

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f716-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

20-Pin Diagram

TABLE 2: 20-PIN SSOP SUMMARY

I/O	Pin	Analog	ECCP	Timer	Interrupts	Pull-ups	Basic
RA0	19	AN0	_	_	—	_	—
RA1	20	AN1	—	_	—	_	—
RA2	1	AN2			—	-	—
RA3	2	AN3/VREF	_	_	_		_
RA4	3	—	_	TOCKI	—		—
RB0	7	—	ECCPAS2		INT	Y	—
RB1	8	—		T1CKI	—	Y	—
RB2	9	—		T10SI	—	Y	—
RB3	10	—	CCP1/P1A		—	Y	—
RB4	11	—	ECCPAS0		IOC	Y	—
RB5	12	—	P1B		IOC	Y	—
RB6	13	—	P1C		IOC	Y	ICSPCLK
RB7	14	—	P1D		IOC	Y	ICSPDAT
—	15	—			—		Vdd
	16	—			—		Vdd
—	5	—			—		Vss
—	6	—			—		Vss
	4	_		_	—	_	MCLR/VPP
—	18	_	_	_	—	_	OSC1/CLKIN
_	17				_	_	OSC2/CLKOUT

2.2.2.1 STATUS Register

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the Reset status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged). It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any Status bits, see the "Instruction Set Summary."

Note 1:	The PIC16F716 does not use bits IRP
	and RP1 of the STATUS register. Main-
	tain these bits clear to ensure upward
	compatibility with future products.

2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction.

Reserved	Reserved	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

REGISTER 2-1: STATUS: STATUS REGISTER

r				
Legend:				
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	IRP: This bit	is reserved and should	be maintained as '0'	
bit 6	RP1: This bit	is reserved and should	be maintained as '0'	
bit 5	RP0: Registe	er Bank Select bit (used	for direct addressing)	
	1 = Bank 1 (8	30h-FFh)		
	0 = Bank 0 (00h-7Fh)		
bit 4	TO: Time-ou	t bit		
	1 = After pov	ver-up, CLRWDT instructi	on or SLEEP instruction	
	o = A WDT t	me-out occurred		
bit 3	PD: Power-d	own bit		
	1 = After pov	ver-up or by the CLRWDT	' instruction	
	0 = By execu	Ition of the SLEEP instru	ction	
bit 2	Z: Zero bit			
	1 = The resu	It of an arithmetic or logi	c operation is zero	
	0 = The resu	It of an arithmetic or logi	ic operation is not zero	
bit 1	DC: Digit Ca reversed.	rry/Borrow bit (Addwf, A	DDLW, SUBLW, SUBWF instruction	ons), For Borrow, the polarity is
	1 = A carry-c	out from the 4th low-orde	er bit of the result occurred	
	0 = No carry	out from the 4th low-ord	ler bit of the result	
bit 0	C: Carry/Bor	row bit ⁽¹⁾ (ADDWF, ADDLI	N, SUBLW, SUBWF instruction	ns)
	1 = A carry-c	out from the Most Signific	cant bit of the result occurred	
	0 = No carry	out from the Most Signi	ficant bit of the result occurred	
Note 1: Fo	or Borrow, the p	plarity is reversed. A sub	otraction is executed by adding	the two's complement of the sec-
or	nd operand. For	rotate (RRF, RLF) instruc	tions, this bit is loaded with eith	ner the high-order or low-order bit

of the source register.

PIC16F716

FIGURE 7-3: ADC TRANSFER FUNCTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 0000	0000 0000
ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000
ADRES	A/D Result	Register							XXXX XXXX	uuuu uuuu
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	_	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
PIR1	_	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
PORTA	_	_	_	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
TRISA	_	_	_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for ADC module.

