

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f716-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly through the File Select Register FSR (Section 2.5 "Indirect Addressing, INDF and FSR Registers").

FIGURE 2-2:

REGISTER FILE MAP

File			File			
Address			Address			
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h			
01h	TMR0	OPTION_REG	81h			
02h	PCL	PCL	82h			
03h	STATUS	STATUS	83h			
04h	FSR	FSR	84h			
05h	PORTA	TRISA	85h			
06h	PORTB	TRISB	86h			
07h			87h			
08h			88h			
09h			89h			
0Ah	PCLATH	PCLATH	8Ah			
0Bh	INTCON	INTCON	8Bh			
0Ch	PIR1	PIE1	8Ch			
0Dh	TMD4	DOON	8Dh			
0Eh	TMR1L	PCON	8Eh			
0Fh	TMR1H		8Fh			
10h	T1CON		90h			
11h	TMR2		91h			
12h	T2CON	PR2	92h			
13h			93h			
14h			94h			
15h	CCPR1L		95h			
16h	CCPR1H		96h			
17h	CCP1CON		97h			
18h	PWM1CON		98h			
19h	ECCPAS		99h			
1Ah			9Ah			
1Bh			9Bh			
1Ch			9Ch			
1Dh			9Dh			
1Eh	ADRES		9Eh			
1Fh	ADCON0	ADCON1	9Fh			
20h	General	General	A0h			
	Purpose Registers	Purpose Registers				
	registers	32 Bytes	BFh			
	80 Bytes		C0h			
6Fh			EFh			
70h	16 Bytes	Accesses	F0h			
7Fh	-	70-7Fh	FFh			
I	Bank 0	Bank 1				
Unimplemented data memory locations,						
read as '0'.						
Note 1:	Not a physical	register.				

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
80h	INDF ⁽¹⁾	Addressin	ng this location	on uses con	tents of FSF	R to address	data memory	(not a physi	cal register)	0000 0000	18
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	12
82h	PCL ⁽¹⁾	Program	Counter's (P	C) Least Si	gnificant By	e				0000 0000	17
83h	STATUS ⁽¹⁾	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	11
84h	FSR ⁽¹⁾	Indirect D	ata Memory	Address Po	binter					xxxx xxxx	18
85h	TRISA	_	_	(7)	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1 1111	19
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	21
87h-89h	_	Unimplem	nented							—	
8Ah	PCLATH ^(1,2)	_	_	_	Write Buffe	er for the upp	er 5 bits of th	e Program C	Counter	0 0000	17
8Bh	INTCON ⁽¹⁾	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000	13
8Ch	PIE1	_	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	14
8Dh		Unimplem	nented							_	
8Eh	PCON	—	_	-	—	-	_	POR	BOR	dd	16
8Fh-91h	_	Unimplem	Unimplemented						_		
92h	PR2	Timer2 Pe	Timer2 Period Register						1111 1111	35, 52	
93h-9Eh		Unimplem	Jnimplemented							_	
9Fh	ADCON1		_	_	_	—	PCFG2	PCFG1	PCFG0	000	42

TABLE 2-2: SPECIAL FUNCTION REGISTER SUMMARY BANK 1

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', Shaded locations are unimplemented, Note

1:

read as '0'. These registers can be addressed from either bank. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are 2: transferred to the upper byte of the program counter. Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset. The IRP and RP1 bits are reserved. Always maintain these bits clear.

3:

4:

On any device Reset, these pins are configured as inputs. This is the value that will be in the PORT output latch. 5:

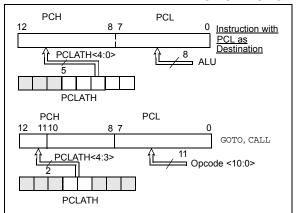
6: 7: Reserved bits, do not use.

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-3 shows the two situations for the loading of the PC. The upper example in Figure 2-3 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-3 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

2.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper 5 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register.


