

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	60MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc56f8246mlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Overview

2.1 MC56F825x/MC56F824x Features

2.1.1 Core

- Efficient 56800E digital signal processor (DSP) engine with modified Harvard architecture
 - Three internal address buses
 - Four internal data buses
- As many as 60 million instructions per second (MIPS) at 60 MHz core frequency
- 155 basic instructions in conjunction with up to 20 address modes
- 32-bit internal primary data buses supporting 8-bit, 16-bit, and 32-bit data movement, addition, subtraction, and logical operation
- Single-cycle 16 × 16-bit parallel multiplier-accumulator (MAC)
- Four 36-bit accumulators, including extension bits
- 32-bit arithmetic and logic multi-bit shifter
- Parallel instruction set with unique DSP addressing modes
- Hardware DO and REP loops
- Instruction set supports DSP and controller functions
- Controller-style addressing modes and instructions for compact code
- Efficient C compiler and local variable support
- Software subroutine and interrupt stack with depth limited only by memory
- JTAG/enhanced on-chip emulation (EOnCE) for unobtrusive, processor speed-independent, real-time debugging

2.1.2 Operation Range

- 3.0 V to 3.6 V operation (power supplies and I/O)
- From power-on-reset: approximately 2.7 V to 3.6 V
- Ambient temperature operating range: -40 °C to +105 °C

2.1.3 Memory

- Dual Harvard architecture that permits as many as three simultaneous accesses to program and data memory
- 48 KB (24K x 16) to 64 KB (32K x 16) on-chip flash memory with 2048 bytes (1024 x 16) page size
- 6 KB (3K x 16) to 8 KB (4K x 16) on-chip RAM with byte addressable
- EEPROM emulation capability using flash
- Support for 60 MHz program execution from both internal flash and RAM memories
- Flash security and protection that prevent unauthorized users from gaining access to the internal flash

2.1.4 Interrupt Controller

- Five interrupt priority levels
 - Three user programmable priority levels for each interrupt source: Level 0, 1, 2
 - Unmaskable level 3 interrupts include: illegal instruction, hardware stack overflow, misaligned data access, and SWI3 instruction
 - Maskable level 3 interrupts include: EOnCE step counter, EOnCE breakpoint unit, and EOnCE trace buffer

Overview

Figure 1. 56800E Core Block Diagram

Figure 2 shows the peripherals and control blocks connected to the IP bus bridge. Refer to the system integration module (SIM) section in the device's reference manual for information about which signals are multiplexed with those of other peripherals.

Pin Number		ber		Peripherals												
44 LQFP	48 LQFP	64 LQFP	Pin Name	GPIO	l ² C	SCI	SPI	MS CAN ¹	ADC	Cross Bar	COMP	Quad Timer	eFlex PWM	Power	JTAG	Misc.
19	21	28	GPIOB3/ ANB3&VREFLB&CMPC_M0	GPIOB3					ANB3& VREFLB		CMPC_M0					
		29	V _{DD}											V _{DD}		
20	22	30	V _{SS}											V _{SS}		
21	23	31	GPIOC6/TA2/XB_IN3/ CMP_REF	GPIOC6						XB_IN3	CMP_REF	TA2				
22	24	32	GPIOC7/SS/TXD0	GPIOC7		TXD0	SS									
23	25	33	GPIOC8/MISO/RXD0	GPIOC8		RXD0	MISO									
24	26	34	GPIOC9/SCLK/XB_IN4	GPIOC9			SCLK			XB_IN4						
25	27	35	GPIOC10/MOSI/XB_IN5/MISO	GPIOC10			MOSI/ MISO			XB_IN5						
	28	36	GPIOF0/XB_IN6	GPIOF0						XB_IN6						
26	29	37	GPIOC11/CANTX/SCL1/TXD1	GPIOC11	SCL1	TXD1		CANTX								
27	30	38	GPIOC12/CANRX/SDA1/RXD1	GPIOC12	SDA1	RXD1		CANRX								
		39	GPIOF2/SCL1/XB_OUT2	GPIOF2	SCL1					XB_OUT2						
		40	GPIOF3/SDA1/XB_OUT3	GPIOF3	SDA1					XB_OUT3						
		41	GPIOF4/TXD1/XB_OUT4	GPIOF4		TXD1				XB_OUT4						
		42	GPIOF5/RXD1/XB_OUT5	GPIOF5		RXD1				XB_OUT5						
28	31	43	V _{SS}											V _{SS}		
29	32	44	V _{DD}											V _{DD}		
30	33	45	GPIOE0/PWM0B	GPIOE0									PWM0B			
31	34	46	GPIOE1/PWM0A	GPIOE1									PWM0A			
32	35	47	GPIOE2/PWM1B	GPIOE2									PWM1B			
33	36	48	GPIOE3/PWM1A	GPIOE3									PWM1A			
34	37	49	GPIOC13/TA3/XB_IN6	GPIOC13						XB_IN6		TA3				
	38	50	GPIOF1/CLKO/XB_IN7	GPIOF1						XB_IN7						CLKO
35	39	51	GPIOE4/PWM2B/XB_IN2	GPIOE4						XB_IN2			PWM2B			
36	40	52	GPIOE5/PWM2A/XB_IN3	GPIOE5						XB_IN3			PWM2A			
		53	GPIOE6/PWM3B/XB_IN4	GPIOE6						XB_IN4			<i>РWM</i> 3В			
		54	GPIOE7/PWM3A/XB_IN5	GPIOE7						XB_IN5			РѠӍЗА			
37	41	55	GPIOC14/SDA0/XB_OUT0	GPIOC14	SDA0					XB_OUT0						
38	42	56	GPIOC15/SCL0/XB_OUT1	GPIOC15	SCL0					XB_OUT1						
39	43	57	V _{CAP}											V _{CAP}		
		58	GPIOF6/TB2/PWM3X	GPIOF6								TB2	<i>РWM</i> 3X			
		59	GPIOF7/TB3	GPIOF7								ТВ3				
40	44	60	V _{DD}											V _{DD}		

