E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	60MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8245mld

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Up to 54 general-purpose I/O (GPIO) pins
 - 5 V tolerant I/O
 - Individual control for each pin to be in peripheral or GPIO mode
 - Individual input/output direction control for each pin in GPIO mode
 - Individual control for each output pin to be in push-pull mode or open-drain mode
 - Hysteresis and configurable pullup device on all input pins
 - Ability to generate interrupt with programmable rising or falling edge and software interrupt
 - Configurable drive strength: 4 mA / 8 mA sink/source current
- JTAG/EOnCE debug programming interface for real-time debugging
 - IEEE 1149.1 Joint Test Action Group (JTAG) interface
 - EOnCE interface for real-time debugging

2.1.6 Power Saving Features

- Low-speed run, wait, and stop modes: as low as 781 Hz clock provided by OCCS and internal ROSC
- Large regulator standby mode available for reducing power consumption at low-speed mode
- Less than 30 µs typical wakeup time from stop modes
- Each peripheral can be individually disabled to save power

2.2 Award-Winning Development Environment

Processor Expert (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system.

The CodeWarrior Integrated Development Environment (IDE) is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs), demonstration board kit, and development system cards supports concurrent engineering. Together, PE, CodeWarrior, and EVMs create a complete, scalable tools solution for easy, fast, and efficient development.

2.3 Architecture Block Diagram

The MC56F825x/MC56F824x's architecture appears in Figure 1 and Figure 2. Figure 1 illustrates how the 56800E system buses communicate with internal memories and the IP bus interface as well as the internal connections among the units of the 56800E core.

IPBus Bridge

Figure 2. Peripheral Subsystem MC56F825x/MC56F824x Digital Signal Controller, Rev. 3

Pin Number		ber		Peripherals												
44 LQFP	48 LQFP	64 LQFP	Pin Name	GPIO	l ² C	SCI	SPI	MS CAN ¹	ADC	Cross Bar	COMP	Quad Timer	eFlex PWM	Power	JTAG	Misc.
19	21	28	GPIOB3/ ANB3&VREFLB&CMPC_M0	GPIOB3					ANB3& VREFLB		CMPC_M0					
		29	V _{DD}											V _{DD}		
20	22	30	V _{SS}											V _{SS}		
21	23	31	GPIOC6/TA2/XB_IN3/ CMP_REF	GPIOC6						XB_IN3	CMP_REF	TA2				
22	24	32	GPIOC7/SS/TXD0	GPIOC7		TXD0	SS									
23	25	33	GPIOC8/MISO/RXD0	GPIOC8		RXD0	MISO									
24	26	34	GPIOC9/SCLK/XB_IN4	GPIOC9			SCLK			XB_IN4						
25	27	35	GPIOC10/MOSI/XB_IN5/MISO	GPIOC10			MOSI/ MISO			XB_IN5						
	28	36	GPIOF0/XB_IN6	GPIOF0						XB_IN6						
26	29	37	GPIOC11/CANTX/SCL1/TXD1	GPIOC11	SCL1	TXD1		CANTX								
27	30	38	GPIOC12/CANRX/SDA1/RXD1	GPIOC12	SDA1	RXD1		CANRX								
		39	GPIOF2/SCL1/XB_OUT2	GPIOF2	SCL1					XB_OUT2						
		40	GPIOF3/SDA1/XB_OUT3	GPIOF3	SDA1					XB_OUT3						
		41	GPIOF4/TXD1/XB_OUT4	GPIOF4		TXD1				XB_OUT4						
		42	GPIOF5/RXD1/XB_OUT5	GPIOF5		RXD1				XB_OUT5						
28	31	43	V _{SS}											V _{SS}		
29	32	44	V _{DD}											V _{DD}		
30	33	45	GPIOE0/PWM0B	GPIOE0									PWM0B			
31	34	46	GPIOE1/PWM0A	GPIOE1									PWM0A			
32	35	47	GPIOE2/PWM1B	GPIOE2									PWM1B			
33	36	48	GPIOE3/PWM1A	GPIOE3									PWM1A			
34	37	49	GPIOC13/TA3/XB_IN6	GPIOC13						XB_IN6		TA3				
	38	50	GPIOF1/CLKO/XB_IN7	GPIOF1						XB_IN7						CLKO
35	39	51	GPIOE4/PWM2B/XB_IN2	GPIOE4						XB_IN2			PWM2B			
36	40	52	GPIOE5/PWM2A/XB_IN3	GPIOE5						XB_IN3			PWM2A			
		53	GPIOE6/PWM3B/XB_IN4	GPIOE6						XB_IN4			<i>РWM</i> 3В			
		54	GPIOE7/PWM3A/XB_IN5	GPIOE7						XB_IN5			РѠӍЗА			
37	41	55	GPIOC14/SDA0/XB_OUT0	GPIOC14	SDA0					XB_OUT0						
38	42	56	GPIOC15/SCL0/XB_OUT1	GPIOC15	SCL0					XB_OUT1						
39	43	57	V _{CAP}											V _{CAP}		
		58	GPIOF6/TB2/PWM3X	GPIOF6								TB2	<i>РWM</i> 3X			
		59	GPIOF7/TB3	GPIOF7								ТВ3				
40	44	60	V _{DD}											V _{DD}		

