

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	13
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f716t-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is give in Table 2-1.

The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in that peripheral feature section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Page
00h	INDF ⁽¹⁾	Addressing	ddressing this location uses contents of FSR to address data memory (not a physical register)								18
01h	TMR0	Timer0 mod	ule's register							xxxx xxxx	27
02h	PCL ⁽¹⁾	Program Co	ounter's (PC)	Least Signif	icant Byte					0000 0000	17
03h	STATUS ⁽¹⁾	IRP ⁽⁴⁾	RP1 ⁽⁴⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	11
04h	FSR ⁽¹⁾	Indirect Data	a Memory Ac	Idress Pointe	er					xxxx xxxx	18
05h	PORTA ^(5,6)	_	_	(7)	RA4	RA3	RA2	RA1	RA0	x 0000	19
06h	PORTB ^(5,6)	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	21
07h-09h	_	Unimpleme	nted							—	
0Ah	PCLATH ^(1,2)	_	_	_	Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	17
0Bh	INTCON ⁽¹⁾	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	13
0Ch	PIR1	_	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	15
0Dh	_	Unimpleme	nted							—	
0Eh	TMR1L	Holding Reg	gister for the	Least Signifi	cant Byte of	the 16-bit TN	IR1 Register			xxxx xxxx	29
0Fh	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of th	he 16-bit TM	R1 Register			xxxx xxxx	29
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	32
11h	TMR2				Timer2 Modu	ile's Register				0000 0000	35
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	36
13h-14h	_	Unimpleme	nted							—	
15h	CCPR1L	Capture/Co	mpare/PWM	Register 1 (I	_SB)					xxxx xxxx	48
16h	CCPR1H	Capture/Co	mpare/PWM	Register 1 (I	MSB)					xxxx xxxx	48
17h	CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	48
18h	PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000 0000	60
19h	ECCPAS	ECCPASE	ECCPAS2	(8)	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	00-0 0000	57
1Ah-1Dh	_	Unimpleme	nted							_	
1Eh	ADRES	A/D Result I	Register							xxxx xxxx	37
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	(7)	ADON	0000 0000	41

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY BANK 0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: Other (non Power-up) Resets include: external Reset through MCLR and the Watchdog Timer Reset.

4: The IRP and RP1 bits are reserved. Always maintain these bits clear.

5: On any device Reset, these pins are configured as inputs.

6: This is the value that will be in the PORT output latch.

7: Reserved bits, do not use.

8: ECCPAS1 bit is not used on PIC16F716.

2.2.2.5 PIR1 Register

This register contains the individual flag bits for the peripheral interrupts.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

U-0	R/W-0	R/W-0	R/W-0 R/W-0		U-0	R/W-0	R/W-0
—	— ADIF –				CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7 bit 6	Unimplemented: Read as '0' ADIF: A/D Interrupt Flag bit 1 = A/D conversion complete 0 = A/D conversion has not completed or has not been started
bit 5-3	Unimplemented: Read as '0'
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	<u>Capture Mode</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare Mode</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM Mode</u> Unused in this mode
bit 1	TMR2IF: Timer2 to PR2 Match Interrupt Flag bit = Timer2 to PR2 match occurred (must be cleared in software) = Timer2 to PR2 match has not occurred
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit = Timer1 register overflowed (must be cleared in software) = Timer1 has not overflowed

2.2.2.6 **PCON Register**

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. These devices contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

Note: If the BOREN Configuration bit is set, BOR is '1' on Power-on Reset and reset to '0' when a Brown-out condition occurs. BOR must then be set by the user and checked on subsequent Resets to see if it is clear, indicating that another Brown-out has occurred.

If the BOREN Configuration bit is clear, BOR is unknown on Power-on Reset.