Table 4. MC56F825x/MC56F824x Pins (continued)

Signal/Connection Descriptions

3.3 MC56F825x/MC56F824x Signal Pins

After reset, each pin is configured for its primary function (listed first). Any alternative functionality, shown in parentheses and as *italic*, must be programmed via the GPIO module's peripheral enable registers (GPIO_x_PER) and the SIM module's GPIO peripheral select (GPSx) registers.

Signal Name	44 LQFP	48 LQFP	64 LQFP	Туре	State During Reset	Signal Description			
V _{DD}			29	Supply	Supply	I/O Power — This pin supplies 3.3 V power to the chip I/O interface.			
V _{DD}	29	32	44						
V _{DD}	40	44	60						
V _{SS}	20	22	30	Supply	Supply	I/O Ground — These pins provide ground for chip I/O interface.			
V _{SS}	28	31	43						
V _{SS}	41	45	61						
V _{DDA}	13	15	22	Supply	Supply	Analog Power — This pin supplies 3.3 V power to the analog modules. It must be connected to a clean analog power supply.			
V _{SSA}	14	16	23	Supply	Supply	Analog Ground — This pin supplies an analog ground to the analog modules. It must be connected to a clean power supply.			
V _{CAP}	17	19	26	Supply	Supply	V_{CAP} — Connect a bypass capacitor of 2.2 µF or greater between this pip and V — to stabilize the care voltage regulator output			
V _{CAP}	39	43	57			required for proper device operation. See Section 8.2, "Electrical Design Considerations," on page 73.			
TDI	44	48	64	Input	Input, internal pullup enabled	Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pullup resistor.			
(GPIOD0)				Input/ Output		After react, the default state in TDI			
TDO	40	40	00	Outrast	Outrout	After reset, the default state is 1DI.			
	42	46	62	Output	Output	output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and changes on the falling edge of TCK.			
(GPIOD1)				Input/ Output		Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.			
ток	1	1	-	loout	lagut	Test Cleak Input This input his provides a gated cleak to			
ICK		I	I	input	internal pullup enabled	synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pullup resistor. A Schmitt-trigger input is used for noise immunity.			
(GPIOD2)				Input/ Output		Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.			
						After reset, the default state is TCK			

Table 5. MC56F825x/MC56F824x Signal and Package Information

Signal/Connection Descriptions

Table 5. MC56F825x/MC56F824x Signal and Package Information (continued)

