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2 Summary of benefits
The T4 family of processors are ideal for combined control and data plane processing. A wide variety of applications can
benefit from the processing, I/O integration, and power management capabilities. Similar to other QorIQ devices, the T4
family of processors' high level of integration offers significant space, weight, and power benefits compared to multiple
discrete devices. Examples include:

• Service provider networking: RNC, metro networking, gateway, core/edge router, EPC, CRAN, ATCA, and AMC
solutions.

• Enterprise equipment: router, switch services, and UTM appliances.
• Data centers: NFV, SDN, ADC, WOC, UTM, proxy, server appliance, and PCI Express (PCIe) offload.
• Storage controllers: FCoE bridging, iSCSI controller, and SAN controller.
• Aerospace, defense, and government: radar imaging, ruggedized network appliance, and cockpit display.
• Industrial computing: single-board computers and test equipment.

2.1 e6500 CPU core
The T4 family of processors are based on the Power Architecture® e6500 core. The e6500 core uses a seven-stage pipeline
for low latency response while also boosting single-threaded performance. The e6500 core also offers high aggregate
instructions per clock at lower power with an innovative "fused core" approach to threading. The e6500 core's fully resourced
dual threads provide 1.7 times the performance of a single thread.

The e6500 cores are clustered in banks of four cores sharing a 2 MB L2 cache, allowing efficient sharing of code and data
within a multicore cluster. Each e6500 core implements the Freescale AltiVec technology SIMD engine, dramatically
boosting performance of heavy math algorithms with DSP-like performance.

The e6500 core features include:
• Up to 1.8 GHz dual threaded operation
• 7 DMIPS/MHz per core
• Advanced power saving modes, including state retention power gating

2.2 Virtualization
The T4 family of processors includes support for hardware-assisted virtualization. The e6500 core offers an extra core
privilege level (hypervisor) and hardware offload of logical-to-real address translation. In addition, the T4 family of
processors includes platform-level enhancements supporting I/O virtualization with DMA memory protection through
IOMMUs and configurable "storage profiles" that provide isolation of I/O buffers between guest environments. Virtualization
software for the T4 family includes kernel virtualization machine (KVM), Linux containers, and Freescale hypervisor and
commercial virtualization software from vendors such as Enea®, Greenhills Software®, Mentor Graphics®, and Wind River.

2.3 Data Path Acceleration Architecture (DPAA)
The T4 family of processors enhance the QorIQ DPAA, an innovative multicore infrastructure for scheduling work to cores
(phyiscal and virtual), hardware accelerators, and network interfaces.

Summary of benefits
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Figure 1. SoC 1U security appliance

3.2 Rack-mounted services blade
Networking and telecom systems are frequently modular in design, built from multiple standard dimension blades, which can
be progressively added to a chassis to increase interface bandwidth or processing power. ATCA is a common standard form
factor for chassis-based systems.

This figure shows a potential configuration for an ATCA blade with four chips and an Ethernet switch, which provides
connectivity to the front panel and backplane, as well as between the chips. Potential systems enabled by chips in ATCA
style modular architectures are described below.

Application examples
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Figure 2. Network services ATCA blade

3.3 Radio node controller
Some of the more demanding packet-processing applications are found in the realm of wireless infrastructure. These systems
have to interwork between wireless link layer protocols and IP networking protocols. Wireless protocol complexity is high,
and includes scheduling, retransmission, and encryption with algorithms specific to cellular wireless access networks.
Connecting to the IP network offers wireless infrastructure tremendous cost savings, but introduces all the security threats
found in the IP world. The chip's network and peripheral interfaces provide it with the flexibility to connect to DSPs, and to
wireless link layer framing ASICs/FPGAs (not shown). While the Data Path Acceleration Architecture offers encryption
acceleration for both wireless and IP networking protocols, in addition to packet filtering capability on the IP networking
side, multiple virtual CPUs may be dedicated to data path processing in each direction.

Application examples
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Figure 5. 24 vCPU AMP or SMP with affinity

4.2 Symmetric multiprocessing
Figure 5 also presents 24 vCPU SMP, where it is typical for data processing to involve some level of task affinity.

4.3 Mixed symmetric and asymmetric multiprocessing
This figure shows one possibility for a mixed SMP and AMP processing. Two physical CPUs (vCPUs 0-3) are combined in
an SMP cluster for control processing, with the Datapath using exact match classification to send only control packets to the
SMP cluster. The remaining virtual cores could run 20 instances of datapath software.

Figure 6. Mixed SMP and AMP option 1

This figure shows another possibility for mixed SMP and AMP processing. Two of the physical cores are run in single
threaded mode; the remaining physical cores operate as four virtual CPUs. The Datapath directs traffic to specific software
partitions based on physical Ethernet port, classification, or some combination.