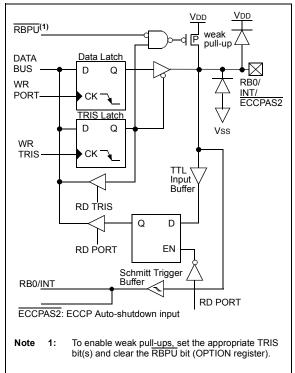
REGISTER 2-6: PCON: POWER CONTROL REGI	STER
--	------

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-x
—	_	—	—	—	_	POR	BOR
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

3.2 PORTB and the TRISB Register


PORTB is an 8-bit wide bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: INITIALIZING PORTB

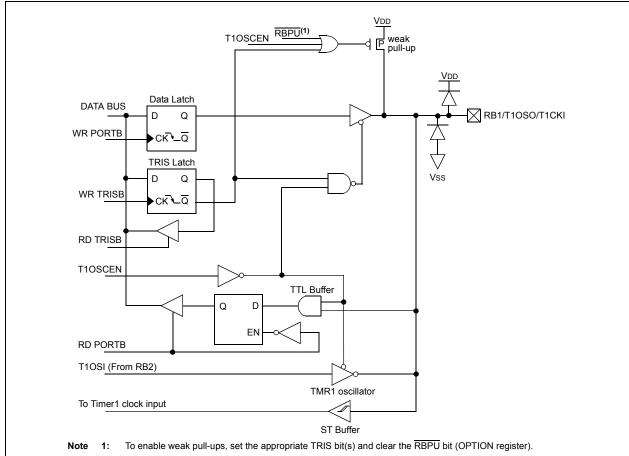
BCF	STATUS,	RP0	;select Bank 0
CLRF	PORTB		;Initialize PORTB by
			;clearing output
			;data latches
BSF	STATUS,	RP0	;Select Bank 1
MOVLW	0xCF		;Value used to
			;initialize data
			;direction
MOVWF	TRISB		;Set RB<3:0> as inputs
			;RB<5:4> as outputs
			;RB<7:6> as inputs

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU of the OPTION register. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

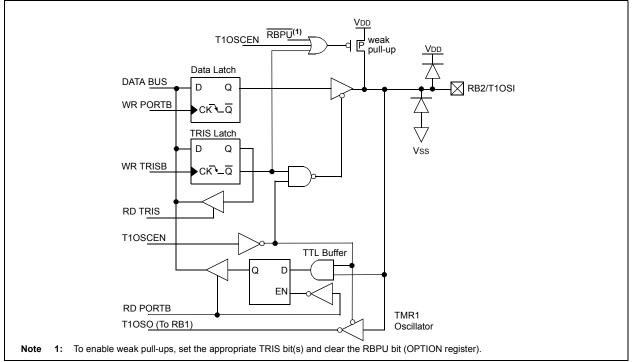
FIGURE 3-3: BLOCK DIAGRAM OF RB0/INT/ECCPAS2 PIN

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTB pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modifywrite instructions (such as BSF, BCF, XORWF) with TRISB as the destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

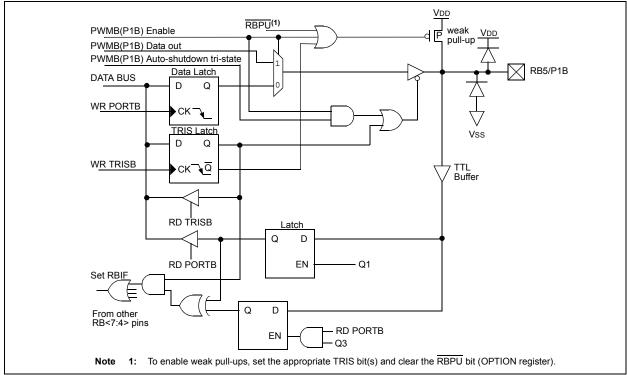
Four of PORTB's pins, RB<7:4>, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from the interrupton-change comparison). The input pins, RB<7:4>, are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB<7:4> are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF of the INTCON register.

