E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	EBI/EMI, I ² C, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	79
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 15x10/12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam3s1cb-au

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2-3. SAM3S 48-pin Version Block Diagram

3. Signal Description

Table 3-1 gives details on the signal names classified by peripheral.

Table 3-1. Signal Description List

Signal Name	Function	Туре	Active	Voltage	Comments					
VDDIO	Peripherals I/O Lines and USB transceiver Power Supply	Power			1.62V to 3.6V					
VDDIN	Voltage Regulator Input, ADC, DAC and Analog Comparator Power Supply	Power			1.8V to 3.6V ⁽⁴⁾					
VDDOUT	Voltage Regulator Output	Power			1.8V Output					
VDDPLL	Oscillator and PLL Power Supply	Power			1.62 V to 1.95V					
VDDCORE	Power the core, the embedded memories and the peripherals	Power			1.62V to 1.95V					
GND	Ground	Ground								
	Clocks, Oscilla	ators and PLI	Ls							
XIN	Main Oscillator Input	Input			Reset State:					
XOUT	Main Oscillator Output	Output			- PIO Input					
XIN32	Slow Clock Oscillator Input	Input			- Internal Pull-up disabled					
XOUT32	Slow Clock Oscillator Output	Output			- Schmitt Trigger enabled ⁽¹⁾					
PCK0 - PCK2	Programmable Clock Output	Output			Reset State: - PIO Input - Internal Pull-up enabled - Schmitt Trigger enabled ⁽¹⁾					
	Serial Wire/JTAG D	ebug Port - S	WJ-DP							
TCK/SWCLK	Test Clock/Serial Wire Clock	Input			Reset State:					
TDI	Test Data In	Input			- SWJ-DP Mode					
TDO/TRACESWO	Test Data Out / Trace Asynchronous Data Out	Output		VDDIO	- Internal pull-up disabled ⁽⁵⁾					
TMS/SWDIO	Test Mode Select /Serial Wire Input/Output	Input / I/O			- Schmitt Higger enabled.					
JTAGSEL	JTAG Selection	Input	High		Permanent Internal pull-down					
	Flash M	lemory								
					Reset State:					
FRASE	Flash and NVM Configuration Bits Erase	Input	High	סוססע	- Erase Input					
	Command	mput	, ngri	10010	- Internal pull-down enabled					
					- Schmitt Trigger enabled ⁽¹⁾					
	Rese	t/Test	1	[
NRST	Synchronous Microcontroller Reset	I/O	Low		Permanent Internal					
				VDDIO	pull-up					
тят	Test Select	Input			Permanent Internal					
					pull-down					

Signal Name	Function	Туре	Active Level	Voltage reference	Comments					
Synchronous Serial Controller - SSC										
TD	SSC Transmit Data	Output								
RD	SSC Receive Data	Input								
ТК	SSC Transmit Clock	I/O								
RK	SSC Receive Clock	I/O								
TF	SSC Transmit Frame Sync	I/O								
RF	SSC Receive Frame Sync	I/O								
	Timer/Cou	unter - TC	1		1					
TCLKx	TC Channel x External Clock Input	Input								
TIOAx	TC Channel x I/O Line A	I/O								
TIOBx	TC Channel x I/O Line B	I/O								
	Pulse Width Modulati	on Controlle	r- PWMC		1					
PWMHx	PWM Waveform Output High for channel x	Output								
PWMLx	PWM Waveform Output Low for channel x	Output			only output in complementary mode when dead time insertion is enabled					
PWMFI0	PWM Fault Input	Input								
	Serial Periphera	Interface -	SPI		·					
MISO	Master In Slave Out	I/O								
MOSI	Master Out Slave In	I/O								
SPCK	SPI Serial Clock	I/O								
SPI_NPCS0	SPI Peripheral Chip Select 0	I/O	Low							
SPI_NPCS1 - SPI_NPCS3	SPI Peripheral Chip Select	Output	Low							
	Two-Wire In	terface- TWI								
TWDx	TWIx Two-wire Serial Data	I/O								
TWCKx	TWIx Two-wire Serial Clock	I/O								
	Ana	log								
ADVREF	ADC, DAC and Analog Comparator Reference	Analog								
	Analog-to-Digital	Converter -	ADC							
AD0 - AD14	Analog Inputs	Analog, Digital								
ADTRG	ADC Trigger	Input		VDDIO						
	12-bit Digital-to-Ana	log Converte	er - DAC							
DAC0 - DAC1	Analog output	Analog, Digital								
DACTRG	DAC Trigger	Input		VDDIO						