A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower 8 bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 PROGRAM MEMORY PAGING

The CALL and GOTO instructions provide 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper bit of the address is provided by PCLATH<3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bit is programmed so that the desired program memory page is addressed. If a RETURN from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is pushed onto the stack. Therefore, manipulation of the PCLATH<3> bit is not required for the RETURN instructions (which POPs the address from the stack).

FIGURE 2-3: LOADING OF PC IN DIFFERENT SITUATIONS

2.4 Stack

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space, and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed 8 times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

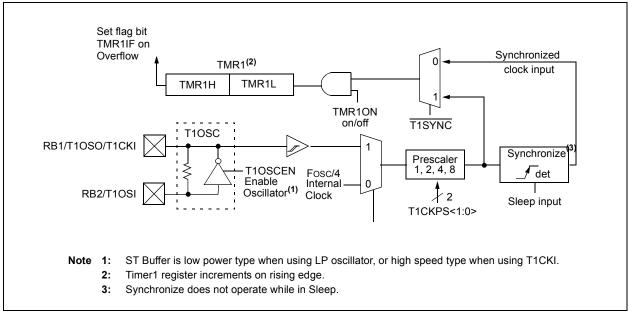
5.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- 3-bit prescaler
- Optional LP oscillator
- Synchronous or asynchronous operation
- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with ECCP)

Figure 5-1 is a block diagram of the Timer1 module.

FIGURE 5-1: TIMER1 BLOCK DIAGRAM


5.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer. When used with an external clock source, the module can be used as either a timer or counter.

5.2 Clock Source Selection

The TMR1CS bit of the T1CON register is used to select the clock source. When TMR1CS = 0, the clock source is FOSC/4. When TMR1CS = 1, the clock source is supplied externally.

5.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of TcY as determined by the Timer1 prescaler.

5.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When counting, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run asynchronously.

In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after one or more of the following conditions:

- · Timer1 is enabled after POR or BOR Reset
- · A write to TMR1H or TMR1L
- T1CKI is high when Timer1 is disabled and when Timer1 is reenabled T1CKI is low. See Figure 5-2.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	_	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
PIR1	_	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	ne 16-bit TMF	R1 Register			xxxx xxxx	uuuu uuuu
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register					xxxx xxxx	uuuu uuuu			
T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

6.0 TIMER2 MODULE

The Timer2 module is an 8-bit timer with the following features:

- 8-bit timer register (TMR2)
- 8-bit period register (PR2)
- Interrupt on TMR2 match with PR2
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)

See Figure 6-1 for a block diagram of Timer2.

6.1 Timer2 Operation

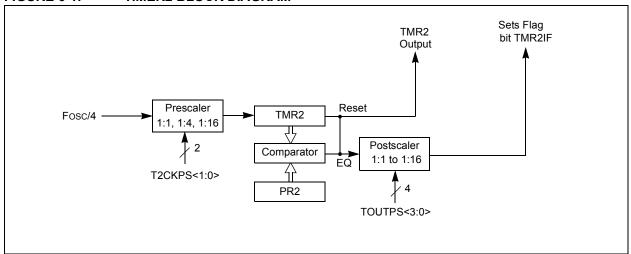
The clock input to the Timer2 module is the system instruction clock (Fosc/4). The clock is fed into the Timer2 prescaler, which has prescale options of 1:1, 1:4 or 1:16. The output of the prescaler is then used to increment the TMR2 register.

The values of TMR2 and PR2 are constantly compared to determine when they match. TMR2 will increment from 00h until it matches the value in PR2. When a match occurs, two things happen:

- TMR2 is reset to 00h on the next increment cycle
- The Timer2 postscaler is incremented

The match output of the Timer2/PR2 comparator is then fed into the Timer2 postscaler. The postscaler has postscale options of 1:1 to 1:16 inclusive. The output of the Timer2 postscaler is used to set the TMR2IF interrupt flag bit in the PIR2 register.