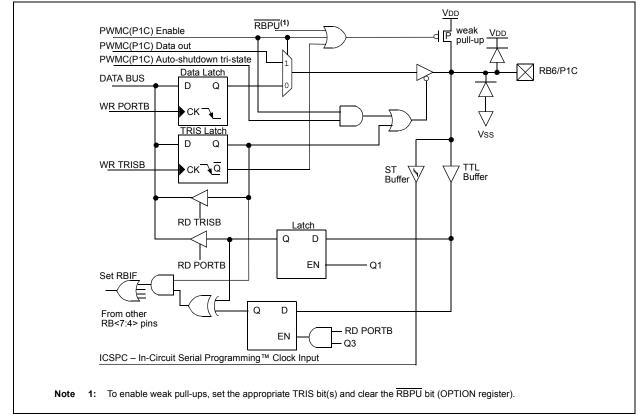

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- 1. Perform a read of PORTB to end the mismatch condition.
- 2. Clear flag bit RBIF.


A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.





NOTES:

4.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (shared with Watchdog Timer)
- Programmable internal or external clock source
- · Programmable external clock edge selection
- · Interrupt on overflow

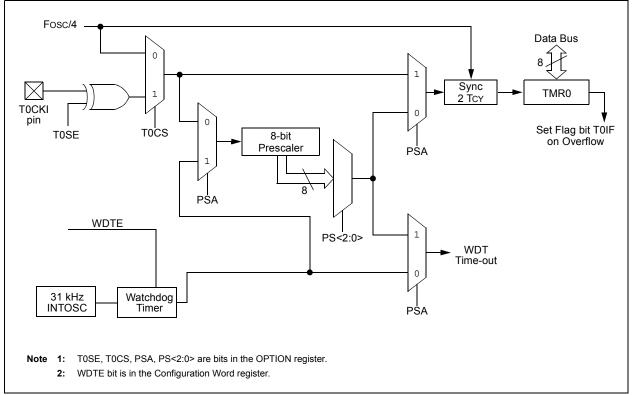
Figure 4-1 is a block diagram of the Timer0 module.

4.1 Timer0 Operation

When used as a timer, the Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

4.1.1 8-BIT TIMER MODE

When used as a timer, the Timer0 module will increment every instruction cycle (without prescaler). Timer mode is selected by clearing the T0CS bit of the OPTION register to '0'.


When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

4.1.2 8-BIT COUNTER MODE

When used as a counter, the Timer0 module will increment on every rising or falling edge of the T0CKI pin. The incrementing edge is determined by the T0SE bit of the OPTION register. Counter mode is selected by setting the T0CS bit of the OPTION register to '1'.

FIGURE 4-1: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

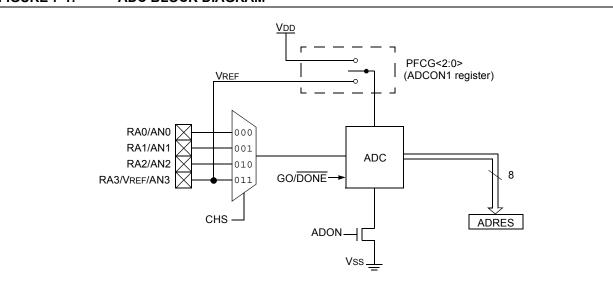
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
bit 7	·						bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-3	TOUTPS<3:0	>: Timer2 Out	out Postscaler	Select bits							
	0000 = 1:1 P	ostscaler									
	0001 = 1:2 P	ostscaler									
	0010 = 1:3 P	0010 = 1:3 Postscaler									
		0011 = 1:4 Postscaler									
		0100 = 1:5 Postscaler									
		0101 = 1:6 Postscaler									
	0110 = 1:7 Postscaler										
		0111 = 1:8 Postscaler									
		1000 = 1:9 Postscaler									
		1001 = 1:10 Postscaler									
		1010 = 1:11 Postscaler 1011 = 1:12 Postscaler									
		1011 = 1.12 Postscaler									
	1101 = 1:14										
		1110 = 1:15 Postscaler									
	1111 = 1:16 Postscaler										
bit 2	TMR2ON: Tir	TMR20N: Timer2 On bit									
	1 = Timer2 is	son									
	0 = Timer2 is	off									
bit 1-0		T2CKPS<1:0>: Timer2 Clock Prescale Select bits									
	00 = Prescale	er is 1									
	01 = Prescale										
	1x = Prescale	orio 16									

REGISTER 6-1: T2CON: TIMER 2 CONTROL REGISTER

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000x	0000 000x	
PIE1	—	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	-0000	
PIR1	—	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	-0000	
PR2	PR2 Timer2 Module Period Register									1111 1111	
TMR2	R2 Holding Register for the 8-bit TMR2 Register								0000 0000	0000 0000	
T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000	
Lananda											

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module.