Table 3-1. Signal Description List (Continued)

Table 4-2. 100-ball TFBGA SAM3S4/2/1C Pinout

A1	PB1/AD5	C6	TCK/SWCLK/PB7	F1	PA18/PGMD6/AD1		H6	PC4
A2	PC29	C7	PC16	F2	PC26	1	H7	PA11/PGMM3
A3	VDDIO	C8	PA1/PGMEN1	F3	VDDOUT	1	H8	PC1
A4	PB9/PGMCK/XIN	C9	PC17	F4	GND]	H9	PA6/PGMNOE
A5	PB8/XOUT	C10	PA0/PGMEN0	F5	VDDIO]	H10	TDI/PB4
A6	PB13/DAC0	D1	PB3/AD7	F6	PA27/PGMD15		J1	PC15/AD11
A7	DDP/PB11	D2	PB0/AD4	F7	PC8]	J2	PC0
A8	DDM/PB10	D3	PC24	F8	PA28		J3	PA16/PGMD4
A9	TMS/SWDIO/PB6	D4	PC22	F9	TST		J4	PC6
A10	JTAGSEL	D5	GND	F10	PC9]	J5	PA24/PGMD12
B1	PC30	D6	GND	G1	PA21/PGMD9/AD8]	J6	PA25/PGMD13
B2	ADVREF	D7	VDDCORE	G2	PC27	1	J7	PA10/PGMM2
B3	GNDANA	D8	PA2/PGMEN2	G3	PA15/PGMD3]	J8	GND
B4	PB14/DAC1	D9	PC11	G4	VDDCORE]	J9	VDDCORE
B5	PC21	D10	PC14	G5	VDDCORE]	J10	VDDIO
B6	PC20	E1	PA17/PGMD5/AD0	G6	PA26/PGMD14]	K1	PA22/PGMD10/AD9
B7	PA31	E2	PC31	G7	PA12/PGMD0]	K2	PC13/AD10
B8	PC19	E3	VDDIN	G8	PC28]	K3	PC12/AD12
B9	PC18	E4	GND	G9	PA4/PGMNCMD]	K4	PA20/PGMD8/AD3
B10	TDO/TRACESWO/ PB5	E5	GND	G10	PA5/PGMRDY		K5	PC5
C1	PB2/AD6	E6	NRST	H1	PA19/PGMD7/AD2]	K6	PC3
C2	VDDPLL	E7	PA29/AD13	H2	PA23/PGMD11]	K7	PC2
C3	PC25	E8	PA30/AD14	H3	PC7		K8	PA9/PGMM1
C4	PC23	E9	PC10	H4	PA14/PGMD2		K9	PA8/XOUT32/PGMM0
C5	ERASE/PB12	E10	PA3	H5	PA13/PGMD1		K10	PA7/XIN32/ PGMNVALID

4.2 SAM3S4/2/1B Package and Pinout

Figure 4-4. Orientation of the 64-lead LQFP Package

1

4.2.1 64-Lead LQFP and QFN Pinout

64-pin version SAM3S devices are pin-to-pin compatible with AT91SAM7S legacy products. Furthermore, SAM3S products have new functionalities shown in italic in Table 4-3.

- -

1	ADVREF	17	GND	33	TDI/PB4	49	TDO/TRACESWO/PB5
2	GND	18	VDDIO	34	PA6/PGMNOE	50	JTAGSEL
3	PB0/AD4	19	PA16/PGMD4	35	PA5/PGMRDY	51	TMS/SWDIO/PB6
4	PB1/AD5	20	PA15/PGMD3	36	PA4/PGMNCMD	52	PA31
5	PB2/AD6	21	PA14/PGMD2	37	PA27/PGMD15	53	TCK/SWCLK/PB7
6	PB3/AD7	22	PA13/PGMD1	38	PA28	54	VDDCORE
7	VDDIN	23	PA24/PGMD12	39	NRST	55	ERASE/PB12
8	VDDOUT	24	VDDCORE	40	TST	56	DDM/PB10
9	PA17/PGMD5/ AD <i>0</i>	25	PA25/PGMD13	41	PA29	57	DDP/PB11
10	PA18/PGMD6/ AD1	26	PA26/PGMD14	42	PA30	58	VDDIO
11	PA21/PGMD9/ AD8	27	PA12/PGMD0	43	PA3	59	PB13/DAC0
12	VDDCORE	28	PA11/PGMM3	44	PA2/PGMEN2	60	GND
13	PA19/PGMD7/ AD2	29	PA10/PGMM2	45	VDDIO	61	XOUT/PB8
14	PA22/PGMD10/ AD9	30	PA9/PGMM1	46	GND	62	XIN/PGMCK/PB9
15	PA23/PGMD11	31	PA8/ <i>XOUT3</i> 2/ PGMM0	47	PA1/PGMEN1	63	PB14/DAC1
16	PA20/PGMD8/ AD3	32	PA7/ <i>XIN32/</i> PGMNVALID	48	PA0/PGMEN0	64	VDDPLL