Table 4. MC56F825x/MC56F824x Pins (continued)

3.2 Pin Assignment

Figure 3 shows the pin assignments of the 56F8245 and 56F8255's 44-pin low-profile quad flat pack (44LQFP). Figure 4 shows the pin assignments of the 56F8246 and 56F8256's 48-pin low-profile quad flat pack (48LQFP). Figure 5 shows the pin assignments of the 56F8247 and 56F8257's 64-pin low-profile quad flat pack (64LQFP).

NOTE

The CANRX and CANTX signals of the MSCAN module are not available on the MC56F824x devices.

Figure 3. Top View: 56F8245 and 56F8255 44-Pin LQFP Package

Figure 4. Top View: 56F8246 and 56F8256 48-Pin LQFP Package

Signal/Connection Descriptions

Table 5. MC56F825x/MC56F824x Signal and Package Information (continued)

Signal Name	44 LQFP	48 LQFP	64 LQFP	Туре	State During Reset	Signal Description
GPIOB0	15	17	24	Input/ Output	Input, internal pullup	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB0& CMPB_P2)				Input	enabled	ANB0 and CMPB_P2 — Analog input to channel 0 of ADCB and positive input 2 of analog comparator B.
						When used as an analog input, the signal goes to ANB0 and CMPB_P2.
						After reset, the default state is GPIOB0.
GPIOB1	16	18	25	Input/ Output	Input, internal pullup	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB1& CMPB_M0)				Input	enabled	ANB1 and CMPB_M0— Analog input to channel 1 of ADCB and negative input 0 of analog comparator B.
						When used as an analog input, the signal goes to ANB1 and CMPB_M0.
						After reset, the default state is GPIOB1.
GPIOB2	18	20	27	Input/ Output	Input, internal	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB2& VREFHB& CMPC_P2)				Input	enabled	ANB2 and VREFHB and CMPC_P2 — Analog input to channel 2 of ADCB and analog references high of ADCB and positive input 2 of analog comparator C.
						When used as an analog input, the signal goes to ANB2 and VREFHB and CMPC_P2. ADC control register configures this input as ANB2 or VREFHB.
						After reset, the default state is GPIOB2.
GPIOB3	19	21	28	Input/ Output	Input, internal pullup	Port B GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANB3& VREFLB& CMPC_M0)				Input	enabled	ANB3 and VREFLB and CMPC_M0 — Analog input to channel 3 of ADCB and analog references low of ADCB and negative input 0 of analog comparator C.
						When used as an analog input, the signal goes to ANB3 and VREFLB and MPC_M0. ADC control register configures this input as ANB3 or VREFLB.
						After reset, the default state is GPIOB3.

Signal/Connection Descriptions

Table 5. MC56F825x/MC56F824x Signal and Package Information (continued)