7.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 8-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 8-bit binary result via successive approximation and stores the conversion result into the ADC result register (ADRES).

The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 7-1 shows the block diagram of the ADC.

FIGURE 7-1: ADC BLOCK DIAGRAM

7.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
- · ADC voltage reference selection
- · ADC conversion clock source
- Interrupt control

7.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ADCON1 bits. See the corresponding Port section for more information.

Note:	Analog voltages on any pin that is defined							
	as a digital input may cause the input							
	buffer to conduct excess current.							

7.1.2 CHANNEL SELECTION

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 7.2 "ADC Operation"** for more information.

7.1.3 ADC VOLTAGE REFERENCE

The PCFG bits of the ADCON0 register provide independent control of the positive voltage reference. The positive voltage reference can be either VDD or an external voltage source.

7.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON0 register. There are four possible clock options:

- Fosc/2
- Fosc/8
- Fosc/32
- FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 8-bit conversion requires 9.5 TAD periods.

For correct conversion, the appropriate TAD specification must be met. See A/D conversion requirements in **Section 12.0 "Electrical Characteristics"** for more information. Table 7-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

TABLE 7-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock	Source (TAD)	Device Frequency							
Operation	ADCS<1:0>	20 MHz	5 MHz	1.25 MHz	333.33 kHz				
2 Tosc	0 0	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 µs				
8 Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾				
32 Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾				
RC	11	2-6 μs ^{(1), (4)}	2-6 μs ^{(1), (4)}	2-6 μs ^{(1), (4)}	2-6 μs ⁽¹⁾				

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for Sleep operation only.

7.2.7 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

REGISTER 7-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	
bit 7	1.2000	0.102	0.101	0	00/20/12		bit C	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown	
bit 7-6	00 = Fosc/2 01 = Fosc/8 10 = Fosc/32	A/D Conversion			ator)			
bit 5-3	000 = AN0 001 = AN1 010 = AN2 011 = AN3 100 = Reser 101 = Reser 110 = Reser	ved, do not use ved, do not use ved, do not use ved, do not use ved, do not use						
bit 2	 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress 							
bit 1	Unimplemer	ted: Read as '	0'					
bit 0	ADON: ADC Enable bit 1 = ADC is enabled 0 = ADC is disabled and consumes no operating current							

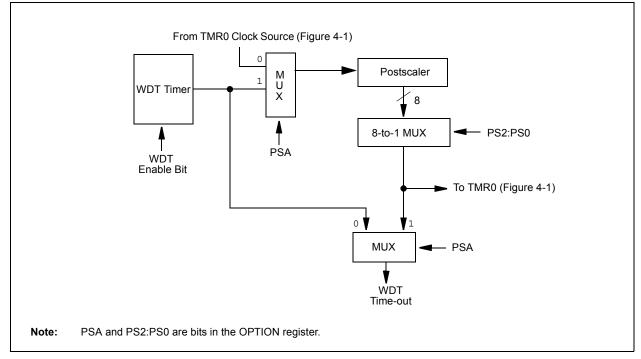
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CCPR1L	Capture/Cor	mpare/PWM F	Register 1 (LS	iB)					XXXX XXXX	xxxx xxxx
CCPR1H	CPR1H Capture/Compare/PWM Register 1 (MSB)								XXXX XXXX	xxxx xxxx
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
PIE1	_	ADIE	_	_	_	CCP1IE	TMR2IE	TMR1IE	-0000	-0000
PIR1	_	ADIF	_	_	_	CCP1IF	TMR2IF	TMR1IF	-0000	-0000
PR2	PR2 Timer2 Period Register									1111 1111
TMR1L	1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	xxxx xxxx
TMR1H	H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx xxxx	xxxx xxxx
TMR2	Timer2 mod	ule's register							0000 0000	0000 0000
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111

TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture.