Signal Name	44 LQFP	48 LQFP	64 LQFP	Туре	State During Reset	Signal Description
TMS	43	47	63	input	Input, internal pullup	Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pullup resistor.
(GPIOD3)				Input/ Output	enableu	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
						After reset, the default state is TMS
						Note : Always tie the TMS pin to VDD through a 2.2K resistor if need to keep on-board debug capability. Otherwise directly tie to VDD
RESET	2	2	2	Input	Input, internal pullup enabled	Reset — This input is a direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt-trigger input is used for noise immunity. The internal reset signal is deasserted synchronous with the internal clocks after a fixed number of internal clocks.
(GPIOD4)				Input/ Open-drain Output		Port D GPIO — This GPIO pin can be individually programmed as an input or open-drain output pin.If RESET functionality is disabled in this mode and the chip can be reset only via POR, COP reset, or software reset.
						After reset, the default state is \overline{RESET} .
GPIOA0	8	9	13	Input/ Output	Input, internal	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANA0& CMPA_P2)				Input	enabled	ANA0 and CMPA_P2 — Analog input to channel 0 of ADCA and positive input 2 of analog comparator A.
(CMPC_O)				Output		CMPC_O— Analog comparator C output
						When used as an analog input, the signal goes to the ANA0 and CMPA_P2.
						After reset, the default state is GPIOA0.
GPIOA1	9	10	14	Input/ Output	Input, internal pullup	Port A GPIO — This GPIO pin can be individually programmed as an input or output pin.
(ANA1& CMPA_M0)				Input	enabled	ANA1 and CMPA_M0 — Analog input to channel 1of ADCA and negative input 0 of analog comparator A.
						When used as an analog input, the signal goes to the ANA1 and CMPA_M0.
						After reset, the default state is GPIOA1.

Signal/Connection Descriptions

Table 5. MC56F825x/MC56F824x Signal and Package Information (continued)

Signal Name	44 LQFP	48 LQFP	64 LQFP	Туре	State During Reset	Signal Description
GPIOF1		38	50	Input/ Output	Input, internal	Port F GPIO — This GPIO pin can be individually programmed as an input or output pin.
(CLKO)				Output	enabled	CLKO — This is a buffered clock output; the clock source is selected by clockout select (CLKOSEL) bits in the clock output select register (CLKOUT) of the SIM.
(XB_IN7)				Input		XB_IN7 — Crossbar module input 7
						After reset, the default state is GPIOF1.
GPIOF2			39	Input/ Output	Input, internal	Port F GPIO — This GPIO pin can be individually programmed as an input or output pin.
(SCL1)				Input/ Open-drain Output	enabled	SCL1 — The I ² C1 serial clock.
(XB_OUT2)				Output		XB_OUT2 — Crossbar module output 2
						After reset, the default state is GPIOF2.
GPIOF3			40	Input/ Output	Input, internal	Port F GPIO — This GPIO pin can be individually programmed as an input or output pin.
(SDA1)				Input/ Open-drain Output	enabled	SDA1 — The I ² C1 serial data line.
(XB_OUT3)				Output		XB_OUT3 — Crossbar module output 3
						After reset, the default state is GPIOF3.
GPIOF4			41	Input/ Output	Input, internal	Port F GPIO — This GPIO pin can be individually programmed as an input or output pin.
(TXD1)				Output	enabled	TXD1 — The SCI1 transmit data output or transmit/receive in single wire operation.
(XB_OUT4)				Output		XB_OUT4 — Crossbar module output 4
						After reset, the default state is GPIOF4.
GPIOF5			42	Input/ Output	Input, internal	Port F GPIO — This GPIO pin can be individually programmed as an input or output pin.
(RXD1)				Output	enabled	RXD1 — The SCI1 receive data input.
(XB_OUT5)				Output		XB_OUT5 — Crossbar module output 5
						After reset, the default state is GPIOF5.

Memory Maps

• The 56F824x's startup address is located at 0x00 2000. The reset value of VBA is reset to a value of 0x0020 that corresponds to the address 0x00 2000.

By default, the chip reset address and COP reset address correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions.

Table 48 on page 85 provides the MC56F825x/MC56F824x's interrupt table contents and interrupt priority structure.

4.5 Peripheral Memory-Mapped Registers

The locations of on-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be accessed with the same addressing modes used for ordinary data memory. However, all peripheral registers should be read or written using word accesses only.

Table 12 summarizes the base addresses for the set of peripherals on the MC56F825x/MC56F824x devices. Peripherals are listed in order of the base address.