FIGURE 6-1: TIMER2 BLOCK DIAGRAM

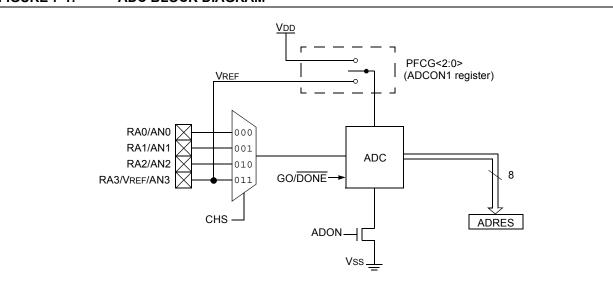

The TMR2 and PR2 registers are both fully readable and writable. On any Reset, the TMR2 register is set to 00h and the PR2 register is set to FFh.

Timer2 is turned on by setting the TMR2ON bit in the T2CON register to a '1'. Timer2 is turned off by clearing the TMR2ON bit to a '0'.

The Timer2 prescaler is controlled by the T2CKPS bits in the T2CON register. The Timer2 postscaler is controlled by the TOUTPS bits in the T2CON register. The prescaler and postscaler counters are cleared when:

- · A write to TMR2 occurs.
- A write to T2CON occurs.
- Any device Reset occurs (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset).

Note: TMR2 is not cleared when T2CON is written.


7.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 8-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 8-bit binary result via successive approximation and stores the conversion result into the ADC result register (ADRES).

The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 7-1 shows the block diagram of the ADC.

FIGURE 7-1: ADC BLOCK DIAGRAM

7.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- · ADC voltage reference selection
- · ADC conversion clock source
- Interrupt control

7.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ADCON1 bits. See the corresponding Port section for more information.

Note:	Analog voltages on any pin that is defined							
	as a digital input may cause the input							
	buffer to conduct excess current.							

7.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 7.2 "ADC Operation"** for more information.

7.1.3 ADC VOLTAGE REFERENCE

The PCFG bits of the ADCON0 register provide independent control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source.

7.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON0 register. There are four possible clock options:

- Fosc/2
- Fosc/8
- Fosc/32
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 9.5 TAD periods.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 12.0 "Electrical Characteristics"** for more information. Table 7-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 7-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock Source (TAD)		Device Frequency					
Operation	ADCS<1:0>	20 MHz	5 MHz	1.25 MHz	333.33 kHz		
2 Tosc	0 0	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs		
8 Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾		
32 Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾		
RC	11	2-6 μs ^{(1), (4)}	2-6 μs ^{(1), (4)}	2-6 μs ^{(1), (4)}	2-6 μs ⁽¹⁾		

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for Sleep operation only.

9.2 Oscillator Configurations

9.2.1 OSCILLATOR TYPES

The PIC16F716 can be operated in four different oscillator modes. The user can program two Configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low-power Crystal
- · XT Crystal/Resonator
- HS High-speed Crystal/Resonator
- RC Resistor/Capacitor

9.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 9-1). The PIC16F716 oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1/CLKIN pin (Figure 9-2).

FIGURE 9-1:	CRYSTAL/CERAMIC
	RESONATOR OPERATION
	(HS, XT OR LP
	OSC CONFIGURATION)

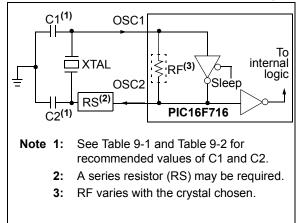
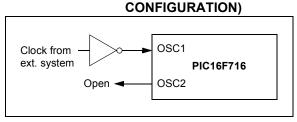
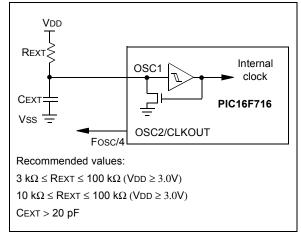



FIGURE 9-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC

TABLE 9-1: CERAMIC RESONATORS

Ranges Tested:						
Mode	Freq	OSC1 (C1)	OSC2 (C2)			
ХТ	455 kHz 2.0 MHz	68-100 pF 15-68 pF	68-100 pF 15-68 pF			
HS	4.0 MHz 8.0 MHz 16.0 MHz	10-68 pF 15-68 pF 10-22 pF	10-68 pF 15-68 pF 10-22 pF			
Note 1: These values are for design guidance only. See notes at bottom of page.						

