

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1301t016x0008aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1 Summary of Features

The XMC1300 devices are members of the XMC1000 family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1300 series addresses the real-time control needs of motor control, digital power conversion. It also features peripherals for LED Lighting applications.

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M0 CPU
 - Most of 16-bit Thumb instruction set

Summary of Features

- Subset of 32-bit Thumb2 instruction set
- High code density with 32-bit performance
- Single cycle 32-bit hardware multiplier
- System timer (SysTick) for Operating System support
- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- Event Request Unit (ERU) for programmable processing of external and internal service requests
- MATH Co-processor (MATH), consists of a CORDIC unit for trigonometric calculation and a division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

 Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters, up to 12 channels, includes 2 sample and hold stages and a fast 12bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) for use as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- · Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG), provides random data with fast generation times

Summary of Features

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode
- · Configurable pad hysteresis

On-Chip Debug Support

- · Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - T: TSSOP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - X: -40°C to 105°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC1300 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC1300 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC1300 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative	Package	Flash Kbytes	SRAM Kbytes		
XMC1301-T016F0008	PG-TSSOP-16-8	8	16		
XMC1301-T016F0016	PG-TSSOP-16-8	16	16		
XMC1301-T016X0008	PG-TSSOP-16-8	8	16		
XMC1301-T016X0016	PG-TSSOP-16-8	16	16		

Table 1 Synopsis of XMC1300 Device Types

XMC1300 XMC1000 Family

General Device Information

General Device Information

Table 6 Package Pin Mapping										
Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes				
P0.13	38	32	22	-	STD_INOUT					
P0.14	39	33	23	13	STD_INOUT					
P0.15	40	34	24	14	STD_INOUT					
P1.0	22	16	14	-	High Current					
P1.1	21	15	13	-	High Current					
P1.2	20	14	12	-	High Current					
P1.3	19	13	11	-	High Current					
P1.4	18	12	-	-	High Current					
P1.5	17	11	-	-	High Current					
P1.6	16	-	-	-	STD_INOUT					
P2.0	1	35	1	15	STD_INOUT/AN					
P2.1	2	36	2	-	STD_INOUT/AN					
P2.2	3	37	3	-	STD_IN/AN					
P2.3	4	38	-	-	STD_IN/AN					
P2.4	5	1	-	-	STD_IN/AN					
P2.5	6	2	-	-	STD_IN/AN					
P2.6	7	3	4	16	STD_IN/AN					
P2.7	8	4	5	1	STD_IN/AN					
P2.8	9	5	5	1	STD_IN/AN					
P2.9	10	6	6	2	STD_IN/AN					
P2.10	11	7	7	3	STD_INOUT/AN					
P2.11	12	8	8	4	STD_INOUT/AN					
VSS	13	9	9	5	Power	Supply GND, ADC reference GND				
VDD	14	10	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage. VDD has to be supplied with the same voltage as VDDP				

General Device Information

2.2.2 Port I/O Functions

The following general building block is used to describe each PORT pin:

Table 7	Port I/O	Function	Description

Function		Outputs		Inputs					
	ALT1	ALTn	HWO0	HWI0	Input	Input			
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA				
Pn.y	MODA.OUT				MODA.INA	MODC.INB			