Peripheral	Prefix	Base Address
Quad Timer A	TMRA	X:0x00 F000
Quad Timer B	TMRB	X:0x00 F040
Analog-to-Digital Converter	ADC	X:0x00 F080
Interrupt Controller	INTC	X:0x00 F0C0
System Integration Module	SIM	X:0x00 F0E0
Crossbar module	XBAR	X:0x00 F100
Computer Operating Properly module	COP	X:0x00 F110
On-Chip Clock Synthesis module	OCCS	X:0x00 F120
Power Supervisor	PS	X:0x00 F130
GPIO Port A	GPIOA	X:0x00 F140
GPIO Port B	GPIOB	X:0x00 F150
GPIO Port C	GPIOC	X:0x00 F160
GPIO Port D	GPIOD	X:0x00 F170
GPIO Port E	GPIOE	X:0x00 F180
GPIO Port F	GPIOF	X:0x00 F190
12-bit Digital-to-Analog Converter	DAC	X:0x00 F1A0
Analog Comparator A	CMPA	X:0x00 F1B0
Analog Comparator B	СМРВ	X:0x00 F1C0
Analog Comparator C	CMPC	X:0x00 F1D0
Queued Serial Communication Interface 0	QSCI0	X:0x00 F1E0
Queued Serial Communication Interface 1	QSCI1	X:0x00 F1F0
Queued Serial Peripheral Interface	QSPI	X:0x00 F200
Inter-Integrated Circuit 0	l ² C0	X:0x00 F210
Inter-Integrated Circuit 1	l ² C1	X:0x00 F220

Table 12. Data Memory Peripheral Base Address Map Summary

General System Control Information

EXT_SEL & CLK_MODE = 1	MC56F825x/MC56F824x		
GPIOC_PER0 = 0	CLKIN		
GPS_C0 = 1			

External Clock (≤ 120 MHz)

Figure 11. Connecting an External Clock Signal Using GPIO

5.5 Interrupt Controller

The MC56F825x/MC56F824x interrupt controller (INTC) module arbitrates the various interrupt requests (IRQs). When an interrupt of sufficient priority exists, the INTC signals to the 56800E core and provides the address to which to jump to service the interrupt.

The interrupt controller contains registers that allow each of the 66 interrupt sources to be set to one of three priority levels (excluding certain interrupt sources that have fixed priority) or to be disabled. Next, all interrupt requests of a given level are priority encoded to determine the lowest numeric value of the active interrupt requests for that level. Within a given priority level, the lowest vector number is the highest priority, and the highest vector number is the lowest priority.

Any two interrupt sources can be assigned to faster interrupts. Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes fast interrupts before the core does.

A fast interrupt is defined by:

- 1. Setting the priority of the interrupt as level 2 with the appropriate field in the Interrupt Priority Register (IPR) registers
- 2. Setting the Fast Interrupt Match (FIM*n*) register to the appropriate vector number
- 3. Setting the Fast Interrupt Vector Address Low (FIVAL*n*) and Fast Interrupt Vector Address High (FIVAH*n*) registers with the address of the code for the fast interrupt

When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a match occurs, and it is a level 2 interrupt, the INTC handles it as a Fast Interrupt. The INTC takes the vector address from the appropriate FIVAL*n* and FIVAH*n* registers, instead of generating an address that is an offset from the VBA.

The core then fetches the instruction from the indicated vector address instead of jumping to the vector table. If the instruction is not a JSR, the core starts its fast interrupt handling. Refer to section 9.3.3.3 of *DSP56800E 16-Bit Core Reference Manual* for details.

Table 48 on page 85 provides the MC56F825x/MC56F824x's interrupt table contents and interrupt priority structure.

5.6 System Integration Module (SIM)

The SIM module consists of the glue logic that ties together the system-on-a-chip. It controls distribution of resets and clocks and provides a number of control features, including pin muxing control, inter-module connection control (such as connecting comparator output to eFlexPWM fault input), individual peripheral enabling/disabling, clock rate control for quad timers and SCIs, enabling peripheral operation in stop mode, and port configuration overwrite protection. For more information, refer to the device's reference manual.

The SIM is responsible for the following functions:

- Chip reset sequencing
- Core and peripheral clock control and distribution
- Stop/wait mode control
- System status control
- Registers containing the JTAG ID of the chip
- Controls for programmable peripheral and GPIO connections

General System Control Information

5.7.2.1 Crossbar Switch Inputs

Table 15 lists the signal assignments of Crossbar Switch inputs.