Table 4-3.	64-pin SAM3S4/2/1B Pinout
------------	---------------------------

Note: The bottom pad of the QFN package must be connected to ground.

4.3.1 48-Lead LQFP and QFN Pinout

Table 4-4.	48-pin SAM3S4/2/1A Pinout
------------	---------------------------

1	ADVREF	13	VDDIO	25	TDI/PB4	37	TDO/TRACESWO/ PB5
2	GND	14	PA16/PGMD4	26	PA6/PGMNOE	38	JTAGSEL
3	PB0/AD4	15	PA15/PGMD3	27	PA5/PGMRDY	39	TMS/SWDIO/PB6
4	PB1/AD5	16	PA14/PGMD2	28	PA4/PGMNCMD	40	TCK/SWCLK/PB7
5	PB2/AD6	17	PA13/PGMD1	29	NRST	41	VDDCORE
6	PB3/AD7	18	VDDCORE	30	TST	42	ERASE/PB12
7	VDDIN	19	PA12/PGMD0	31	PA3	43	DDM/PB10
8	VDDOUT	20	PA11/PGMM3	32	PA2/PGMEN2	44	DDP/PB11
9	PA17/PGMD5/ AD0	21	PA10/PGMM2	33	VDDIO	45	XOUT/PB8
10	PA18/PGMD6/ AD1	22	PA9/PGMM1	34	GND	46	XIN/PB9/PGMCK
11	PA19/PGMD7/ AD2	23	PA8/ <i>XOUT3</i> 2/ PGMM0	35	PA1/PGMEN1	47	VDDIO
12	PA20/AD3	24	PA7/ <i>XIN32/</i> PGMNVALID	36	PA0/PGMEN0	48	VDDPLL

Note: The bottom pad of the QFN package must be connected to ground.

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application dependent.

This mode is entered via Wait for Interrupt (WFI) or Wait for Event (WFE) instructions with LPM = 0 in PMC_FSMR. The processor can be woke up from an interrupt if WFI instruction of the Cortex M3 is used, or from an event if the WFE instruction is used to enter this mode.

5.5.4 Low Power Mode Summary Table

The modes detailed above are the main low power modes. Each part can be set to on or off separately and wake up sources can be individually configured. Table 5-1 below shows a summary of the configurations of the low power modes.

Mode	SUPC, 32 kHz Oscillator RTC RTT Backup Registers, POR (Backup Region)	Regulator	Core Memory Peripherals	Mode Entry	Potential Wake Up Sources	Core at Wake Up	PIO State while in Low Power Mode	PIO State at Wake Up	Consumption	Wake-up Time ⁽¹⁾
Backup Mode	ON	OFF	OFF (Not powered)	WFE +SLEEPDEEP bit = 1	WUP0-15 pins SM alarm RTC alarm RTT alarm	Reset	Previous state saved	PIOA & PIOB & PIOC Inputs with pull ups	3 μΑ typ ⁽⁴⁾	< 0.1 ms
Wait Mode	ON	ON	Powered (Not clocked)	WFE +SLEEPDEEP bit = 0 +LPM bit = 1	Any Event from: Fast startup through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	5 μΑ/15 μΑ ⁽⁵⁾	< 10 µs
Sleep Mode	ON	ON	Powered ⁽⁷⁾ (Not clocked)	WFE or WFI +SLEEPDEEP bit = 0 +LPM bit = 0	Entry mode =WFI Interrupt Only; Entry mode =WFE Any Enabled Interrupt and/or Any Event from: Fast start-up through WUP0-15 pins RTC alarm RTT alarm USB wake-up	Clocked back	Previous state saved	Unchanged	(6)	(6)

Table 5-1. Low Power Mode Configuration Summary

Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time taken for wake up until the first instruction is fetched.