9.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip, RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device have been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The TO bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing Configuration bit WDTE (Section 9.1 "Configuration Bits").

WDT time-out period values may be found in the Electrical Specifications section under TWDT (parameter #31). Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 9-14: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 9-7: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
CONFIG1 ⁽¹⁾	BORV	BOREN		_	PWRTE	WDTE	FOSC1	FOSC0	_	_
OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used the Watchdog Timer.

Note 1: See Configuration Word Register (Register 9-1) for operation of all register bits.

9.13 Power-down Mode (Sleep)

Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit of the STATUS register is cleared, the \overline{TO} of the STATUS register bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and the disable external clocks. Pull all I/O pins that are high-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (parameter D042).

9.13.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or some peripheral interrupts.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. ECCP capture mode interrupt.
- 3. ADC running in ADRC mode.

Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

9.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

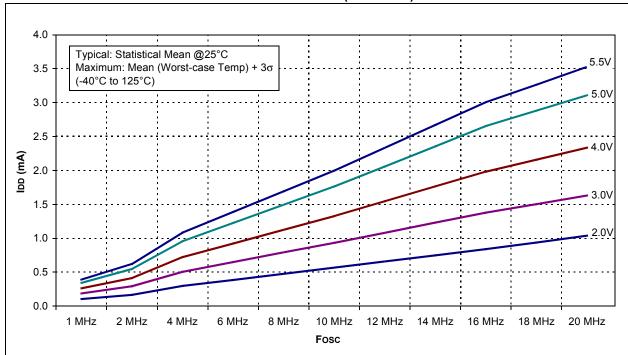
DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Vdd	Conditions	
	Vdd	Supply Voltage							
D001			3.0	—	5.5	V	—		
	Idd	Supply Current	•	•	•				
D010E				21	28	μΑ	3.0	Fosc = 32 kHz	
DUIUE				38	63.7	μΑ	5.0	LP Oscillator mode	
			—	182	250	μΑ	3.0	Fosc = 1 MHz	
D011E			_	293	370	μΑ	5.0	XT Oscillator mode	
			—	371	470	μΑ	3.0	Fosc = 4 MHz	
D012E			_	668	780	μΑ	5.0	XT Oscillator mode	
			_	2.6	2.9	mA	4.5	Fosc = 20 MHz	
D013E			_	3	3.3	mA	5.0	HS Oscillator mode	
	IPD	Power-down Base Current		L				•	
D020E				0.1	11	μΑ	3.0	WDT, BOR and T1OSC: disabled	
DUZUE			_	0.2	15	μA	5.0		
		Peripheral Module Current	1)	•				•	
D021E			—	2	19	μΑ	3.0	WDT Current	
DUZIE			_	9	22	μΑ	5.0		
			—	37	60	μA	3.0		
D022E				40	71	μΑ	4.5	BOR Current	
				45	76	μA	5.0	1	
				2.6	20	μA	3.0	T1osc Current	
D025E			—	3.0	25	μA	5.0	1	

12.3 DC Characteristics: PIC16F716 (Extended)

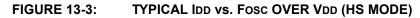
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

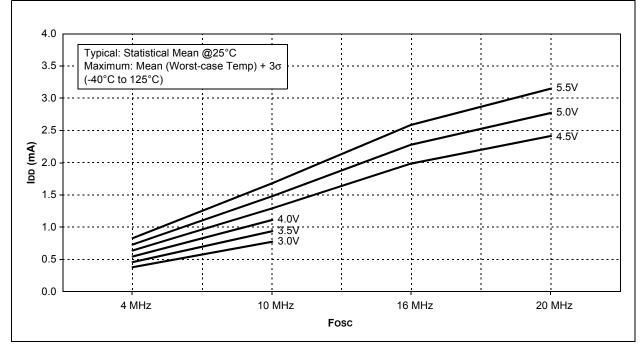
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral "Δ" current can be determined by subtracting the base IDD or IPD current from this limit.