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Table 8 Port I/O Functions

Function					Outputs					Inputs											
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40. OUT0	CCU80. OUT00	USIC0_CH0 .SELO0	USIC0_CH1 .SELO0					BCCU0. TRAPINB	CCU40. INOC			USIC0_CH0 .DX2A	USIC0_CH1 .DX2A				
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP						CCU40. IN1C								
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02	CCU80. OUT10						CCU40. IN2C								
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11						CCU40. IN3C								
P0.4	BCCU0. OUT0			CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	WWDT. SERVICE_ OUT						CCU80. IN0B								
P0.5	BCCU0. OUT1			CCU40. OUT0	CCU80. OUT12	ACMP2. OUT	CCU80. OUT01						CCU80. IN1B								
P0.6	BCCU0. OUT2			CCU40. OUT0	CCU80. OUT11	USIC0_CH1 .MCLKOUT	USIC0_CH1 .DOUT0						CCU40. IN0B			USIC0_CH1 .DX0C					
P0.7	BCCU0. OUT3			CCU40. OUT1	CCU80. OUT10	USIC0_CH0 .SCLKOUT	USIC0_CH1 .DOUT0						CCU40. IN1B			USIC0_CH0 .DX1C	USIC0_CH1 .DX0D	USIC0_CH1 .DX1C			
P0.8	BCCU0. OUT4			CCU40. OUT2	CCU80. OUT20	USIC0_CH0 .SCLKOUT	USIC0_CH1 .SCLKOUT						CCU40. IN2B			USIC0_CH0 .DX1B	USIC0_CH1 .DX1B				
P0.9	BCCU0. OUT5			CCU40. OUT3	CCU80. OUT21	USIC0_CH0 .SELO0	USIC0_CH1 .SELO0						CCU40. IN3B			USIC0_CH0 .DX2B	USIC0_CH1 .DX2B				
P0.10	BCCU0. OUT6			ACMP0. OUT	CCU80. OUT22	USIC0_CH0 .SELO1	USIC0_CH1 .SELO1						CCU80. IN2B			USIC0_CH0 .DX2C	USIC0_CH1 .DX2C				
P0.11	BCCU0. OUT7			USIC0_CH0 .MCLKOUT	CCU80. OUT23	USIC0_CH0 .SELO2	USIC0_CH1 .SELO2									USIC0_CH0 .DX2D	USIC0_CH1 .DX2D				
P0.12	BCCU0. OUT6				CCU80. OUT33	USIC0_CH0 .SELO3	CCU80. OUT20					BCCU0. TRAPINA	CCU40. IN0A	CCU40. IN1A	CCU40. IN2A	CCU40. IN3A	CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	USIC0_CHO
P0.13	WWDT. SERVICE_ OUT				CCU80. OUT32	USIC0_CH0 .SELO4	CCU80. OUT21						CCU80. IN3B	POSIF0. IN0B		USIC0_CH0 .DX2F					
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_CH0 .DOUT0	USIC0_CH0 .SCLKOUT							POSIF0. IN1B		USIC0_CH0 .DX0A	USIC0_CH0 .DX1A				
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_CH0 .DOUT0	USIC0_CH1 .MCLKOUT							POSIF0. IN2B		USIC0_CH0 .DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCU80. OUT00	ACMP1. OUT	USIC0_CH0 .DOUT0		USIC0_CH0 .DOUT0		USIC0_CH0 .HWIN0			POSIF0. IN2A		USIC0_CH0 .DX0C					
P1.1	VADC0. EMUX00	CCU40. OUT1			CCU80. OUT01	USIC0_CH0 .DOUT0	USIC0_CH1 .SELO0		USIC0_CH0 .DOUT1		USIC0_CH0 .HWIN1			POSIF0. IN1A		USIC0_CH0 .DX0D	USIC0_CH0 .DX1D	USIC0_CH1 .DX2E			
P1.2	VADC0. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	USIC0_CH1 .DOUT0		USIC0_CH0 .DOUT2		USIC0_CH0 .HWIN2			POSIF0. IN0A		USIC0_CH1 .DX0B					
P1.3	VADC0. EMUX02	CCU40. OUT3			CCU80. OUT11	USIC0_CH1 .SCLKOUT	USIC0_CH1 .DOUT0		USIC0_CH0 .DOUT3		USIC0_CH0 .HWIN3					USIC0_CH1 .DX0A	USIC0_CH1 .DX1A				
P1.4	VADC0. EMUX10	USIC0_CH1 .SCLKOUT			CCU80. OUT20	USIC0_CH0 .SELO0	USIC0_CH1 .SELO1									USIC0_CH0 .DX5E	USIC0_CH1 .DX5E				
P1.5	VADC0. EMUX11	USIC0_CH0 .DOUT0		BCCU0. OUT1	CCU80. OUT21	USIC0_CH0 .SELO1	USIC0_CH1 .SELO2									USIC0_CH1 .DX5F					