Multicore processing options
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• RegEx Pattern Matching Acceleration (PME 2.1) at up to 10 Gbps
• Decompression/Compression Acceleration (DCE 1.0) at up to 20 Gbps
• DPAA chip-to-chip interconnect via RapidIO Message Manager (RMAN 1.0)

• Up to 32 SerDes lanes at up to 10.3125 GHz
• Ethernet interfaces

• Up to four 10 Gbps Ethernet XAUI or 10GBase-KR XFI MACs
• Up to sixteen 1 Gbps Ethernet MACs
• Up to two 1Gbps Ethernet RGMII MACs
• Maximum configuration of 4 x 10 GE (XFI) + 10 x 1 GE (SGMII) + 2 x 1 GE (RGMII)

• High-speed peripheral interfaces
• Up to four PCI Express 2.0 controllers, two supporting 3.0
• Two Serial RapidIO 2.0 controllers/ports running at up to 5 GHz with Type 11 messaging and Type 9 data

streaming support
• Interlaken look-aside interface for serial TCAM connection at 6.25 and 10.3125 Gbps per-lane rates.

• Additional peripheral interfaces
• Two serial ATA (SATA 2.0) controllers
• Two high-speed USB 2.0 controllers with integrated PHY
• Enhanced secure digital host controller (SD/MMC/eMMC)
• Enhanced serial peripheral interface (eSPI)
• Four I2C controllers
• Four 2-pin or two 4-pin UARTs
• Integrated Flash controller supporting NAND and NOR flash

• Three eight-channel DMA engines.
• Support for hardware virtualization and partitioning enforcement
• QorIQ Platform's Trust Architecture 2.0

5.3 Critical performance parameters
This table lists key performance indicators that define a set of values used to measure SoC operation.

Table 1. Critical performance parameters

Indicator Values(s)

Top speed bin core frequency 1.8 GHz

Maximum memory data rate 1867 MHz (DDR3)1, 1600 MHz for DDR3L
• 1.5 V for DDR3
• 1.35 V for DDR3L

Integrated flash controller (IFC) 1.8 V

Operating junction temperature
range

0-105 C

Package 1932-pin, flip-chip plastic ball grid array (FC-PBGA), 45 x 45mm

1. Conforms to JEDEC standard

5.4 Core and CPU clusters
This chip offers 12, high-performance, 64-bit Power Architecture, Book E-compliant cores. Each CPU core supports two
hardware threads, which software views as a virtual CPU. The core CPUs are arranged in clusters of four with a shared 2 MB
L2 cache.

Chip features
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• Improved Programmable Interrupt Controller (PIC) automatically ACKs interrupts
• Implements message send and receive functions for interprocessor communication, including receive

filtering
• External PID load and store facility

• Provides system software with an efficient means to move data and perform cache operations between two
disjoint address spaces

• Eliminates the need to copy data from a source context into a kernel context, change to destination address
space, then copy the data to the destination address space or alternatively to map the user space into the
kernel address space

Details of the banked L2 are provided below.

• 2 MB cache with ECC protection (data, tag, & status)
• Pipelined data array access with 2 cycle repeat rate

• 4 banks, supporting up to four concurrent accesses.
• 64-byte cache line size
• 16 way, set associative

• Ways in each bank can be configured in one of several modes
• Flexible way partitioning per vCPU

• I-only, D-only, or unified
• Supports direct stashing of datapath architecture data into L2

The chip also contains up to 1.5 MB of shared L3 CoreNet Platform Cache (CPC), with the following features:

• Total 1.5 MB, implemented as three 512 KB arrays, one per DDR controller
• ECC protection for Data, Tag and Status
• 16-way set associative with configurable replacement algorithms
• Allocation control for data read, data store, castout, decorated read, decorated store, instruction read and stash
• Configurable SRAM partitioning

5.5 Inverted cache hierarchy
From the perspective of software running on an core vCPU, the SoC incorporates a 2.5-level cache hierarchy. These levels
are as follows:

• Level 1: Individual core 32 KB Instruction and Data caches
• Level 2: Locally banked 2 MB cache (configurably shared by other vCPUs in the cluster)
• Level 2.5: Remote banked 2 MB caches (total 4 MB)

When vCPUs in different physical clusters are part of the same coherency domain, the CoreNet Coherency Fabric causes any
cache miss in the vCPU's local L2 to be snooped by the remote L2s belonging to the other clusters. On a hit in a remote L2,
the associated data is returned directly to the requesting vCPU, eliminating the need for a higher latency flush and retry
protocol. This direct cache transfer is called cache intervention.