XBAR_OUTn	Output to	Function
XBAR_OUT7	ADCB	ADCB Trigger
XBAR_OUT8	DAC	12-bit DAC SYNC_IN
XBAR_OUT9	СМРА	Comparator A Window/Sample
XBAR_OUT10	СМРВ	Comparator B Window/Sample
XBAR_OUT11	СМРС	Comparator C Window/Sample
XBAR_OUT12	PWM0 EXTA	eFlexPWM submodule 0 Alternate Control signal
XBAR_OUT13	PWM1 EXTA	eFlexPWM submodule 1 Alternate Control signal
XBAR_OUT14	PWM2 EXTA	eFlexPWM submodule 2 Alternate Control signal
XBAR_OUT15	PWM3 EXTA	eFlexPWM submodule 3 Alternate Control signal
XBAR_OUT16	PWM0 EXT_SYNC	eFlexPWM submodule 0 External Synchronization signal
XBAR_OUT17	PWM1 EXT_SYNC	eFlexPWM submodule 1 External Synchronization signal
XBAR_OUT18	PWM2 EXT_SYNC	eFlexPWM submodule 2 External Synchronization signal
XBAR_OUT19	PWM3 EXT_SYNC	eFlexPWM submodule 3 External Synchronization signal
XBAR_OUT20	PWM EXT_CLK	eFlexPWM External Clock signal
XBAR_OUT21	PWM FAULT0	eFlexPWM Module FAULT0
XBAR_OUT22	PWM FAULT1	eFlexPWM Module FAULT1
XBAR_OUT23	PWM FAULT2	eFlexPWM Module FAULT2
XBAR_OUT24	PWM FAULT3	eFlexPWM Module FAULT3
XBAR_OUT25	PWM FORCE	eFlexPWM External Output Force signal
XBAR_OUT26	ТВО	Quad Timer B0 Input when SIM_GPS3[12] is set
XBAR_OUT27	TB1	Quad Timer B1 Input when SIM_GPS3[13] is set
XBAR_OUT28	TB2	Quad Timer B2 Input when SIM_GPS3[14] is set
XBAR_OUT29	ТВЗ	Quad Timer B3 Input when SIM_GPS3[15] is set

Table 16. Crossbar Output Signal	Assignments	(continued)
----------------------------------	-------------	-------------

5.7.3 Interconnection of PWM Module and ADC Module

In addition to how PWM0_EXTA, PWM1_EXTA, PWM2_EXTA, and PWM3_EXTA connect to crossbar outputs, the ADC conversion high/low limit compare results of sample0, sample1, and sample2 are used to drive PWM0_EXTB, PWM1_EXTB, and PWM2_EXTB, respectively. PWM3_EXTB is permanently tied to GND.

State of PWM0_EXTB:

- If the ADC conversion result in SAMPLE0 is greater than the value programmed into the high limit register 0, PWM0_EXTB is driven low.
- If the ADC conversion result in SAMPLE0 is less than the value programmed into the low limit register 0, PWM0_EXTB is driven high.

State of PWM1_EXTB:

• If the ADC conversion result in SAMPLE1 is greater than the value programmed into the high limit register 1, PWM1_EXTB is driven low.

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

See Section 8.1, "Thermal Design Considerations," for more detail on thermal design considerations.

7.5 Recommended Operating Conditions

This section contains information about recommended operating conditions.

Table 22. Recommended Operating Conditions	$(V_{REFLx} = 0 V)$, V _{SSA} = 0 V	, V _{SS} = 0 V)
--	---------------------	--------------------------	--------------------------

Characteristic	Symbol	Notes	Min	Тур	Max	Unit
Supply voltage	V _{DD,} V _{DDA}		3	3.3	3.6	V
ADC Reference Voltage High	V _{REFHx}		3.0		V _{DDA}	V
Voltage difference V _{DD} to V _{DDA}	ΔV_{DD}		-0.1	0	0.1	V
Voltage difference V_{SS} to V_{SSA}	ΔV_{SS}		-0.1	0	0.1	V
Device Clock Frequency Using relaxation oscillator Using external clock source	FSYSCLK		0.001 0		60 60	MHz
Input Voltage High (digital inputs)	V _{IH}	Pin Groups 1, 2	2.0		5.5	V
Input Voltage Low (digital inputs)	V _{IL}	Pin Groups 1, 2	-0.3		0.8	V
Oscillator Input Voltage High XTAL driven by an external clock source	V _{IHOSC}	Pin Group 4	2.0		V _{DD} + 0.3	V
Oscillator Input Voltage Low	V _{ILOSC}	Pin Group 4	-0.3		0.8	V
DAC Output Load Resistance	R _{LD}	Pin Group 5	ЗK			Ω
DAC Output Load Capacitance	C _{LD}	Pin Group 5			400	pf
Output Source Current High at V _{OH} min.) ¹ When programmed for low drive strength When programmed for high drive strength	I _{ОН}	Pin Group 1 Pin Group 1	_		-4 -8	mA
Output Source Current Low (at V _{OL} max.) ¹ When programmed for low drive strength When programmed for high drive strength	I _{OL}	Pin Groups 1, 2 Pin Groups 1, 2			4 8	mA
Ambient Operating Temperature (Extended Industrial)	Τ _Α		-40		105	°C
Flash Endurance (Program Erase Cycles)	N _F	T _A = -40°C to 125°C	10,000		—	cycles
Flash Data Retention	T _R	T _J <= 85°C avg	15			years
Flash Data Retention with <100 Program/Erase Cycles	t _{FLRET}	T _J <= 85°C avg	20	—	—	years