Parameter	Symbo	ol	Limit	Values	Unit	Test Conditions	
			Min.	Max.			
Input high voltage on port pins (Large Hysteresis)	V _{IHPL}	SR	$0.85 \times V_{ m DDP}$	-	V	CMOS Mode (5 V, 3.3 V & 2.2 V) ³⁾	
Input Hysteresis ¹⁾	HYS	СС	$\begin{array}{c} 0.08 \times \\ V_{ m DDP} \end{array}$	-	V	CMOS Mode (5 V), Standard Hysteresis	
			$0.03 imes V_{ m DDP}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis	
			$0.02 \times V_{ m DDP}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis	
			$0.5 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(5 V), Large Hysteresis	
			$0.4 imes V_{ m DDP}$	$0.75 imes V_{ m DDP}$	V	CMOS Mode(3.3 V), Large Hysteresis	
			$0.2 \times V_{ m DDP}$	$0.65 \times V_{ m DDP}$	V	CMOS Mode(2.2 V), Large Hysteresis	
Pull-up resistor on port pins	R _{PUP}	CC	20	50	kohm	$V_{\rm IN}$ = $V_{\rm SSP}$	
Pull-down resistor on port pins	R _{PDP}	СС	20	50	kohm	$V_{\rm IN} = V_{\rm DDP}$	
Input leakage current ²⁾	I _{OZP}	СС	-1	1	μA	$0 < V_{IN} < V_{DDP},$ $T_A \le 105 \text{ °C}$	
Overload current on any pin	I _{OVP}	SR	-5	5	mA		
Absolute sum of overload currents	$\Sigma I_{\rm OV} $	SR	-	25	mA	3)	
Voltage on any pin during $V_{\rm DDP}$ power off	V_{PO}	SR	-	0.3	V	4)	
Maximum current per pin (excluding P1, $V_{\rm DDP}$ and $V_{\rm SS}$)	I _{MP}	SR	-10	11	mA	-	
Maximum current per high currrent pins	I _{MP1A}	SR	-10	50	mA	_	

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

3.2.2 Analog to Digital Converters (ADC)

Table 12 shows the Analog to Digital Converter (ADC) characteristics.

Table 12	ADC Characteristics (Operating Conditions apply)
	Abo characteristics (operating conditions apply)

Parameter	Symbol		Values	3	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Supply voltage range (internal reference)	$V_{\rm DD_int}{\rm SR}$	1.8	-	3.0	V	SHSCFG.AREF = 11 _B	
		3.0	-	5.5	V	SHSCFG.AREF = 10 _B	
Supply voltage range (external reference)	$V_{\rm DD_ext}{\rm SR}$	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground (SH0-CH0, SH1-CH0)	$V_{REFGND}SR$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Internal reference	$V_{REFINT}CC$	4.82	5	5.18	V	-40°C - 105°C	
voltage (full scale value)		4.9	5	5.1	V	0°C - 85°C ¹⁾	
Switched capacitance of an analog input ¹⁾	C_{AINS} CC	-	1.2	2	pF	GNCTRxz.GAINy = 00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy = 01 _B (gain g1)	
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)	
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)	
Total capacitance of an analog input	$C_{AINT}CC$	-	-	10	pF	1)	
Total capacitance of the reference input	$C_{AREFT}CC$	-	-	10	pF	1)	

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Gain settings	$G_{\sf IN}{\sf CC}$		1		-	GNCTRxz.GAINy = 00 _B (unity gain)
			3		-	$GNCTRxz.GAINy = 01_B (gain g1)$
			6		-	GNCTRxz.GAINy = 10 _B (gain g2)
			12		-	GNCTRxz.GAINy = 11 _B (gain g3)
Sample Time	t _{sample} CC	3	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DDP}$ = 5.0 V
		3	-	-	1 / f _{ADC}	$V_{\rm DDP}$ = 3.3 V
		30	-	-	1 / <i>f</i> _{ADC}	$V_{\rm DDP}$ = 1.8 V
Sigma delta loop hold time	t _{SD_hold} CC	20	_	-	μS	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	t _{CF} CC		9		1 / f _{ADC}	2)
Conversion time in 12-bit mode	<i>t</i> _{C12} CC		20		1 / f _{ADC}	2)
Maximum sample rate in 12-bit mode ³⁾	$f_{\rm C12}{ m CC}$	-	-	f _{ADC} / 42.5	-	1 sample pending
		-	-	f _{ADC} / 62.5	-	2 samples pending
Conversion time in 10-bit mode	<i>t</i> _{C10} CC		18		1 / f _{ADC}	2)
Maximum sample rate in 10-bit mode ³⁾	<i>f</i> _{C10} CC	-	-	f _{ADC} / 40.5	-	1 sample pending
		-	-	f _{ADC} / 58.5	-	2 samples pending
Conversion time in 8-bit mode	t _{C8} CC		16		1 / <i>f</i> _{ADC}	2)

Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

		· ·	•					
Parameter	Symbol		Values	5	Unit	Note /		
		Min.	Тур.	Max.		Test Condition		
Maximum sample rate in 8-bit mode ³⁾	<i>f</i> _{C8} CC	-	-	f _{ADC} / 38.5	-	1 sample pending		
		-	-	f _{ADC} / 54.5	-	2 samples pending		
DNL error	EA _{DNL} CC	-	±2.0	-	LSB 12			
INL error	EA _{INL} CC	-	±4.0	-	LSB 12			
Gain error with external reference	EA _{GAIN} CC	-	±0.5	-	%	SHSCFG.AREF = 00_{B} (calibrated)		
Gain error with internal reference	EA _{GAIN} CC	-	±3.6	-	%	SHSCFG.AREF = 1X _B (calibrated), -40°C - 105°C		
		-	±2.0	-	%	SHSCFG.AREF = 1X _B (calibrated), 0°C - 85°C		
Offset error	EA _{OFF} CC	-	±6.0	-	LSB 12	Calibrated		

Table 12 ADC Characteristics (Operating Conditions apply) (cont'd)

1) Not subject to production test, verified by design/characterization.

2) No pending samples assumed, excluding sampling time and calibration.

3) Includes synchronization and calibration (average of gain and offset calibration).

3.2.4 Analog Comparator Characteristics

Table 14 below shows the Analog Comparator characteristics.

Table 14 Analog Comparator Characteristics (Operating Conditions apply)

Parameter	Symbol		Li	mit Val	ues	Unit	it Notes/	
			Min.	Тур.	Max.		Test Conditions	
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V		
Input Offset	V_{CMPOFF}	СС	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV	
			-	+/-20	-	mV	Low power mode ²⁾ $\Delta V_{\rm CMP}$ < 200 mV	
Propagation Delay ¹⁾²⁾	t _{PDELAY}	СС	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV	
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	700	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 25 mV	
Current Consumption ²⁾	I _{ACMP}	СС	-	100	-	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV	
			-	66	-	μA	Each additional ACMP in high power mode, ΔV_{CMP} > 30 mV	
			-	10	-	μA	First active ACMP in low power mode	
			-	6	-	μA	Each additional ACMP in low power mode	
Input Hysteresis ²⁾	$V_{\rm HYS}$	CC	-	15	-	mV		
Filter Delay ¹⁾²⁾	t _{FDELAY}	СС	-	5	-	ns		

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

2) Not subject to production test, verified by design.

3.2.5 Temperature Sensor Characteristics

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Measurement time	t _M CC	-	-	10	ms	
Temperature sensor range	$T_{\rm SR}{ m SR}$	-40	-	115	°C	
Sensor Accuracy ²⁾	$T_{\rm TSAL}{\rm CC}$	-	+/-20	-	°C	<i>T</i> _J = −40 °C
		-	+/-12	-	°C	<i>T</i> _J = −25 °C
		-5	-	5	°C	$T_{\rm J} = 0 \ ^{\circ}{\rm C}$
		-2	-	2	°C	<i>T</i> _J = 25 °C
		-4	-	4	°C	<i>T</i> _J = 70 °C
		-2	-	2	°C	<i>T</i> _J = 115 °C

Table 15 Temperature Sensor Characteristics¹⁾

1) Not subject to production test, verified by design/characterization.

2) The temperature sensor accuracy is independent of the supply voltage.

Table 17 provides the active current consumption of some modules operating at 5 V power supply at 25 °C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Unit Values		Test Condition			
		Тур.					
Baseload current	I _{CPUDDC}	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ²⁾			
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ³⁾			
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 14)			
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁵⁾			
CCU80	I _{CCU80DDC}	0.42	mA	Set CGATCLR0.CCU80 to 16)			
POSIF0	I _{PIF0DDC}	0.26	mA	Set CGATCLR0.POSIF0 to 17)			
BCCU0	I _{BCCU0DDC}	0.24	mA	Set CGATCLR0.BCCU0 to 18)			
MATH	I _{MATHDDC}	0.35	mA	Set CGATCLR0.MATH to 19)			
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 1 ¹⁰⁾			
RTC	I _{RTCDDC}	0.01	mA	Set CGATCLR0.RTC to 1 ¹¹⁾			

Table 17 Typical Active Current Consumption¹⁾

1) Not subject to production test, verified by design/characterisation.

2) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

3) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

4) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

- Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle
- 6) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU8 slice with PWM frequency at 1500Hz and a period match interrupt used to toggle duty cycle between 10% and 90%
- 7) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, hall sensor mode
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, tangent calculation in while loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11
- 10) Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s

40

11) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Erase Time per page	t _{ERASE} CC	6.8	7.1	7.6	ms		
Program time per block	t _{PSER} CC	102	152	204	μS		
Wake-Up time	t _{WU} CC	_	32.2	-	μs		
Read time per word	t _a CC	-	50	-	ns		
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles	
Flash Wait States 1)	$N_{\rm WSFLASH}{ m CC}$	0	0.5	-		$f_{\rm MCLK} = 8 \rm MHz$	
		0	1.4	-		$f_{\rm MCLK} = 16 \ {\rm MHz}$	
		1	1.9	-		$f_{\rm MCLK} = 32 \ \rm MHz$	
Erase Cycles per page	$N_{\rm ECYC} {\rm CC}$	-	-	5*10 ⁴	cycles		
Total Erase Cycles	N_{TECYC} CC	-	-	2*10 ⁶	cycles		

Table 18 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3.3 Power-Up and Supply Threshold Charcteristics

Table 20 provides the characteristics of the supply threshold in XMC1300.

Table 20Power-Up and Supply Threshold Parameters (Operating Conditions apply) 1)

Parameter	Symbol	\ \	/alues		Unit	Note / Test Condition
		Min.	Тур.	Max.	_	
$V_{\rm DDP}$ ramp-up time	t _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS	
$V_{\rm DDP}$ slew rate	$S_{\rm VDDPOP} {\rm SR}$	0	_	0.1	V/µs	Slope during normal operation
	S _{VDDP10} SR	0	-	10	V/µs	Slope during fast transient within +/- 10% of V_{DDP}
	S _{VDDPrise} SR	0	_	10	V/µs	Slope during power-on or restart after brownout event
	$S_{\rm VDDPfall}^{2)}{ m SR}$	0	_	0.25	V/µs	Slope during supply falling out of the +/-10% limits ³⁾
V_{DDP} prewarning voltage	V _{DDPPW} CC	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B
$V_{\rm DDP}$ brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running
Start-up time from power-on reset	t _{SSW} SR	-	320	_	μS	Time to the first user code instruction ⁴⁾

1) Not all parameters are 100% tested, but are verified by design/characterisation.

 A capacitor of at least 100 nF has to be added between V_{DDP} and V_{SSP} to fulfill the requirement as stated for this parameter.

44

time

Electrical Parameter

Parameter	Symbol		,	Values	5	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂	SR	10	_	-	ns		
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	10	_	-	ns		
Data output DOUT[3:0] valid	t ₁₄	СС	-	-	80	ns		

Table 26 USIC SSC Slave Mode Timing (cont'd)

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Package and Reliability

4 Package and Reliability

The XMC1300 is a member of the XMC1000 Derivatives of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 31 provides the thermal characteristics of the packages used in XMC1300.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad Dimensions	Ex × Ey CC	-	2.7 imes 2.7	mm	PG-VQFN-24-19	
		-	3.7 imes 3.7	mm	PG-VQFN-40-13	
Thermal resistance Junction-Ambient	$R_{\Theta JA}$ CC	-	104.6	K/W	PG-TSSOP-16-8 ¹⁾	
		-	70.3	K/W	PG-TSSOP-38-9 ¹⁾	
		-	46.0	K/W	PG-VQFN-24-19 ¹⁾	
		-	38.4	K/W	PG-VQFN-40-13 ¹⁾	

 Table 31
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SSP} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta JA}$

Package and Reliability

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

XMC1300 XMC1000 Family

Package and Reliability

Figure 21 PG-TSSOP-16-8