Previous generation QorIQ products also support cache intervention from their private backside L2 caches; however, the
SoC's allocation policies make greater use of intervention. The sum of the SoC's L2 caches are 3x larger than the CPC.
Ttherefore, the CPC is not intended to act as backing store for the L2s, as it typically is in the previous generation. This
allows the CPCs to be dedicated to the non-CPU masters in the SoC, storing DPAA data structures and IO data that the CPUs
and accelerators will most likely need.

Although the SoC supports allocation policies that would result in CPU instructions and in data being held in the CPC (CPC
acting as vCPU L3), this is not the default. Because the CPC serves fewer masters, it serves those masters better, by reducing
the DDR bandwidth consumed by the DPAA and improving the average latency.

Chip features
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• Supports external SD bus voltage selection by register configuration
• Host will send 80 idle SD clock cycles to card, which are needed during card power-up, if bit INITA in the system

control register (SYSCTL) is set

5.8 Universal serial bus (USB) 2.0
The two USB 2.0 controllers with integrated PHY provide point-to-point connectivity that complies with the USB
specification, Rev. 2.0. Each of the USB controllers with integrated PHY can be configured to operate as a stand-alone host,
and one of the controllers (USB #2) can be configured as a stand-alone device, or with both host and device functions
operating simultaneously.

5.9 High-speed peripheral interface complex (HSSI)
This chip offers a variety of high-speed serial interfaces, sharing a set of 16 SerDes lanes. Each interface is backed by a high
speed serial interface controller. This chip has the following types and quantities of controllers:

• Four 2.0 PCI Express controllers, two supporting 3.0
• Two Serial RapidIO 2.0
• Two SATA 2.0
• One Interlaken look-aside
• Aurora
• Up to sixteen Ethernet controllers with various protocols

5.9.1 PCI Express
Each of the chip's PCI Express controllers is compliant with the PCI Express Base Specification Revision 2.0. Two are
additionally compliant with Revision 3.0 (8 GHz). Key features of each PCI Express controller include the following:

• Power-on reset configuration options allow root complex or endpoint functionality.
• The physical layer operates at 2.5, 5, or 8 Gbaud data rate per lane.
• x4, x2, and x1 link widths supported on all controllers
• Two controllers can support x8 link width
• Both 32- and 64-bit addressing
• 256-byte maximum payload size
• Full 64-bit decode with 40-bit wide windows
• Inbound INTx transactions
• Message signaled interrupt (MSI) transactions
• One PCI Express controller supports end-point SR-IOV

• Two physical functions, each with 64 virtual functions
• Eight MSI-X per virtual function

Chip features
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5.10.1 Packet distribution and queue/congestion management
This table lists some packet distribution and queue/congestion management offload functions.

Table 3. Offload functions

Function type Definition

Data buffer
management

Supports allocation and deallocation of buffers belonging to pools originally created by software with
configurable depletion thresholds. Implemented in a module called the Buffer Manager (BMan).

Queue
management

Supports queuing and quality-of-service scheduling of frames to CPUs, network interfaces and DPAA
logic blocks, maintains packet ordering within flows. Implemented in a module called the Queue Manager
(QMan). The QMan, besides providing flow-level queuing, is also responsible for congestion
management functions such as RED/WRED, congestion notifications and tail discards.

Packet distribution Supports in-line packet parsing and general classification to enable policing and QoS-based packet
distribution to the CPUs for further processing of the packets. This function is implemented in the block
called the Frame Manager (FMan).

Policing Supports in-line rate-limiting by means of two-rate, three-color marking (RFC 2698). Up to 256 policing
profiles are supported. This function is also implemented in the FMan.

Egress Scheduling Supports hierarchical scheduling and shaping, with committed and excess rates. This function is
supported in the QMan, although the FMan performs the actual transmissions.

5.10.2 Accelerating content processing
Properly implemented acceleration logic can provide significant performance advantages over most optimized software with
acceleration factors on the order of 10-100x. Accelerators in this category typically touch most of the bytes of a packet (not
just headers). To avoid consuming CPU cycles in order to move data to the accelerators, these engines include well-pipelined
DMAs. This table lists some specific content-processing accelerators on the chip.

