction.

3: fs and fd do not cover the full memory range. 2 MSBs of bank selection are forced to ‘b00 to limit the range of these instructio
lower 4k addressing space.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 719

PIC18(L)F25/26K83

BRA Unconditional Branch

Syntax: BRA n

Operands: -1024  n  1023

Operation: (PC) + 2 + 2n  PC

Status Affected: None

Encoding: 1101 0nnn nnnn nnnn

Description: Add the 2’s complement number ‘2n’ to
the PC. Since the PC will have incre-
mented to fetch the next instruction, the
new address will be PC + 2 + 2n. This
instruction is a 2-cycle instruction.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read literal
‘n’

Process
Data

Write to PC

No
operation

No
operation

No
operation

No
operation

Example: HERE BRA Jump

Before Instruction
PC = address (HERE)

After Instruction
PC = address (Jump)

BSF Bit Set f

Syntax: BSF f, b {,a}

Operands: 0  f  255
0  b  7
a [0,1]

Operation: 1  f

Status Affected: None

Encoding: 1000 bbba ffff ffff

Description: Bit ‘b’ in register ‘f’ is set.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 42.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: BSF FLAG_REG, 7, 1

Before Instruction
FLAG_REG = 0Ah

After Instruction
FLAG_REG = 8Ah
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 726

PIC18(L)F25/26K83

CALLW Subroutine Call Using WREG

Syntax: CALLW

Operands: None

Operation: (PC + 2)  TOS,
(W)  PCL,
(PCLATH)  PCH,
(PCLATU)  PCU

Status Affected: None

Encoding: 0000 0000 0001 0100

Description First, the return address (PC + 2) is
pushed onto the return stack. Next, the
contents of W are written to PCL; the
existing value is discarded. Then, the
contents of PCLATH and PCLATU are
latched into PCH and PCU,
respectively. The second cycle is
executed as a NOP instruction while the
new next instruction is fetched.
Unlike CALL, there is no option to
update W, Status or BSR.

Words: 1

Cycles: 2

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
WREG

PUSH PC
to stack

No
operation

No
operation

No
opera-

tion

No
operation

No
operation

Example: HERE CALLW

Before Instruction
PC = address (HERE)
PCLATH = 10h
PCLATU = 00h
W = 06h

After Instruction
PC = 001006h
TOS = address (HERE + 2)
PCLATH = 10h
PCLATU = 00h
W = 06h

CLRF Clear f

Syntax: CLRF f {,a}

Operands: 0  f  255
a [0,1]

Operation: 000h  f
1  Z

Status Affected: Z

Encoding: 0110 101a ffff ffff

Description: Clears the contents of the specified
register.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 42.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: CLRF FLAG_REG, 1

Before Instruction
FLAG_REG = 5Ah

After Instruction
FLAG_REG = 00h
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 730

PIC18(L)F25/26K83

NEGF Negate f

Syntax: NEGF f {,a}

Operands: 0  f  255
a  [0,1]

Operation: (f) + 1  f

Status Affected: N, OV, C, DC, Z

Encoding: 0110 110a ffff ffff

Description: Location ‘f’ is negated using two’s
complement. The result is placed in the
data memory location ‘f’.
If ‘a’ is ‘0’, the Access Bank is selected.
If ‘a’ is ‘1’, the BSR is used to select the
GPR bank.
If ‘a’ is ‘0’ and the extended instruction
set is enabled, this instruction operates
in Indexed Literal Offset Addressing
mode whenever f 95 (5Fh). See Sec-
tion 42.2.3 “Byte-Oriented and Bit-
Oriented Instructions in Indexed Lit-
eral Offset Mode” for details.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode Read
register ‘f’

Process
Data

Write
register ‘f’

Example: NEGF REG, 1

Before Instruction
REG = 0011 1010 [3Ah]

After Instruction
REG = 1100 0110 [C6h]

NOP No Operation

Syntax: NOP

Operands: None

Operation: No operation

Status Affected: None

Encoding: 0000
1111

0000
xxxx

0000
xxxx

0000
xxxx

Description: No operation.

Words: 1

Cycles: 1

Q Cycle Activity:

Q1 Q2 Q3 Q4

Decode No
operation

No
operation

No
operation

Example:

None.
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 743

PIC18(L)F25/26K83
44.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C
compilers for all of Microchip’s 8, 16, and 32-bit MCU
and DSC devices. These compilers provide powerful
integration capabilities, superior code optimization and
ease of use. MPLAB XC Compilers run on Windows,
Linux or MAC OS X.

For easy source level debugging, the compilers provide
debug information that is optimized to the MPLAB X
IDE.

The free MPLAB XC Compiler editions support all
devices and commands, with no time or memory
restrictions, and offer sufficient code optimization for
most applications.

MPLAB XC Compilers include an assembler, linker and
utilities. The assembler generates relocatable object
files that can then be archived or linked with other relo-
catable object files and archives to create an execut-
able file. MPLAB XC Compiler uses the assembler to
produce its object file. Notable features of the assem-
bler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility

44.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal
macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code, and COFF files for
debugging.

The MPASM Assembler features include:

• Integration into MPLAB X IDE projects

• User-defined macros to streamline
assembly code

• Conditional assembly for multipurpose
source files

• Directives that allow complete control over the
assembly process

44.4 MPLINK Object Linker/
MPLIB Object Librarian

The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler. It can link
relocatable objects from precompiled libraries, using
directives from a linker script.

The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.

The object linker/library features include:

• Efficient linking of single libraries instead of many
smaller files

• Enhanced code maintainability by grouping
related modules together

• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction

44.5 MPLAB Assembler, Linker and
Librarian for Various Device
Families

MPLAB Assembler produces relocatable machine
code from symbolic assembly language for PIC24,
PIC32 and dsPIC DSC devices. MPLAB XC Compiler
uses the assembler to produce its object file. The
assembler generates relocatable object files that can
then be archived or linked with other relocatable object
files and archives to create an executable file. Notable
features of the assembler include:

• Support for the entire device instruction set

• Support for fixed-point and floating-point data

• Command-line interface

• Rich directive set

• Flexible macro language

• MPLAB X IDE compatibility
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 789

PIC18(L)F25/26K83
Note: For the most current package drawings, please see the Microchip Packaging Specification located at

http://www.microchip.com/packaging
 2017 Microchip Technology Inc. Preliminary DS40001943A-page 826