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
1A	Fosc	Ext. Clock Input Frequency ⁽¹⁾	DC		4	MHz	RC and XT Osc modes
			DC	—	20	MHz	HS Osc mode
			DC	—	200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	DC		4	MHz	RC Osc mode
			0.1	—	4	MHz	XT Osc mode
			4	—	20	MHz	HS Osc mode
			5		200	kHz	LP Osc mode
1	Tosc	External CLKIN Period ⁽¹⁾	250		_	ns	RC and XT Osc modes
			50	—	—	ns	HS Osc mode
			5		_	μs	LP Osc mode
		Oscillator Period ⁽¹⁾	250		_	ns	RC Osc mode
			250	—	10,000	ns	XT Osc mode
			50	—	250	ns	HS Osc mode
			5	_	_	μs	LP Osc mode
2	Тсу	Instruction Cycle Time ⁽¹⁾	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High or	100	—	—	ns	XT oscillator
	TosH	Low Time	2.5	—	—	μs	LP oscillator
			15	—	_	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise or	—	—	25	ns	XT oscillator
	TosF	Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator


	TABLE 12-2 :	EXTERNAL CLOCK TIMING REQUIREMENTS
--	---------------------	------------------------------------

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

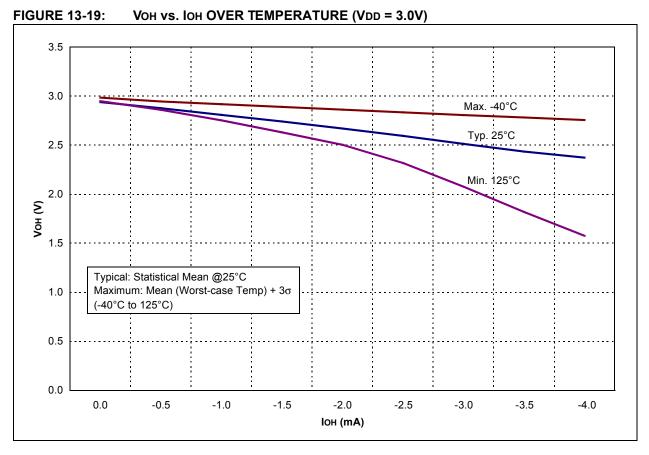
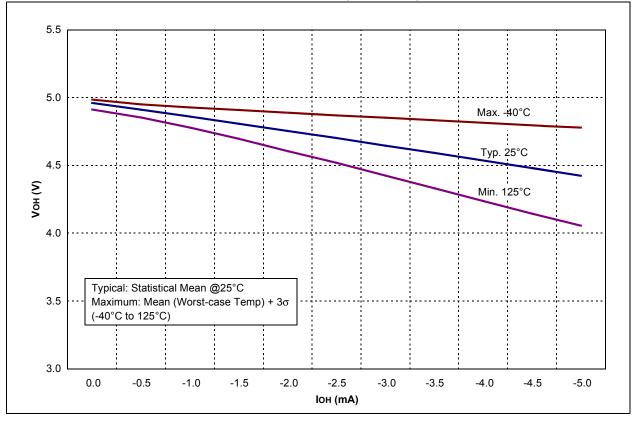
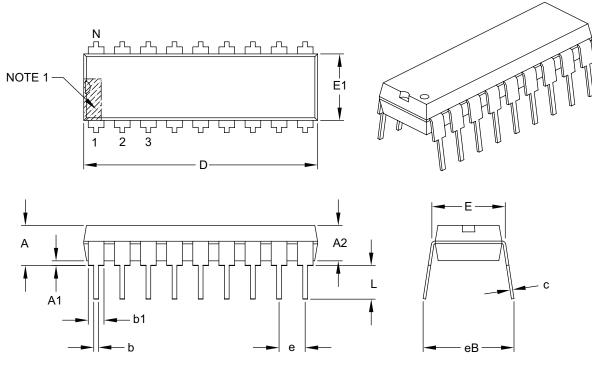



FIGURE 13-20: VOH vs. IOH OVER TEMPERATURE (VDD = 5.0V)


© 2007 Microchip Technology Inc.

14.2 Package Details

The following sections give the technical details of the packages.

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
Dime	ension Limits	MIN	NOM	MAX
Number of Pins	Ν		18	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.880	.900	.920
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.014
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B