Table 4. Content-processing accelerators

Interface Definition

SEC Crypto-acceleration for protocols such as IPsec, SSL, and 3GPP RLC

PME Regex style pattern matching for unanchored searches, including cross-packet stateful patterns

DCE Compression/Decompression acceleration for ZLib and deflate

5.10.3 Enhancements of T4240 compared to first generation DPAA
A short summary of T4240 enhancements over the first generation DPAA (as implemented in the P4080) is provided below:

• Frame Manager
• 2x performance increase (up to 25 Gbps per FMan)
• Storage profiles.
• HiGig (3.125 GHz) and HiGig2 (3.125 GHz and 3.75 GHz)
• Energy Efficient Ethernet

• SEC 5.0
• 2x performance increase for symmetric encryption and protocol processing

Chip features
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• Up to 20 Gbps for IPsec @ Imix
• 10x performance increase for public key algorithms
• Support for 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3 (ZUC)

• DCE 1.0, new accelerator for compression/decompression
• RMan (Serial RapidIO Manager)
• DPAA overall capabilities

• Data Center Bridging
• Egress Traffic Shaping

5.10.4 DPAA terms and definitions
The QorIQ Platform's Data Path Acceleration Architecture (henceforth DPAA) assumes the existence of network flows,
where a flow is defined as a series of network datagrams, which have the same processing and ordering requirements. The
DPAA prescribes data structures to be initialized for each flow. These data structures define how the datagrams associated
with that flow move through the DPAA. Software is provided a consistent interface (the software portal) for interacting with
hardware accelerators and network interfaces.

All DPAA entities produce data onto frame queues (a process called enqueuing) and consume data from frame queues
(dequeuing). Software enqueues and dequeues through a software portal (each vCPU has two software portals), and the
FMan, RMan, and DPAA accelerators enqueue/dequeue through hardware portals. This figure illustrates this key DPAA
concept.

Figure 9. DPAA enqueuing and dequeuing

This table lists common DPAA terms and their definitions.

Table 5. DPAA terms and definitions

Term Definition Graphic representation

Buffer Region of contiguous memory, allocated by software, managed
by the DPAA BMan

Table continues on the next page...

Chip features

T4240 Product Brief, Rev 1, 10/2014

Freescale Semiconductor, Inc. 21



• Ability to match patterns across data "work units" or packet boundaries
• Can be used to correlate patterns, qualify matches (for example, contextual match), or to track protocol state

change
• Easily support "greedy" wildcards

• For example, ABC.*DEF == two patterns tied together by a stateful rule
• Delays the need for software post-processing. Software is alerted after all byte patterns are detected in the proper

sequence, rather than any time a byte pattern is detected.
• Implements a significant subset of the regex pattern definition syntax as well as many constructs which cannot be

expressed in standard PCRE
• PME 2.1 supports up to 32K stateful rules, linking multiple byte patterns

The PME 2.1 dequeues data from its QMan hardware portal and, based on FQ configuration, scans the data against one of
256 pattern sets, 16 subsets per pattern set.

When the PME finds a byte pattern match, or a final pattern in a stateful rule, it generates a report.

5.10.5.6 Decompression and Compression Engine (DCE 1.0)
The Decompression and Compression Engine (DCE 1.0) is an accelerator compatible with Datapath Architecture providing
lossless data decompression and compression for the QorIQ family of SoCs. The DCE supports the raw DEFLATE algorithm
(RFC1951), GZIP format (RFC1952) and ZLIB format (RFC1950). The DCE also supports Base 64 encoding and decoding
(RFC4648).

The DEFLATE algorithm is a basic building block for data compression in most modern communication systems. It is used
by HTTP to compress web pages, by SSL to compress records, by gzip to compress files and email attachments, and by many
other applications.

Deflate involves searching for repeated patterns previously seen in a Frame, computing the length and the distance of the
pattern with respect to the current location in the Frame, and encoding the resulting information into a bitstream.

The decompression algorithm involves decoding the bitstream and replaying past data. The Decompression and Compression
Engine is architected to minimize the system memory bandwidth required to do decompression and compression of Frames
while providing multi-gigabits per second of performance.

Detailed features include the following:

• Deflate; as specified as in RFC1951
• GZIP; as specified in RFC1952
• Zlib; as specified in RFC1950

• Interoperable with the zlib 1.2.5 compression library
• Compression

• ZLIB, GZIP and DEFLATE header insertion
• ZLIB and GZIP CRC computation and insertion
• Zlib sync flush and partial flush for chunked compression (for example, for HTTP1.1)
• Four modes of compression

• No compression (just add DEFLATE header)
• Encode only using static/dynamic Huffman codes
• Compress and encode using static Huffman codes
• Compress and encode using dynamic Huffman codes

• Uses a 4KB sliding history window
• Supports Base 64 encoding (RFC4648) after compression
• Provides at least 2.5:1 compression ratio on the Calgary Corpus

• Decompression supports:
• ZLIB, GZIP and DEFLATE header removal
• ZLIB and GZIP CRC validation
• 32KB history
• Zlib flush for chunked decompression (for HTTP1.1 for example)

Chip features
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5.11 Resource partitioning and QorIQ Trust Architecture
Consolidation of discrete CPUs into a single, multicore chip introduces many opportunities for unintended resource
contentions to arise, particularly when multiple, independent software entities reside on a single chip. A system may exhibit
erratic behavior if multiple software partitions cannot effectively partition resources. Device consolidation, combined with a
trend toward embedded systems becoming more open (or more likely to run third-party or open-source software on at least
one of the cores), creates opportunities for malicious code to enter a system.