- 2. The external loads on PIOs are not taken into account in the calculation.
- 3. Supply Monitor current consumption is not included.
- 4. Total Current consumption.
- 5. 5 μA on VDDCORE, 15 μA for total current consumption (using internal voltage regulator), 8 μA for total current consumption (without using internal voltage regulator).
- 6. Depends on MCK frequency.
- 7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not already enabled.

Figure 5-4. Wake-up Source

7.5 Master to Slave Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, for example allowing access from the Cortex-M3 S Bus to the Internal ROM. Thus, these paths are forbidden or simply not wired and shown as "-" in the following table.

	Masters	0	1	2	3
Slaves		Cortex-M3 I/D Bus	Cortex-M3 S Bus	PDC	CRCCU
0	Internal SRAM	-	Х	х	Х
1	Internal ROM	х	-	х	х
2	Internal Flash	х	-	-	Х
3	External Bus Interface	-	Х	Х	Х
4	Peripheral Bridge	-	Х	Х	-

Table 7-3.	SAM3S	Master to	Slave	Access

7.6 Peripheral DMA Controller

- Handles data transfer between peripherals and memories
- Low bus arbitration overhead
 - One Master Clock cycle needed for a transfer from memory to peripheral
 - Two Master Clock cycles needed for a transfer from peripheral to memory
- Next Pointer management for reducing interrupt latency requirement

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):

Instance Name	Channel T/R	100 & 64 Pins	48 Pins
PWM	Transmit	x	х
TWI1	Transmit	x	х
TWIO	Transmit	x	х
UART1	Transmit	x	х
UART0	Transmit	x	х
USART1	Transmit	x	N/A
USART0	Transmit	x	х
DAC	Transmit	x	N/A
SPI	Transmit	x	х
SSC	Transmit	x	х
HSMCI	Transmit	x	N/A
PIOA	Transmit	x	х
TWI1	Receive	x	x
TWIO	Receive	x	x
UART1	Receive	x	N/A
UART0	Receive	x	x

Table 7-4. Peripheral DMA Controller

8. Product Mapping

Figure 8-1. SAM3S Product Mapping

9.1.3.11 GPNVM Bits

The SAM3S features two GPNVM bits that can be cleared or set respectively through the commands "Clear GPNVM Bit" and "Set GPNVM Bit" of the EEFC User Interface.

Table 9-2.	General Purpose Non-volatile Memory Bits
------------	--

GPNVMBit[#]	Function		
0	Security bit		
1	Boot mode selection		

9.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed via GPNVM.

A general-purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands "Clear General-purpose NVM Bit" and "Set General-purpose NVM Bit" of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the boot from the ROM by default.

9.2 External Memories

The SAM3S features an External Bus Interface to provide the interface to a wide range of external memories and to any parallel peripheral.

9.2.1 Static Memory Controller

- 8-bit Data Bus
- Up to 24-bit Address Bus (up to 16 MBytes linear per chip select)
- Up to 4 chip selects, Configurable Assignment
- Multiple Access Modes supported
 - Chip Select, Write enable or Read enable Control Mode
 - Asynchronous read in Page Mode supported (4- up to 32-byte page size)
- Multiple device adaptability
 - Control signals programmable setup, pulse and hold time for each Memory Bank
- Multiple Wait State Management
 - Programmable Wait State Generation
 - External Wait Request
 - Programmable Data Float Time
- Slow Clock mode supported
- Additional Logic for NAND Flash

10.1 System Controller and Peripheral Mapping

Please refer to Section 8-1 "SAM3S Product Mapping" on page 30. All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power-on-Reset, Brownout and Supply Monitor

The SAM3S embeds three features to monitor, warn and/or reset the chip:

- Power-on-Reset on VDDIO
- Brownout Detector on VDDCORE
- Supply Monitor on VDDIO

10.2.1 Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down. If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the Electrical Characteristics section of the datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the Supply Controller (SUPC) and Electrical Characteristics sections of the datasheet.

10.2.3 Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable with 16 steps for the threshold (between 1.9V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information, refer to the SUPC and Electrical Characteristics sections of the datasheet.