able 23. DC Electrical Characteristics at Recommended Operating Conditions
--

Characteristic	Symbol	Notes	Min	Тур	Мах	Unit	Test Conditions
Output Voltage High	V _{OH}	Pin Group 1	2.4	—	—	V	I _{OH} = I _{OHmax}
Output Voltage Low	V _{OL}	Pin Groups 1, 2	_	—	0.4	V	I _{OL} = I _{OLmax}
Digital Input Current High (a) pull-up enabled or disabled	I _{IH}	Pin Groups 1, 2	_	0	+/- 2.5	μA	V _{IN} = 2.4 V to 5.5 V
Comparator Input Current High	I _{IHC}	Pin Group 3	_	0	+/- 2	μA	$V_{IN} = V_{DDA}$
Oscillator Input Current High	I _{IHOSC}	Pin Group 3	_	0	+/- 2	μA	$V_{IN} = V_{DDA}$
Digital Input Current Low ¹ pull-up enabled pull-up disabled	Ι _{ΙL}	Pin Groups 1, 2	-15 —	-30 0	-60 +/- 2.5	μA	V _{IN} = 0 V
Internal Pull-Up Resistance	R _{Pull-Up}		60	110	220	kΩ	—
Comparator Input Current Low	I _{ILC}	Pin Group 3	_	0	+/- 2	μA	V _{IN} = 0 V
Oscillator Input Current Low	I _{ILOSC}	Pin Group 3	_	0	+/- 2	μΑ	V _{IN} = 0 V
DAC Output Voltage Range	V _{DAC}	Pin Group 5	Typically V _{SSA} + 40 mV	_	Typically V _{DDA} – 40 mV	V	—
Output Current ¹ High Impedance State	I _{OZ}	Pin Groups 1, 2	_	0	+/- 2.5	μA	
Schmitt Trigger Input Hysteresis	V _{HYS}	Pin Groups 1, 2	_	0.35	—	V	—
Input Capacitance	C _{IN}		_	10	—	pF	—
Output Capacitance	C _{OUT}			10	—	pF	—

¹ See Figure 14.

Default Mode

Pin Group 1: GPIO, TDI, TDO, TMS, TCK

Pin Group 2: RESET, GPIOA7

Pin Group 3: ADC and Comparator Analog Inputs

Pin Group 4: XTAL, EXTAL

Pin Group 5: DAC Analog Output

Characteristic	Symbol	Min	Тур	Мах	Unit
External clock input rise time ⁴	t _{rise}	—	—	3	ns
External clock input fall time ⁵	t _{fall}	—	—	3	ns
Input high voltage overdrive by an external clock	V _{ih}	0.85V _{DD}	—	—	V
Input high voltage overdrive by an external clock	V _{il}	_	_	0.3V _{DD}	V

 Table 29. External Clock Operation Timing Requirements¹ (continued)

¹ Parameters listed are guaranteed by design.

² See Figure 17 for details on using the recommended connection of an external clock driver.

³ The chip may not function if the high or low pulse width is smaller than 6.25 ns.

⁴ External clock input rise time is measured from 10% to 90%.

⁵ External clock input fall time is measured from 90% to 10%.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 17. External Clock Timing

7.14 Phase Locked Loop Timing

Table 30. Phase Locked Loop Timing

Characteristic	Symbol	Min	Тур	Мах	Unit
PLL input reference frequency ¹	f _{ref}	4	8	8	MHz
PLL output frequency ²	f _{op}	120	_	240	MHz
PLL lock time ^{3 4}	t _{plls}	—	40	100	μs
Accumulated jitter using an 8 MHz external crystal as the PLL source ⁵	J _A	—	_	TBD	%
Cycle-to-cycle jitter	t _{jitterpll}	—	350	—	ps

¹ An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8 MHz input.