This chip offers a new level of hardware partitioning support, allowing system developers to ensure software running on any
CPU only accesses the resources (memory, peripherals, and so on) that it is explicitly authorized to access. This section
provides an overview of the features implemented in the chip that help ensure that only trusted software executes on the
CPUs, and that the trusted software remains in control of the system with intended isolation.

5.11.1 Core MMU, UX/SX bits, and embedded hypervisor
The chip's first line of defense against unintended interactions amongst the multiple CPUs/OSes is each core vCPU's MMU.
A vCPU's MMU is configured to determine which addresses in the global address map the CPU is able to read or write. If a
particular resource (memory region, peripheral device, and so on) is dedicated to a single vCPU, that vCPU's MMU is
configured to allow access to those addresses (on 4 KB granularity); other vCPU MMUs are not configured for access to
those addresses, which makes them private. When two vCPUs need to share resources, their MMUs are both configured so
that they have access to the shared address range.

This level of hardware support for partitioning is common today; however, it is not sufficient for many core systems running
diverse software. When the functions of multiple discrete CPUs are consolidated onto a single multicore chip, achieving
strong partitioning should not require the developer to map functions onto vCPUs that are the exclusive owners of specific
platform resources. The alternative, a fully open system with no private resources, is also unacceptable. For this reason, the
core's MMU also includes three levels of access permissions: user, supervisor (OS), and hypervisor. An embedded hypervisor
(for example, KVM, XEN, QorIQ ecosystem partner hypervisor) runs unobtrusively beneath the various OSes running on the
vCPUs, consuming CPU cycles only when an access attempt is made to an embedded hypervisor-managed shared resource.

The embedded hypervisor determines whether the access should be allowed and, if so, proxies the access on behalf of the
original requestor. If malicious or poorly tested software on any vCPU attempts to overwrite important device configuration
registers (including vCPU's MMU), the embedded hypervisor blocks the write. High and low-speed peripheral interfaces
(PCI Express, UART), when not dedicated to a single vCPU/partition, are other examples of embedded hypervisor managed
resources. The degree of security policy enforcement by the embedded hypervisor is implementation-dependent.

In addition to defining regions of memory as being controlled by the user, supervisor, or hypervisor, the core MMU can also
configure memory regions as being non-executable. Preventing CPUs from executing instructions from regions of memory
used as data buffers is a powerful defense against buffer overflows and other runtime attacks. In previous generations of
Power Architecture, this feature was controlled by the NX (no execute) attribute. In new Power Architecture cores such as
the e6500 core, there are separate bits controlling execution for user (UX) and supervisor (SX).

5.11.2 Peripheral access management unit (PAMU)
MMU-based access control works for software running on CPUs; however, these are not the only bus masters in the SoC.
Internal components with bus mastering capability (FMan, RMan, PCI Express controller, PME, SEC, and so on) also need
to be prevented from reading and writing to certain memory regions. These components do not spontaneously generate access
attempts; however, if programmed to do so by buggy or malicious software, any of them could read or write sensitive data
registers and crash the system. For this reason, the SoC also includes a distributed function referred to as the peripheral
access management unit (PAMU).

Chip features
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PAMUs provide address translation and access control for all non-CPU initiators in the system. PAMU access control is
based on the logical I/O device number (LIODN) advertised by a bus master for a given transaction. LIODNs can be static
(for example, PCI Express controller #1 always uses LIODN 123) or they can be dynamic, based on the ID of the CPU that
programmed the initiator (for example, the SEC uses LIODN 456 because it was given a descriptor by vCPU #2). In the
dynamic example, the SoC architecture provides positive identification of the vCPU programming the SEC, preventing
LIODN spoofing.

5.11.3 IO partitioning
The simplest IO configuration in chips running multiple independent software partitions is to dedicate specific IO controllers
(PCI Express, SATA, Serial RapidIO controllers) to specific vCPUs. The core MMUs and PAMUs can enforce these access
permissions to insure that only the software partition owning the IO is able to use it. The obvious problem with this approach
is that there are likely to be more software partitions wanting IO access than there are IO controllers to dedicate to each.

Safe IO sharing can be accomplished through the use of a hypervisor; however, there is a performance penalty associated
with virtual IO, as the hypervisor must consume CPU cycles to schedule the IO requests and get the results back to the right
software partition.