10.3 Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as supplied on VDDIO.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor and the peripherals (via Voltage regulator control)

The Supply Controller has its own reset circuitry and is clocked by the 32 kHz Slow clock generator.

The reset circuitry is based on a zero-power power-on reset cell and a brownout detector cell. The zero-power power-on reset allows the Supply Controller to start properly, while the software-programmable brownout detector allows detection of either a battery discharge or main voltage loss.

The Slow Clock generator is based on a 32 kHz crystal oscillator and an embedded 32 kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the Slow Clock source.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage Regulator, then it generates the proper reset signals to the core power supply.

It also enables to set the system in different low power modes and to wake it up from a wide range of events.

10.5 Clock Generator

The Clock Generator is made up of:

- One Low Power 32768Hz Slow Clock oscillator with bypass mode
- One Low-Power RC oscillator
- One 3-20 MHz Crystal Oscillator, which can be bypassed
- One Fast RC oscillator factory programmed, 3 output frequencies can be selected: 4, 8 or 12 MHz. By default 4 MHz is selected.
- One 60 to 130 MHz PLL (PLLB) providing a clock for the USB Full Speed Controller
- One 60 to 130 MHz programmable PLL (PLLA), capable to provide the clock MCK to the processor and to the peripherals. The PLLA input frequency is from 3.5 to 20 MHz.

Figure 10-2. Clock Generator Block Diagram

10.6 Power Management Controller

The Power Management Controller provides all the clock signals to the system. It provides:

- the Processor Clock, HCLK
- the Free running processor clock, FCLK
- the Cortex SysTick external clock
- the Master Clock, MCK, in particular to the Matrix and the memory interfaces
- the USB Clock, UDPCK

- independent peripheral clocks, typically at the frequency of MCK
- three programmable clock outputs: PCK0, PCK1 and PCK2

The Supply Controller selects between the 32 kHz RC oscillator or the crystal oscillator. The unused oscillator is disabled automatically so that power consumption is optimized.

By default, at startup the chip runs out of the Master Clock using the fast RC oscillator running at 4 MHz.

The user can trim the 8 and 12 MHz RC Oscillator frequency by software.

Figure 10-3. SAM3S Power Management Controller Block Diagram

The SysTick calibration value is fixed at 8000 which allows the generation of a time base of 1 ms with SystTick clock at 8 MHz (max HCLK/8 = 64 MHz/8).

10.7 Watchdog Timer

- 16-bit key-protected only-once-Programmable Counter
- Windowed, prevents the processor to be in a dead-lock on the watchdog access.

10.8 SysTick Timer

- 24-bit down counter
- Self-reload capability
- Flexible System timer

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAM3S product features 2 PIO controllers on 48-pin and 64-pin versions (PIOA, PIOB) or 3 PIO controllers on the 100-pin version, (PIOA, PIOB, PIOC), that multiplex the I/O lines of the peripheral set.

The SAM3S 64-pin and 100-pin PIO Controllers control up to 32 lines. (See, Table 10-2.) Each line can be assigned to one of three peripheral functions: A, B or C. The multiplexing tables in the following pages define how the I/O lines of the peripherals A, B and C are multiplexed on the PIO Controllers. The column "Comments" has been inserted in this table for the user's own comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

12. Embedded Peripherals Overview

12.1 Serial Peripheral Interface (SPI)

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- Very fast transfers supported
 - Transfers with baud rates up to MCK
 - The chip select line may be left active to speed up transfers on the same device

12.2 Two Wire Interface (TWI)

- Master, Multi-Master and Slave Mode Operation
- Compatibility with Atmel two-wire interface, serial memory and I²C compatible devices
- One, two or three bytes for slave address
- Sequential read/write operations
- Bit Rate: Up to 400 kbit/s
- General Call Supported in Slave Mode
- Connecting to PDC channel capabilities optimizes data transfers in Master Mode only
 - One channel for the receiver, one channel for the transmitter
 - Next buffer support

12.3 Universal Asynchronous Receiver Transceiver (UART)

- Two-pin UART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter

12.4 Universal Synchronous Asynchronous Receiver Transceiver (USART)

- Programmable Baud Rate Generator with Fractional Baud rate support
 - 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection

12.7 Pulse Width Modulation Controller (PWM)

- One Four-channel 16-bit PWM Controller, 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform
 - Independent Output Override for each channel
 - Independent complementary Outputs with 12-bit dead time generator for each channel
 - Independent Enable Disable Commands
 - Independent Clock Selection
 - Independent Period and Duty Cycle, with Double Buffering
- Synchronous Channel mode
 - Synchronous Channels share the same counter
 - Mode to update the synchronous channels registers after a programmable number of periods
- Connection to one PDC channel
 - Offers Buffer transfer without Processor Intervention, to update duty cycle of synchronous channels
- independent event lines which can send up to 4 triggers on ADC within a period
- Programmable Fault Input providing an asynchronous protection of outputs
- Stepper motor control (2 Channels)

12.8 High Speed Multimedia Card Interface (HSMCI)

- 4-bit or 1-bit Interface
- Compatibility with MultiMedia Card Specification Version 4.3
- Compatibility with SD and SDHC Memory Card Specification Version 2.0
- Compatibility with SDIO Specification Version V1.1.
- Compatibility with CE-ATA Specification 1.1
- Cards clock rate up to Master Clock divided by 2
- Boot Operation Mode support
- High Speed mode support
- Embedded power management to slow down clock rate when not used
- HSMCI has one slot supporting
 - One MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
 - One SDIO Card
- Support for stream, block and multi-block data read and write

12.9 USB Device Port (UDP)

- USB V2.0 full-speed compliant,12 Mbits per second.
- Embedded USB V2.0 full-speed transceiver
- Embedded 2688-byte dual-port RAM for endpoints

Symbol		Millimeter		Inch			
	Min	Nom	Max	Min	Nom	Max	
A	_	-	1.60	_	-	0.063	
A1	0.05	-	0.15	0.002	-	0.006	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
D		12.00 BSC		0.472 BSC			
D1	10.00 BSC			0.383 BSC			
E		12.00 BSC			0.472 BSC		
E1		10.00 BSC			0.383 BSC		
R2	0.08	-	0.20	0.003	-	0.008	
R1	0.08	-	-	0.003	-	-	
q	0°	3.5°	7 °	0°	3.5°	7 °	
θ1	0°	-	-	0°	-	-	
θ2	11°	12°	13°	11°	12°	13°	
θ3	11°	12°	13°	11°	12°	13°	
С	0.09	-	0.20	0.004	-	0.008	
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00 REF			0.039 REF		
S	0.20	-	-	0.008	-	-	
b	0.17	0.20	0.27	0.007	0.008	0.011	
е	0.50 BSC.			0.020 BSC.			
D2	7.50			0.285			
E2	7.50			0.285			
Tolerances of Form and Position							
aaa	0.20			0.008			
bbb	0.20			0.008			
ccc	0.08			0.003			
ddd	0.08			0.003			

Table 13-2. 64-lead LQFP Package Dimensions (in mm)

14. Ordering Information

Table 14-1. Ordering Codes for SAM3S Series Devices

Ordering Code	MRL A	MRL B	Flash (Kbytes)	Package (Kbytes)	Package Type	Temperature Operating Range
ATSAM3S4CA-AU	A	_	256	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S4CA-CU	A	_	256	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S4BA-AU	А	-	256	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S4BA-MU	А	_	256	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S4AA-AU	А	_	256	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S4AA-MU	А	_	256	QFN48	Green	Industrial -40°C to 85°C
ATSAM3S2CA-AU	А	_	128	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S2CA-CU	А	-	128	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S2BA-AU	А	-	128	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S2BA-MU	A	_	128	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S2AA-AU	A	-	128	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S2AA-MU	A	-	128	QFN48	Green	Industrial -40°C to 85°C
ATSAM3S1CA-AU	А	_	64	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S1CA-CU	A	-	64	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S1BA-AU	A	-	64	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S1BA-MU	A	-	64	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S1AA-AU	A	-	64	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S1AA-MU	A	-	64	QFN48	Green	Industrial -40°C to 85°C
ATSAM3S1CB-AU	-	В	64	QFP100	Green	Industrial -40°C to 85°C
ATSAM3S1CB-CU	-	В	64	BGA100	Green	Industrial -40°C to 85°C
ATSAM3S1BB-AU	-	В	64	QFP64	Green	Industrial -40°C to 85°C
ATSAM3S1BB-MU	_	В	64	QFN64	Green	Industrial -40°C to 85°C
ATSAM3S1AB-AU	-	В	64	QFP48	Green	Industrial -40°C to 85°C
ATSAM3S1AB-MU	-	В	64	QFN48	Green	Industrial -40°C to 85°C