Signal Name	44 LQFP	48 LQFP	64 LQFP	Туре	State During Reset	Signal Description
GPIOC14	37	41	55	Input/ Output	Input, internal	Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
(SDA0)				Input/ Open-drain Output	enabled	SDA0 — I ² C0 serial data line
(XB_OUT0)				Input		XB_OUT0 — Crossbar module output 0
						After reset, the default state is GPIOC14.
GPIOC15	38	42	56	Input/ Output	Input, internal	Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
(SCL0)				Input/ Open-drain Output	enabled	SCL0 — I ² C0 serial clock
(XB_OUT1)				Input		XB_OUT1 — Crossbar module output 1
						After reset, the default state is GPIOC15.
GPIOE0	30	33	45	Input/ Output	Input, internal	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
PWM0B				Input	enabled	PWM0B — NanoEdge PWM submodule 0 output B
						After reset, the default state is GPIOE0.
GPIOE1	31	34	46	Input/ Output	Input, internal	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
(PWM0A)				Output	enabled	PWM0A — NanoEdge PWM submodule 0 output B
						After reset, the default state is GPIOE1.
GPIOE2	32	35	47	Input/ Output	Input, internal	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
(PWM1B)				Output	enabled	PWM1B — NanoEdge PWM submodule 1 output A
						After reset, the default state is GPIOE2.
GPIOE3	33	36	48	Input/ Output	Input, internal	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
(PWM1A)				Output	enabled	PWM1A — NanoEdge PWM submodule 1 output A
						After reset, the default state is GPIOE3.

Address	Register Abbreviation	Register Name
X:0xFF FF91–X:0xFF FF90	OBMSK (32 bits)	Breakpoint Unit Mask Register 2
X:0xFF FF8F		Reserved
X:0xFF FF8E	OBCNTR	EOnCE Breakpoint Unit Counter
X:0xFF FF8D		Reserved
X:0xFF FF8C		Reserved
X:0xFF FF8B		Reserved
X:0xFF FF8A	OESCR	External Signal Control Register
X:0xFF FF89 –X:0xFF FF00		Reserved

Table 13. EOnCE Memory Map

5 General System Control Information

5.1 Overview

This section discusses power pins, reset sources, interrupt sources, clock sources, the system integration module (SIM), ADC synchronization, and JTAG/EOnCE interfaces.

5.2 Power Pins

 V_{DD} , V_{SS} and V_{DDA} , V_{SSA} are the primary power supply pins for the device. The voltage source supplies power to all on-chip peripherals, I/O buffer circuitry, and internal voltage regulators. The device has multiple internal voltages to provide regulated lower-voltage sources for the peripherals, core, memory, and on-chip relaxation oscillators.

Typically, at least two separate capacitors are across the power pins to bypass the glitches and provide bulk charge storage. In this case, a bulk electrolytic or tantalum capacitor, such as a 10 μ F tantalum capacitor, should provide bulk charge storage for the overall system, and a 0.1 μ F ceramic bypass capacitor should be located as near to the device power pins as is practical to suppress high-frequency noise. Each pin must have a bypass capacitor for optimal noise suppression.

 V_{DDA} and V_{SSA} are the analog power supply pins for the device. This voltage source supplies power to the ADC, PGA, and CMP modules. A 0.1 μ F ceramic bypass capacitor should be located as near to the device V_{DDA} and V_{SSA} pins as is practical to suppress high-frequency noise. V_{DDA} and V_{SSA} are also the voltage reference high and voltage reference low inputs, respectively, for the ADC module.

5.3 Reset

Resetting the device provides a way to start processing from a known set of initial conditions. During reset, most control and status registers are forced to initial values, and the program counter is loaded from the reset vector. On-chip peripheral modules are disabled and I/O pins are initially configured at the reset status shown in Table 5 on page 18.

The MC56F825x/MC56F824x has the following sources for reset:

- Power-on reset (POR)
- Partial power-down reset (PPD)
- Low-voltage detect (LVD)
- External pin reset (EXTR)
- Computer operating properly loss of reference reset (COP_LOR)
- Computer operating properly time-out reset (COP_CPU)

when selecting a crystal, because crystal parameters determine the component values required to provide maximum stability and reliable startup. The load capacitance values used in the oscillator circuit design should include all stray layout capacitances. The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL pins to minimize output distortion and startup stabilization time. When using low-frequency, low-power mode, the only external component is the crystal itself. In the other oscillator modes, load capacitors (C_x , C_y) and feedback resistor (R_F) are required. In addition, a series resistor (R_S) may be used in high-gain modes. Recommended component values appear in Table 27.

Figure 9. Typical Crystal Oscillator Circuit without Frequency Compensation Capacitor

Figure 10. Typical Crystal or Ceramic Resonator Circuit

5.4.3 Alternate External Clock Input

The recommended method of connecting an external clock appears in Figure 11. The external clock source is connected to the CLKIN pin while:

- both the EXT_SEL bit and the CLK_MODE bit in the OSCTL register are set, and
- corresponding bits in the GPIOB_PER register in the GPIO module and the GPS_C0 bit in the GPS0 register in the system integration module (SIM) are set to the correct values.