PIC16F716

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCPR1L	Capture/Co	mpare/PWM I	Register 1 (LS	SB)					xxxx xxxx	xxxx xxxx
CCPR1H	Capture/Co	mpare/PWM I	Register 1 (M	SB)					xxxx xxxx	xxxx xxxx
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000	0000 000x
PIE1	_	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
PIR1	_	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
PR2	Timer2 Peri	od Register							1111 1111	1111 1111
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	xxxx xxxx
TMR1H	H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								XXXX XXXX	xxxx xxxx
TMR2	2 Timer2 module's register									0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111

TABLE 8-3: REGISTERS ASSOCIATED WITH COMPARE

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Compare.

8.3.3 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 8-4.

EQUATION 8-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 8-4:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
------------	---

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 8-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

9.0 SPECIAL FEATURES OF THE CPU

The PIC16F716 device has a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection. These are:

- OSC Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code protection
- ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F716 device has a Watchdog Timer, which can be shut off only through Configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry.

Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of Configuration bits are used to select various options.

9.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming.

PIC16F716

FIGURE 9-8: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

- Internal Brown-out Reset should be disabled when using this circuit.
 Desistant should be adjusted for the
- **3:** Resistors should be adjusted for the characteristics of the transistor.

FIGURE 9-9: EXTERNAL BROWN-OUT

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	<u>uuuu</u> uuuu
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	սսսս սսսս
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ^{(4), (5), (6)}	xx 0000	xx 0000	uu uuuu
PORTB ^{(4), (5)}	XXXX XXXX	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 -00x	0000 -00u	uuuu -uuu (1)
PIR1	-0000	-0000	-uuuu (1)
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	0000 0000	0000 0000	սսսս սսսս
PWM1CON	0000 0000	0000 0000	uuuu uuuu
ECCPAS	00-0 0000	00-0 0000	u-uu uuuu
ADRES	XXXX XXXX	uuuu uuuu	սսսս սսսս
ADCON0	0000 0000	0000 0000	uuuu uuuu
OPTION_REG	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	սսսս սսսս
PIE1	-0000	-0000	-uuuu
PCON	dd	uu	uu
PR2	1111 1111	1111 1111	սսսս սսսս
ADCON1	000	000	uuu

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16F716

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

- **3:** See Table 9-5 for Reset value for specific condition.
- **4:** On any device Reset, these pins are configured as inputs.
- 5: This is the value that will be in the port output latch.
- 6: Output latches are unknown or unchanged. Analog inputs default to analog and read '0'.

FIGURE 9-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 9-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

9.10.1 INT INTERRUPT

External interrupt on RB0/INT pin is edge triggered, either rising if bit INTEDG of the OPTION register is set, or falling if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF of the INTCON register is set. This interrupt can be disabled by clearing enable bit INTE of the INTCON register. Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from Sleep, if bit INTE was set prior to going into Sleep. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See **Section 9.13 "Power-down Mode (Sleep)"** for details on Sleep mode.

9.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF of the INTCON register. The interrupt can be enabled/disabled by setting/clearing enable bit T0IE of the INTCON register. (Section 4.0 "Timer0 Module").

9.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF of the INTCON register. The interrupt can be enabled/disabled by setting/clearing enable bit RBIE of the INTCON register. (Section 3.2 "PORTB and the TRISB Register").

9.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in firmware.

Example 9-1 stores and restores the W, STATUS, PCLATH and FSR registers. Context storage registers, W_TEMP, STATUS_TEMP, PCLATH_TEMP and FSR_TEMP, must be defined in Common RAM which are those addresses between 70h-7Fh in Bank 0 and between F0h-FFh in Bank 1.

The example:

- a) Stores the W register.
- b) Stores the STATUS register in Bank 0.
- c) Stores the PCLATH register.
- d) Stores the FSR register.
- e) Executes the Interrupt Service Routine code (User-generated).
- f) Restores all saved registers in reverse order from which they were stored.

EXAMPLE 9-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOTHE	ע איבאיז	Conv W to TEMP register gould be bank one or sore
CWADE	W_IEMP	Cupy w to TEMP register, could be bank one of zero
SWAPF	SIATUS,W	; Swap status to be saved into w
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
BCF	STATUS, IRP	;Return to Bank 0
MOVF	FSR, W	;Copy FSR to W
MOVWF	FSR_TEMP	;Copy FSR from W to FSR_TEMP
:		
:(ISR)		
:		
MOVF	FSR_TEMP,W	;Restore FSR
MOVWF	FSR	;Move W into FSR
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W
		·Return from interrupt and enable GIF

9.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip, RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device have been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing Configuration bit WDTE (Section 9.1 "Configuration Bits").