The DPAA (described in Data Path Acceleration Architecture (DPAA)") was designed to allow multiple partitions to
efficiently share accelerators and IOs, with its major capabilities centered around sharing Ethernet ports. These capabilities
were enhanced in the chip with the addition of FMan storage profiles. The chip's FMans perform classification prior to buffer
pool selection, allowing Ethernet frames arriving on a single port to be written to the dedicated memory of a single software
partition. This capability is fully described in Receiver functionality: parsing, classification, and distribution."

The addition of the RMan extends the chip's IO virtualization by allowing many types of traffic arriving on Serial RapidIO to
enter the DPAA and take advantage of its inherent virtualization and partitioning capabilities.

The PCI Express protocol lacks the PDU semantics found in Serial RapidIO, making it difficult to interwork between PCI
Express controllers and the DPAA; however, PCI Express has made progress in other areas of partition. The Single Root IO
Virtualization specification, which the chip supports as an endpoint, allows external hosts to view the chip as multiple two
physical functions (PFs), where each PF supports up to 64 virtual functions (VFs). Having multiple VFs on a PCI Express
port effectively channelizes it, so that each transaction through the port is identified as belonging to a specific PF/VF
combination (with associated and potentially dedicated memory regions). Message signalled interrupts (MSIs) allow the
external Host to generate interrupts associated with a specific VF.

5.11.4 Secure boot and sensitive data protection
The core MMUs and PAMU allow the SoC to enforce a consistent set of memory access permissions on a per-partition basis.
When combined with an embedded hypervisor for safe sharing of resources, the SoC becomes highly resilient to poorly
tested or malicious code. For system developers building high reliability/high security platforms, rigorous testing of code of
known origin is the norm.

For this reason, the SoC offers a secure boot option, in which the system developer digitally signs the code to be executed by
the CPUs, and the SoC insures that only an unaltered version of that code runs on the platform. The SoC offers both boot
time and run time code authenticity checking, with configurable consequences when the authenticity check fails. The SoC
also supports protected internal and external storage of developer-provisioned sensitive instructions and data. For example, a
system developer may provision each system with a number of RSA private keys to be used in mutual authentication and key
exchange. These values would initially be stored as encrypted blobs in external non-volatile memory; but, following secure
boot, these values can be decrypted into on-chip protected memory (portion of platform cache dedicated as SRAM). Session
keys, which may number in the thousands to tens of thousands, are not good candidates for on-chip storage, so the SoC offers
session key encryption. Session keys are stored in main memory, and are decrypted (transparently to software and without
impacting SEC throughput) as they are brought into the SEC 5.0 for decryption of session traffic.
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5.12 Advanced power management
Power dissipation is always a major design consideration in embedded applications; system designers need to balance the
desire for maximum compute and IO density against single-chip and board-level thermal limits.

Advances in chip and board level cooling have allowed many OEMs to exceed the traditional 30 W limit for a single chip,
and Freescale's flagship T4240 multicore chip, has consequently retargeted its maximum power dissipation. A top-speed bin
T4240 dissipates approximately 2x the power dissipation of the P4080; however, the T4240 increases computing
performance by ~4x, yielding a 2x improvement in DMIPs per watt.

Junction temperature is a critical factor in comparing embedded processor specifications. Freescale specs max power at 105C
junction, standard for commercial, embedded operating conditions. Not all multicore chips adhere to a 105C junction for
specifying worst case power. In the interest of normalizing power comparisons, the chip's typical and worst case power (all
CPUs at 1.8 GHz) are shown at alternate junction temperatures.

To achieve the previously-stated 2x increase in performance per watt, the chip implements a number of software transparent
and performance transparent power management features. Non-transparent power management features are also available,
allowing for significant reductions in power consumption when the chip is under lighter loads; however, non-transparent
power savings are not assumed in chip power specifications.

5.12.1 Transparent power management
This chip's commitment to low power begins with the decision to fabricate the chip in 28 nm bulk CMOS. This process
technology offers low leakage, reducing both static and dynamic power. While 28 nm offers inherent power savings,
transistor leakage varies from lot to lot and device to device. Leakier parts are capable of faster transistor switching, but they
also consume more power. By running devices from the leakier end of the process spectrum at less than nominal voltage and
devices from the slower end of the process spectrum at higher nominal voltage, T4240-based systems can achieve the
required operating frequency within the specified max power. During manufacturing, Freescale will determine the voltage
required to achieve the target frequency bin and program this Voltage ID into each device, so that initialization software can
program the system's voltage regulator to the appropriate value.