² The core system clock operates at 1/6 of the PLL output frequency.

³ This is the time required after the PLL is enabled to ensure reliable operation.

⁴ From powerdown to powerup state at 60 MHz system clock state.

⁵ This is measured on the CLKO signal (programmed as system clock) over 264 system clocks at 60 MHz system clock frequency and using an 8 MHz oscillator frequency.

7.22 JTAG Timing

Table 38. JTAG Timing

Characteristic	Symbol	Min	Max	Unit	See Figure
TCK frequency of operation ¹	f _{OP}	DC	SYS_CLK/8	MHz	Figure 28
TCK clock pulse width	t _{PW}	50	—	ns	Figure 28
TMS, TDI data set-up time	t _{DS}	5	—	ns	Figure 29
TMS, TDI data hold time	t _{DH}	5	—	ns	Figure 29
TCK low to TDO data valid	t _{DV}	—	30	ns	Figure 29
TCK low to TDO tri-state	t _{TS}		30	ns	Figure 29

¹ TCK frequency of operation must be less than 1/8 the processor rate.

Figure 28. Test Clock Input Timing Diagram

Ordering Information

Use the following list of considerations to assure correct operation of the MC56F825x/MC56F824x:

- Provide a low-impedance path from the board power supply to each V_{DD} pin on the MC56F825x/MC56F824x and from the board ground to each V_{SS} (GND) pin.
- The minimum bypass requirement is to place 0.01–0.1 μF capacitors positioned as near as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the V_{DD}/V_{SS} pairs, including V_{DDA}/V_{SSA}. Ceramic and tantalum capacitors tend to provide better tolerances.
- Ensure that capacitor leads and associated printed circuit traces that connect to the chip V_{DD} and V_{SS} (GND) pins are as short as possible.
- Bypass the V_{DD} and V_{SS} with approximately 100 μ F, plus the number of 0.1 μ F ceramic capacitors.
- PCB trace lengths should be minimal for high-frequency signals.
- Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the V_{DD} and V_{SS} circuits.
- Take special care to minimize noise levels on the V_{REF} , V_{DDA} , and V_{SSA} pins.
- Using separate power planes for V_{DD} and V_{DDA} and separate ground planes for V_{SS} and V_{SSA} is recommended. Connect the separate analog and digital power and ground planes as near as possible to power supply outputs. If an analog circuit and digital circuit are powered by the same power supply, you should connect a small inductor or ferrite bead in serial with V_{DDA} and V_{SSA} traces.
- Physically separate analog components from noisy digital components by ground planes. Do not place an analog trace in parallel with digital traces. Place an analog ground trace around an analog signal trace to isolate it from digital traces.
- Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI, or I²C, the designer should provide an interface to this port if in-circuit flash programming is desired.
- If desired, connect an external RC circuit to the $\overline{\text{RESET}}$ pin. The resistor value should be in the range of 4.7 k Ω to 10 k Ω ; the capacitor value should be in the range of 0.22 μ F to 4.7 μ F.
- Configuring the RESET pin to GPIO output in normal operation in a high-noise environment may help to improve the performance of noise transient immunity.
- Add a 2.2 k Ω external pullup on the TMS pin of the JTAG port to keep EOnCE in a restate during normal operation if a JTAG converter is not present.
- During reset and after reset but before I/O initialization, all I/O pins are at input state with internal pullup enabled. The typical value of internal pullup is around 110 k Ω . These internal pullups can be disabled by software.
- To eliminate PCB trace impedance effect, each ADC input should have an RC filter of no less than 33 pF 10 Ω .
- External clamp diodes on analog input pins are recommended.

9 Ordering Information

Table 46 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized distributor to determine availability and to order devices.

Package Mechanical Outline Drawings

10 Package Mechanical Outline Drawings

To ensure you have the latest version of a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number (shown in the following sections for each package).