WDT time-out period values may be found in the Electrical Specifications section under TWDT (parameter #31). Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 9-14: WATCHDOG TIMER BLOCK DIAGRAM

 TABLE 9-7:
 SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CONFIG1 ⁽¹⁾	BORV	BOREN	-	—	PWRTE	WDTE	FOSC1	FOSC0	_	_
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used the Watchdog Timer.

Note 1: See Configuration Word Register (Register 9-1) for operation of all register bits.

12.2 DC Characteristics: PIC16F716 (Industrial)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Vdd	Conditions	
	Vdd	Supply Voltage							
D001			2.0	_	5.5	V			
	Idd	Supply Current							
D010			_	14	17	μA	2.0	Fosc = 32 kHz	
DUIU				23	28	μA	3.0	LP Oscillator mode	
			_	45	63.7	μA	5.0		
			_	120	160	μA	2.0	Fosc = 1 MHz	
D011			_	180	250	μA	3.0	XT Oscillator mode	
			_	290	370	μA	5.0		
			_	220	300	μA	2.0	Fosc = 4 MHz	
D012			_	350	470	μA	3.0	XT Oscillator mode	
			_	600	780	μA	5.0		
			_	2.1	2.9	mA	4.5	Fosc = 20 MHz	
D013				2.5	3.3	mA	5.0	HS Oscillator mode	
	IPD	Power-down Base Current							
0000			—	0.1	0.8	μA	2.0	WDT, BOR and T1OSC:	
D020			—	0.1	0.85	μA	3.0	disabled	
			—	0.2	2.7	μA	5.0		
		Peripheral Module Current ⁽¹⁾	1						
			—	1	2.0	μA	2.0	WDT Current	
D021			—	2	3.5	μA	3.0		
			—	9	13.5	μA	5.0		
			-	37	50	μA	3.0	BOR Current	
D022			—	40	55	μA	4.5		
			—	45	60	μA	5.0		
D025			—	1.8	6	μA	2.0	T1osc Current	
			—	2.6	7.5	μA	3.0		
			—	3.0	9	μA	5.0		

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral "Δ" current can be determined by subtracting the base IDD or IPD current from this limit.

FIGURE 12-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING⁽¹⁾

FIGURE 12-7: BROWN-OUT RESET TIMING

TABLE 12-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	—		μs	VDD = 5V, -40°C to +125°C
31*	TWDT	Watchdog Timer Time-out Period	7	18	33	ms	VDD = 5V, -40°C to +85°C
		(No Prescaler)	TBD	TBD	TBD	ms	VDD = 5V, +85°C to +125°C
32	Tost	Oscillation Start-up Timer Period		1024 Tosc	_		Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
			TBD	TBD	TBD	ms	VDD = 5V, +85°C to +125°C
34	Tıoz	I/O high-impedance from MCLR Low or WDT Reset	—	—	2.1	μs	
35	TBOR	Brown-out Reset Pulse Width	100	—		μs	VDD ≤ BVDD (D005)
	* These parameters are characterized but not tested						

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

FIGURE 13-23: T1OSC IPD vs. VDD OVER TEMPERATURE (32 kHz)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>/xx xxx</u>	Examples:
Device T	emperature Package Pattern Range	 a) PIC16F716 - I/L 301 = Industrial temp., PDIP package, QTP pattern #301. b) PIC16F716 - E/SO = Extended temp., SOIC package.
Device:	PIC16F716 ⁽¹⁾ , PIC16F716T ⁽²⁾ ; VDD range 2.0V to 5.5V	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package:	SO = SOIC P = PDIP SS = SSOP	
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=in tape and reel SOIC and SSOP packages only.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820