Dynamic power is further reduced through fine-grained clock control. Many components and subcomponents in the chip
automatically sleep (turn off their clocks) when they are not actively processing data. Such blocks can return to full operating
frequency on the clock cycle after work is dispatched to them. A portion of these dynamic power savings are built into the
chip max power specification on the basis of impossibility of all processing elements and interfaces in the chip switching
concurrently. The percent switching factors are considered quite conservative, and measured typical power consumption on
QorIQ chips is well below the maximum in the data sheet.

As noted in Frame Manager and network interfaces, the chip supports Energy-Efficient Ethernet. During periods of extended
inactivity on the transmit side, the chip transparently sends a low power idle (LPI) signal to the external PHY, effectively
telling it to sleep.

Additional power savings can be achieved by users statically disabling unused components. Developers can turn off the
clocks to individual logic blocks (including CPUs) within the chip that the system is not using. Based on a finite number of
SerDes, it is expected that any given application will have some inactive Ethernet MACs, PCI Express, or serial RapidIO
controllers. Re-enabling clocks to a logic block generally requires an chip reset, which makes this type of power management
infrequent (effectively static) and transparent to runtime software.
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5.12.2 Non-transparent power management
Many load-based power savings are use-case specific static configurations (thereby software transparent), and were described
in the previous section. This section focuses on SoC power management mechanisms, which software can dynamically
leverage to reduce power when the system is lightly loaded. The most important of these mechanisms involves the cores.

A full description of core low-power states with proper names is provided in the SoC reference manual. At a high level, the
most important of these states can be viewed as "PH10" and "PH20," described as follows. Note that these are relative terms,
which do not perfectly correlate to previous uses of these terms in Power Architecture and other ISAs:

• In PH10 state CPU stops instruction fetches but still performs L1 snoops. The CPU retains all state, and instruction
fetching can be restarted instantly.

• In PH20 state CPU stops instruction fetches and L1 snooping, and turns off all clocks. Supply voltage is reduced, using
a technique Freescale calls State Retention Power Gating (SRPG). In the "napping" state, a CPU uses ~75% less power
than a fully operational CPU, but can still return to full operation quickly (~100 platform clocks).

The core offers two ways to enter these (and other) low power states: registers and instructions.

As the name implies, register-based power management means that software writes to registers to select the CPU and its low
power state. Any CPU with write access to power management registers can put itself, or another CPU, into a low power
state; however, a CPU put into a low power state by way of register write cannot wake itself up.

Instruction-based power management means that software executes special WAIT instruction to enter a low power state.
CPUs exit the low power state in response to external triggers, interrupts, doorbells, stashes into L1-D cache, or clear
reservation on snoop. Each vCPU can independently execute WAIT instructions; however, the physical CPU enters PH20
state after the second vCPU executes its wait. The instruction-based "enters PH20 state" state is particularly well-suited for
use in conjunction with Freescale's patented Cascade Power Management, which is described in the next section.

While significant power savings can be achieved through individual CPU low power states, the SoC also supports a register-
based cluster level low power state. After software puts all CPUs in a cluster in a PH10 state, it can additionally flush the L2
cache and have the entire cluster enter PH20 state . Because the L2 arrays have relatively low static power dissipation, this
state provides incremental additional savings over having four napping CPUs with the L2 on.

5.12.3 Cascade power management
Cascade power management refers to the concept of allowing SoC load, as defined by the depth of queues managed by the
Queue Manager, to determine how many vCPUs need to be awake to handle the load. Recall from Queue Manager that the
QMan supports both dedicated and pool channels. Pool channels are channels of frame queues consumed by parallel workers
(vCPUs), where any worker can process any packet dequeued from the channel.

Cascade Power Management exploits the QMan's awareness of vCPU membership in a pool channel and overall pool
channel queue depth. The QMan uses this information to tell vCPUs in a pool channel (starting with the highest numbered
vCPU) that they can execute instructions to "take a nap." When pool channel queue depth exceeds configurable thresholds,
the QMan wakes up the lowest numbered vCPU.

The SoC's dynamic power management capabilities, whether using the Cascade scheme or a master control CPU and load to
power matching software, enable up to a 75% reduction to each corein power consumption versus data sheet max power.
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5.13 Debug support
The reduced number of external buses enabled by the move to multicore chips greatly simplifies board level lay-out and
eliminates many concerns over signal integrity. Even though the board designer may embrace multicore CPUs, software
engineers have real concerns over the potential to lose debug visibility. Despite the problems external buses can cause for the
hardware engineer, they provide software developers with the ultimate confirmation that the proper instructions and data are
passing between processing elements.

Processing on a multicore chip with shared caches and peripherals also leads to greater concurrency and an increased
potential for unintended interactions between device components. To ensure that software developers have the same or better
visibility into the device as they would with multiple discrete communications processors, Freescale developed an Advanced
Multicore Debug Architecture.