The external clock input must be generated using a relatively low-impedance driver with a maximum frequency not greater than 120 MHz.

Comparator Input	Comparator A	Comparator B	Comparator B
M0 (from package pin)	CMPA_M0	CMPB_M0	CMPC_M0
M1 (from package pin)	CMPA_M1	CMPB_M1	CMPC_M1
M2 (from package pin)	CMPA_M2	CMPB_M2	CMPC_M2
M3 (from internal)	12-bit DAC	12-bit DAC	12-bit DAC

Table 14. Connections by Comparator Inputs (continued)

5.7.2 Crossbar Switch Connections

The Crossbar Switch module provides a generic mechanism for making connections between on-chip peripherals as well as between peripherals and pins. It provides a purely combinational path from input to output. The module groups 30 identical multiplexes with 22 shared inputs. All Crossbar control registers that are used to select one of the 22 input signals to output are write protected. Control of the write protection setting is in the SIM_PROT register.

In general, the crossbar module connects the Enhanced Flex PWM, ADC, Quad Timers, and comparators together, which allows synchronization between PWM pulse generation and ADC sampling. In addition, several crossbar inputs and outputs are routed to package pins. For example, the user can define an XB_INn pin as a PWM fault protection input that is routed to the PWM module through the crossbar, increasing the flexibility of pin use and reducing the complexity of PCB layout.

5.7.2.1 Crossbar Switch Inputs

Table 15 lists the signal assignments of Crossbar Switch inputs.

XBAR_INn	Input from	Function
XBAR_IN0	Logic Zero	V _{SS}
XBAR_IN1	Logic One	V _{DD}
XBAR_IN2	XB_IN2	Package pin
XBAR_IN3	XB_IN3	Package pin
XBAR_IN4	XB_IN4	Package pin
XBAR_IN5	XB_IN5	Package pin
XBAR_IN6	XB_IN6	Package pin
XBAR_IN7	XB_IN7	Package pin
XBAR_IN8	Unused	
XBAR_IN9	CMPA_OUT	Comparator A Output
XBAR_IN10	CMPB_OUT	Comparator B Output
XBAR_IN11	CMPC_OUT	Comparator C Output
XBAR_IN12	ТВО	Quad Timer B0 Output
XBAR_IN13	TB1	Quad Timer B1 Output
XBAR_IN14	TB2	Quad Timer B2 Output
XBAR_IN15	TB3	Quad Timer B3 Output
XBAR_IN16	PWM0_TRIG_COMB	eFlexPWM submodule 0: PWM0_OUT_TRIG0 or PWM0_OUT_TRIG1
XBAR_IN17	PWM1_TRIG_COMB	eFlexPWM submodule 1: PWM1_OUT_TRIG0 or PWM1_OUT_TRIG1
XBAR_IN18	PWM2_TRIG_COMB	eFlexPWM submodule 2: PWM2_OUT_TRIG0 or PWM2_OUT_TRIG1
XBAR_IN19	PWM[012]_TRIG_COMB	eFlexPWM submodule 0, 1, or 2; PWM0_TRIG_COMB or PWM1_TRIG_COMB or PWM2_TRIG_COMB
XBAR_IN20	PWM3_TRIG0	eFlexPWM submodule 3: PWM3_OUT_TRIG0
XBAR_IN21	PWM3_TRIG1	eFlexPWM submodule 3: PWM3_OUT_TRIG1

Table 15. Crossbar Input Signal Assignments

5.7.2.2 Crossbar Switch Outputs

Table 16 lists the signal assignments of Crossbar Switch outputs.

Table 16. Crossbar Output Signal Assignments

XBAR_OUTn	Output to	Function
XBAR_OUT0	XB_OUT0	Package pin
XBAR_OUT1	XB_OUT1	Package pin
XBAR_OUT2	XB_OUT2	Package pin
XBAR_OUT3	XB_OUT3	Package pin
XBAR_OUT4	XB_OUT4	Package pin
XBAR_OUT5	XB_OUT5	Package pin
XBAR_OUT6	ADCA	ADCA Trigger

MC56F825x/MC56F824x Digital Signal Controller, Rev. 3

7.3 ESD Protection and Latch-up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, use normal handling precautions to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing conforms with AEC-Q100 Stress Test Qualification. During device qualification, ESD stresses are performed for the human body model (HBM), the machine model (MM), and the charge device model (CDM).