TABLE 9-2:CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR


Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2		
LP	32 kHz	15-33 pF	15-33 pF		
	200 kHz	5-10 pF	5-10 pF		
XT	200 kHz	47-68 pF	47-68 pF		
	1 MHz	15-33 pF	15-33 pF		
	4 MHz	15-33 pF	15-33 pF		
HS	4 MHz	15-33 pF	15-33 pF		
	8 MHz	15-33 pF	15-33 pF		
	20 MHz	15-33 pF	15-33 pF		
Note 1: These values are for design guidance only. See notes at bottom of page.					

- **Note 1:** Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** RS may be required to avoid overdriving crystals with low drive level specification.
 - 4: When using an external clock for the OSC1 input, loading of the OSC2 pin must be kept to a minimum by leaving the OSC2 pin unconnected.

9.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. In addition to this, the oscillator frequency will vary from unit-to-unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 9-3 shows how the R/C combination is connected to the PIC16F716.

FIGURE 9-3: RC OSCILLATOR MODE

9.3 Reset

The PIC16F716 differentiates between various kinds of Reset:

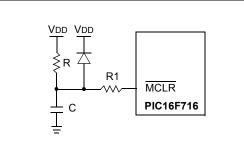
- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset (during normal operation)
- WDT Wake-up (during Sleep)
- Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep and Brown-out Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 9-4. These bits are used in software to determine the nature of the Reset. See Table 9-6 for a full description of Reset states of all registers.

A simplified block diagram of the On-chip Reset circuit is shown in Figure 9-5.

The PIC[®] microcontrollers have an $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive the $\overline{\text{MCLR}}$ pin low.


9.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR, just tie the MCLR pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (parameter D004). For a slow rise time, see Figure 9-4.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
 - **3:** R1 = 100Ω to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

9.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out, on power-up only, from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. The power-up timer enable Configuration bit, PWRTE, is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See AC parameters for details.

9.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized. See AC parameters for details.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from Sleep.

9.7 Programmable Brown-Out Reset (PBOR)

The PIC16F716 has on-chip Brown-out Reset circuitry. A Configuration bit, BOREN, can disable (if clear/programmed) or enable (if set) the Brown-out Reset circuitry.

The BORV Configuration bit selects the programmable Brown-out Reset threshold voltage (VBOR). When BORV is 1, VBOR IS 4.0V. When BORV is 0, VBOR is 2.5V

A Brown-out Reset occurs when VDD falls below VBOR for a time greater than parameter TBOR (see Table 12-4). A Brown-out Reset is not guaranteed to occur if VDD falls below VBOR for less than parameter TBOR.

On any Reset (Power-on, Brown-out, Watchdog, etc.) the chip will remain in Reset until VDD rises above VBOR. The Power-up Timer will be invoked and will keep the chip in Reset an additional 72 ms only if the Power-up Timer enable bit in the Configuration register is set to 0 ($\overline{PWRTE} = 0$).

If the Power-up Timer is enabled and VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 72 ms Reset. See Figure 9-6.

For operations where the desired brown-out voltage is other than 4.0V or 2.5V, an external brown-out circuit must be used. Figure 9-8, Figure 9-9 and Figure 9-10 show examples of external Brown-out Protection circuits.