The debugging and performance monitoring capability enabled by the device hardware coexists within a debug ecosystem
that offers a rich variety of tools at different levels of the hardware/software stack. Software development and debug tools
from Freescale (CodeWarrior), as well as third-party vendors, provide a rich set of options for configuring, controlling, and
analyzing debug and performance related events.

6 Conclusion
Featuring 24 virtual cores, and based on the dual-threaded e6500 Power Architecture core, the T4240 processor, along with
its 16 (T4160) and 8 (T4080) virtual-core variants, offers frequencies up to 1.8 GHz, large caches, hardware acceleration, and
advanced system peripherals. All three devices target applications that benefit from consolidation of control and data plane
processing in a single chip. In addition, each e6500 core implements the Freescale AltiVec technology SIMD engine,
dramatically boosting the performance of math-intensive algorithms without using additional DSP components on the board.
A wide variety of applications can benefit from the processing, I/O integration, and power management offered for the T4
series processors. Similar to other QorIQ devices, the T4 family processors' high level of integration offers significant space,
weight, and power benefits compared to multiple discrete devices. Freescale also offers fully featured development support,
which includes the QorIQ T4240 QDS Development System, QorIQ T4240 Reference Design Board, Linux SDK for QorIQ
Processors, as well as popular operating systems and development tools from a variety of vendors. See the Freescale website
for the latest information on tools and SW availability.

For more information about the QorIQ T4 family, contact your Freescale sales representative.

Appendix A T4160

A.1 Introduction
The T4160 is a lower power version of the T4240. The T4160 combines eight dual threaded Power Architecture e6500 cores
and two memory complexes (CoreNet platform cache and DDR3 memory controller) with the same high-performance
datapath acceleration, networking, and peripheral bus interfaces.

This figure shows the major functional units within the chip.
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Figure A-1. T4160 block diagram

A.2 Overview of differences between T4240 and T4160
Table A-1. Differences between T4240 and T4160

Feature T4240 T4160

Cores

Number of physical cores 12 8

Number of threads 24 16

Number of clusters 3 2

Memory subsystem

Total CPC memory 3 x 512 KB 2 x 512 KB

Number of DDR controllers 3 2

Peripherals

Number of Frame Managers 2 2

Total number of Anyspeed MACs 8 per Frame Manager 6 (FMan1) and 8 (FMan2)

Table continues on the next page...
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Table A-1. Differences between T4240 and T4160 (continued)

Feature T4240 T4160

Max number of Anyspeed MACs configured for 10 GE
operation

2 per Frame Manager 1 per Frame Manager

SerDes and pinout

Total number of SerDes lanes 4 x 8 2 x 4 and 2 x 8

High-speed IO

PCIe 4 3 (PCIe 3 is disabled)

Appendix B T4080

B.1 Introduction
The T4080 is a low power version of the T4160. The T4080 has four dual threaded Power Architecture e6500 cores with the
same two memory complexes (CoreNet platform cache and DDR3 memory controller) with the same high-performance
datapath acceleration, networking, and peripheral bus interfaces.

This figure shows the major functional units within the chip.
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Figure B-1. T4080 block diagram

B.2 Overview of differences between T4160 and T4080
Table B-1. Differences between T4160 and T4080

Feature T4160 T4080

Cores

Number of physical cores 8 4

Number of threads 16 8

Number of clusters 2 1

Appendix C Revision history

C.1 Revision history
This table provides a revision history for this document.
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Table C-1. Revision history

Rev.
number

Date Substantive change(s)

1 10/2014 • Added support for T4080 throughout document.
• Updated Introduction.
• In Summary of benefits, updated the first sentence to include "...SDN switches or controllers,

network function virtualization..." and added the following subsections:
• e6500 CPU core
• Virtualization
• Data Path Acceleration Architecture (DPAA)
• System peripherals and networking

• In Intelligent network adapter, added examples.
• Updated Block diagram.
• In Features summary, added T4160 and T4080 thread specifications, added 10GBase-KR to

the Ethernet interfaces, updated the coherent read bandwidth, and removed the note.
• In Critical performance parameters, removed the typical power consumption table.
• In Core and CPU clusters, updated the 16 way, set associative sub-bullets and changed the

double-precision, full device value from "42.2" to "up to 42.4".
• Updated the read bandwidth in CoreNet fabric and address map.
• Added HiGig 2 in Enhancements of T4240 compared to first generation DPAA.
• Updated bullet two in CoreNet fabric and address map and updated the last bullet in High-

speed peripheral interface complex (HSSI).
• Updated Non-transparent power management.
• Rewrote Conclusion to add more information and a list of Freescale resources.
• In the Appendix A T4160 Introduction, removed the T4240-specific information.

0 06/2013 Initial public release.
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