10.1 44-pin LQFP

10.2 48-pin LQFP

NOT	TES:					
1.	DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.					
2.	CONTROLLING DIMENSION: MILLIMETER.					
3.	DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.					
4.	DATUMS T, U, AND Z T	O BE DETERN	INED AT DAT	UM PLANE AB.		
∕₅.∖	DIMENSIONS TO BE DET	ERMINED AT S	SEATING PLAN	NE AC.		
6.	DIMENSIONS DO NOT INC PROTRUSION IS 0.250 F MOLD MISMATCH AND A	CLUDE MOLD PER SIDE, DIN RE DETERMIN	PROTRUSION. MENSIONS DO NED AT DATUI	ALLOWABLE INCLUDE M PLANE AB.		
<u>/</u> .	THIS DIMENSION DOES N SHALL NOT CAUSE THE	IOT INCLUDE LEAD WIDTH	DAMBAR PRO TO EXCEED	TRUSION. DAMBAR 0.350.	PROTRUSION	
8.	MINIMUM SOLDER PLATE	THICKNESS	SHALL BE 0.0	0076.		
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.						
© FREE	SCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE	
TITLE:			DOCUMENT NO	: 98ASH00962A	REV: G	
Lζ	(7.0 X 7.0 X	50 PIICH 1 4)	CASE NUMBER	14 APR 2005		
(7.0 × 7.0 × 1.4)		/	STANDARD: JEDEC MS-026-BBC			

Figure 33. 56F8246 and 56F8256 48-Pin LQFP Mechanical Information

Interrupt Vector Table

Peripheral	Vector Number	Priority Level	Vector Base Address +	Interrupt Function
CAN	25	0 - 2	P:0x32	CAN Error Interrupt
CAN	26	0 - 2	P:0x34	CAN Wake-Up Interrupt
QSCI1	27	0 - 2	P:0x36	QSCI1 Receiver Overrun/Errors
QSCI1	28	0 - 2	P:0x38	QSCI1 Receiver Full
QSCI1	29	0 - 2	P:0x3A	QSCI1 Transmitter Idle
QSCI1	30	0 - 2	P:0x3C	QSCI1 Transmitter Empty
QSCI0	31	0 - 2	P:0x3E	QSCI0 Receiver Overrun/Errors
QSCI0	32	0 - 2	P:0x40	QSCI0 Receiver Full
QSCI0	33	0 - 2	P:0x42	QSCI0 Transmitter Idle
QSCI0	34	0 - 2	P:0x44	QSCI0 Transmitter Empty
QSPI	35	0 - 2	P:0x46	SPI Transmitter Empty
QSPI	36	0 - 2	P:0x48	SPI Receiver Full
l ² C1	37	0 - 2	P:0x4A	I ² C1 Interrupt
l ² C0	38	0 -2	P:0x4C	I ² C0 Interrupt
TMRA3	39	0 -2	P:0x4E	Quad Timer A, Channel 3 Interrupt
TMRA2	40	0 -2	P:0x50	Quad Timer A, Channel 2 Interrupt
TMRA1	41	0 -2	P:0x52	Quad Timer A, Channel 1 Interrupt
TMRA0	42	0 -2	P:0x54	Quad Timer A, Channel 0 Interrupt
eFlexPWM	43	0 -2	P:0x56	PWM Fault
eFlexPWM	44	0 -2	P:0x58	PWM Reload Error
eFlexPWM	45	0 -2	P:0x5A	PWM Sub-Module 3 Reload
eFlexPWM	46	0 -2	P:0x5C	PWM Sub-Module 3 input capture
eFlexPWM	47	0 -2	P:0x5E	PWM Sub-Module 3 Compare
eFlexPWM	48	0 -2	P:0x60	PWM Sub-Module 2 Reload
eFlexPWM	49	0 -2	P:0x62	PWM Sub-Module 2 Compare
eFlexPWM	50	0 -2	P:0x64	PWM Sub-Module 1 Reload
eFlexPWM	51	0 -2	P:0x66	PWM Sub-Module 1 Compare
eFlexPWM	52	0 -2	P:0x68	PWM Sub-Module 0 Reload
eFlexPWM	53	0 -2	P:0x6A	PWM Sub-Module 0Compare
FM	54	0 -2	P:0x6C	Flash Memory Access Error
FM	55	0 -2	P:0x6E	Flash Memory Programming Command Complete
FM	56	0 -2	P:0x70	Flash Memory Buffer Empty Request
CMPC	57	0 - 2	P:0x72	Comparator C Rising/Falling Flag
СМРВ	58	0 - 2	P:0x74	Comparator B Rising/Falling Flag

Table 48. Interrupt Vector Table Contents¹ (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC56F825X Rev. 3 04/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale, the Freescale logo, and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Processor Expert is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009-2011. All rights reserved.