All latch-up testing conforms with AEC-Q100 Stress Test Qualification.

A device is defined as a failure if, after exposure to ESD pulses, the device no longer meets the device specification. Comprehensive DC parametric and functional testing is performed according to the applicable device specification at room temperature and then at hot temperature, unless specified otherwise in the device specification.

Characteristic ¹	Min	Тур	Max	Unit
ESD for Human Body Model (HBM)	2000	_	_	V
ESD for Machine Model (MM)	200	_	_	V
ESD for Charge Device Model (CDM)	750	—	—	V
Latch-up current at $T_A = 85 {}^{\circ}C (I_{LAT})$	± 100			mA

Table 18. MC56F825x/MC56F824x ESD/Latch-up Protection

Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions, unless otherwise noted

7.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the device design. To account for $P_{I/O}$ in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Characteristic	Comments	Symbol	Value (LQFP)	Unit
Junction to ambient Natural convection	Single layer board (1s)	$R_{ extsf{ heta}JA}$	70	°C/W
Junction to ambient Natural convection	Four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	48	°C/W
Junction to ambient (@200 ft/min)	Single layer board (1s)	$R_{ hetaJMA}$	57	°C/W
Junction to ambient (@200 ft/min)	Four layer board (2s2p)	$R_{ extsf{ heta}JMA}$	42	°C/W
Junction to board		$R_{ heta JB}$	30	°C/W
Junction to case		$R_{ extsf{ heta}JC}$	13	°C/W
Junction to package top	Natural convection	Ψ_{JT}	2	°C/W

Table 19. 44LQFP Package Thermal Characteristics

MC56F825x/MC56F824x Digital Signal Controller, Rev. 3

Characteristic	Symbol	Min	Max	Unit	Refer to
Data set-up time required for inputs Master Slave	t _{DS}	20 0		ns ns	Figure 20, Figure 21, Figure 22, Figure 23
Data hold time required for inputs Master Slave	t _{DH}	0 2		ns ns	Figure 20, Figure 21, Figure 22, Figure 23
Access time (time to data active from high-impedance state) Slave	t _A	4.8	15	ns	Figure 23
Disable time (hold time to high-impedance state) Slave	t _D	3.7	15.2	ns	Figure 23
Data valid for outputs Master Slave (after enable edge)	t _{DV}	_	4.5 20.4	ns ns	Figure 20, Figure 21, Figure 22, Figure 23
Data invalid Master Slave	t _{DI}	0 0		ns ns	Figure 20, Figure 21, Figure 22, Figure 23
Rise time Master Slave	t _R	_	11.5 10.0	ns ns	Figure 20, Figure 21, Figure 22, Figure 23
Fall time Master Slave	t _F	—	9.7 9.0	ns ns	Figure 20, Figure 21, Figure 22, Figure 23

Table 34. SPI Timing¹ (continued)

¹ Parameters listed are guaranteed by design.

7.20 Freescale's Scalable Controller Area Network (MSCAN)

Table 36. MSCAN Timing

Characteristic	Symbol	Min	Max	Unit
Baud Rate	BR _{CAN}		1	Mbps
Bus Wake-up detection	T _{WAKEUP}	T _{IPBUS}		μs

Figure 26. Bus Wake-up Detection

7.21 Inter-Integrated Circuit Interface (I²C) Timing

Characteristic	Symbol	Standard Mode		Unit	
	Symbol	Minimum	Maximum	Offic	
SCL Clock Frequency	f _{SCL}	0	100	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD; STA}	4.0	_	μs	
LOW period of the SCL clock	t _{LOW}	4.7	_	μs	
HIGH period of the SCL clock	t _{HIGH}	4.0	_	μs	
Set-up time for a repeated START condition	^t SU; STA	4.7	_	μs	
Data hold time for I ² C bus devices	t _{HD; DAT}	0 ¹	3.45 ²	μs	
Data set-up time	t _{SU; DAT}	250 ³	_	ns	
Rise time of SDA and SCL signals	t _r	—	1000	ns	
Fall time of SDA and SCL signals	t _f	—	300	ns	
Set-up time for STOP condition	t _{SU; STO}	4.0	_	μs	
Bus free time between STOP and START condition	t _{BUF}	4.7	_	μs	
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	ns	

Table 37. I²C Timing

¹ The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, a negative hold time can result, depending on the edge rates of the SDA and SCL lines.