Register	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	xxxx xxxx	uuuu uuuu	սսսս սսսս
INDF	N/A	N/A	N/A
TMR0	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	0000h	0000h	PC + 1 ⁽²⁾
STATUS	0001 1xxx	000q quuu ⁽³⁾	uuuq quuu ⁽³⁾
FSR	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA ^{(4),} (5), (6)	xx 0000	xx 0000	uu uuuu
PORTB ^{(4), (5)}	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	0 0000	0 0000	u uuuu
INTCON	0000 -00x	0000 -00u	uuuu -uuu ⁽¹⁾
PIR1	-0000	-0000	-uuuu ⁽¹⁾
TMR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
T1CON	00 0000	uu uuuu	uu uuuu
TMR2	0000 0000	0000 0000	uuuu uuuu
T2CON	-000 0000	-000 0000	-uuu uuuu
CCPR1L	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCP1CON	0000 0000	0000 0000	uuuu uuuu
PWM1CON	0000 0000	0000 0000	uuuu uuuu
ECCPAS	00-0 0000	00-0 0000	u-uu uuuu
ADRES	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	0000 0000	0000 0000	uuuu uuuu
OPTION_REG	1111 1111	1111 1111	uuuu uuuu
TRISA	11 1111	11 1111	uu uuuu
TRISB	1111 1111	1111 1111	uuuu uuuu
PIE1	-0000	-0000	-uuuu
PCON	dd	uu	uu
PR2	1111 1111	1111 1111	uuuu uuuu
ADCON1	000	000	uuu

TABLE 9-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS OF THE PIC16F716

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

- **3:** See Table 9-5 for Reset value for specific condition.
- **4:** On any device Reset, these pins are configured as inputs.
- 5: This is the value that will be in the port output latch.
- 6: Output latches are unknown or unchanged. Analog inputs default to analog and read '0'.

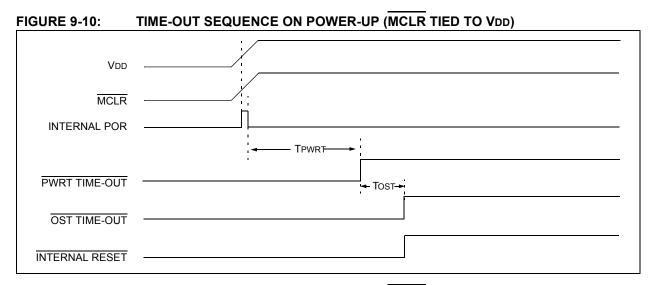


FIGURE 9-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

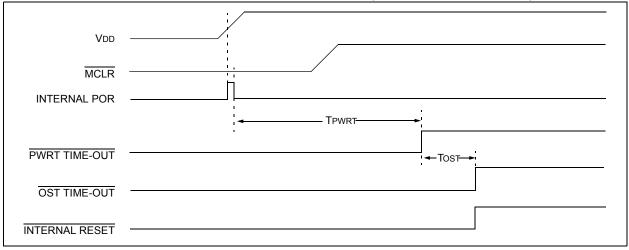
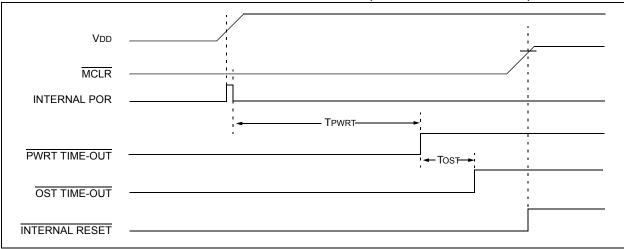



FIGURE 9-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

PIC16F716

NOTES:

11.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit™ 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

11.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

11.11 PICSTART Plus Development Programmer

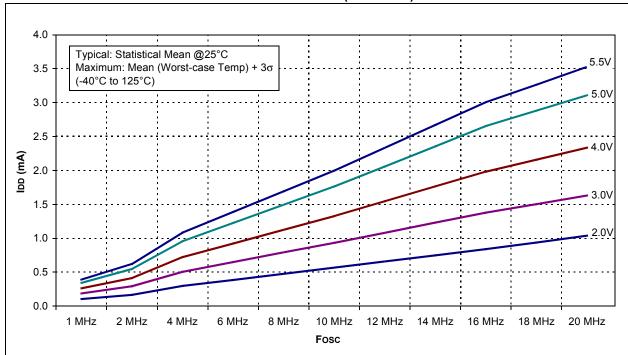
The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