 2 The maximum t_{HD: DAT} must be met only if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.

³ A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement $t_{SU; DAT} > = 250$ ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line

 $t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250$ ns (according to the Standard mode I²C bus specification) before the SCL line is released.

Specifications

7.22 JTAG Timing

Table 38. JTAG Timing

Characteristic	Symbol	Min	Max	Unit	See Figure
TCK frequency of operation ¹	f _{OP}	DC	SYS_CLK/8	MHz	Figure 28
TCK clock pulse width	t _{PW}	50	—	ns	Figure 28
TMS, TDI data set-up time	t _{DS}	5	—	ns	Figure 29
TMS, TDI data hold time	t _{DH}	5	—	ns	Figure 29
TCK low to TDO data valid	t _{DV}	—	30	ns	Figure 29
TCK low to TDO tri-state	t _{TS}		30	ns	Figure 29

¹ TCK frequency of operation must be less than 1/8 the processor rate.

Figure 28. Test Clock Input Timing Diagram

Package Mechanical Outline Drawings

NOTES:					
1. DIMENSIONS AND TOLERANCING PER ASME Y14,5M-1994.					
2. CONTROLLING DIMENSION: MILLIMETER					
 DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 					
4. DATUMS L, M AND N TO BE DETERMINED A	AT DATUM PLANE H.				
DIMENSIONS TO BE DETERMINED AT SEATIN	G PLANE T.				
6 DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION, ALLOWABLE PROTRUSION IS 0.25 PER SIDE, DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.					
DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION, DAMBAR PROTRUSION SHALL NOT CAUSE THE DIMENSION TO EXCEED 0.53. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07.					
© FREESCALE SEVICONDUCTOR, INC. MECHANIC, ALL RIGHTS RESERVED.	AL OUTLINE PRINT VERSION NO	TT SCALE			
TITLE: 44 LD LOEP.	DECUMENT NE: 98ASS23225W	REV: D			
10 X 10 PKG, 0.8 PITCH, 1.4 THICK	CASE NUMBER: 824D-02	26 FEB 2007			
	STANDARD: JEDEC MS-026 BCB				

Figure 32. 56F8245 and 56F8255 44-Pin LQFP Mechanical Information

10.3 64-pin LQFP

MC56F825x/MC56F824x Digital Signal Controller, Rev. 3

NO	TES:					
1.	DIMENSIONS ARE IN MILL	IMETERS.				
2.	DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.					
з.	DATUMS A, B AND D TO B	BE DETERMINE	D AT DATUM P	PLANE H.		
4	DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.					
A	THIS DIMENSION DOES NO PROTRUSION SHALL NOT O BY MORE THAN 0.08 mm / LOCATED ON THE LOWER F PROTRUSION AND ADJACEM	DT INCLUDE D CAUSE THE LE AT MAXIMUM M RADIUS OR TH NT LEAD SHAL	AMBAR PROTRU AD WIDTH TO ATERIAL COND E FOOT. MINI L NOT BE LES	JSION, ALLOWABLE D EXCEED THE UPPER DITION, DAMBAR CAN MUM SPACE BETWEEN SS THAN 0,07 mm.	DAMBAR LIMIT NOT BE	
<u></u>	A THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSION INCLUDING MOLD MISMATCH.					
A	EXACT SHAPE OF EACH CO	DRNER IS OPT	IONAL.			
<u>/</u> 8.	THESE DIMENSIONS APPLY 0.1 mm AND 0.25 mm FRC	Y TO THE FLA	T SECTION OF TIP.	THE LEAD BETWEEN	1	
0.595						
© FRE	ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE	
TITLE:	64LD LQFP,	VC	DOCUMENT NO	0: 98ASS23234W	REV: E	
0.	10 X 10 X 1.4 PKG, 0.5 PITCH CASE OUTLINE		CASE NUMBER	C 840F-02	11 AUG 2006	
0.0 FILON, OASE OUTLINE		STANDARD: JEDEC MS-026 BCD				

Figure 34. 56F8247 and 56F8257 64-Pin LQFP Mechanical Information

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC56F825X Rev. 3 04/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Processor Expert is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2011. All rights reserved.