11.12 PICkit 2 Development Programmer

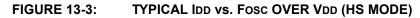
The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

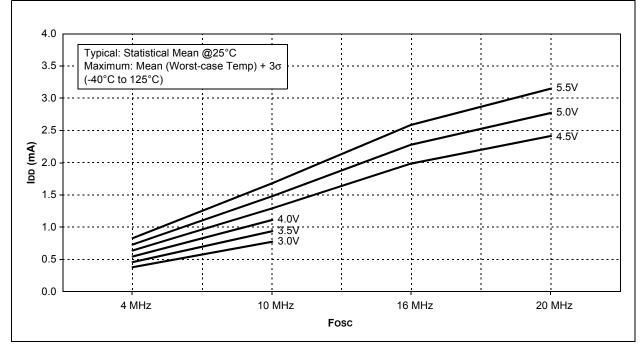
11.13 Demonstration, Development and Evaluation Boards

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.


The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.


In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

PIC16F716

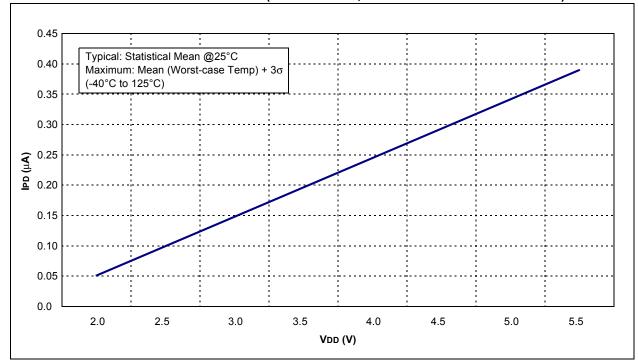
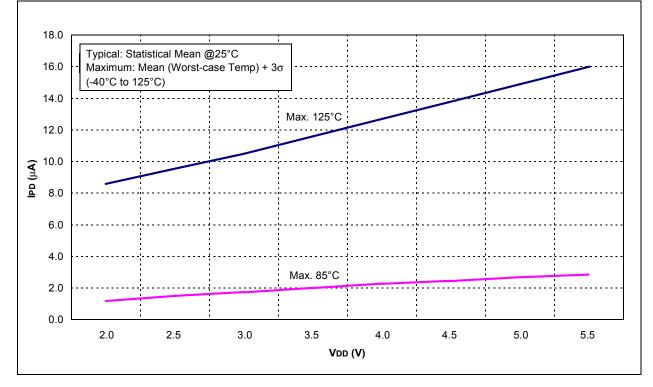



FIGURE 13-10: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

PIC16F716

Timing Diagrams and Specifications	
A/D Conversion	105
Brown-out Reset (BOR)	101
Capture/Compare/PWM (CCP)	103
CLKOUT and I/O	100
External Clock	
Oscillator Start-up Timer (OST)	101
Power-up Timer (PWRT)	101
Reset	101
Timer0 and Timer1	102
Watchdog Timer (WDT)	101

۷

VREF. SEE ADC Reference Voltage

W

W/Deviator	70
W Register	
Wake-up from Sleep	61, 75
Interrupts	
MCLR Reset	70
Timing Diagram	76
WDT Reset	70
Watchdog Timer (WDT)	61, 74
Enable (WDTE Bit)	74
Postscaler. See Postscaler, WDT	
Programming Considerations	74
RC Oscillator	
Time-out Period	74
Timing Diagram	
WDT Reset, Normal Operation	
WDT Reset, Sleep	
WWW Address	
WWW, On-Line Support	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara, CA Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820