

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-16-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302t016x0008aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC1300 Data Sheet

Revision History: V1.4 2014-05

Previous V	ersion: V1.3
Page	Subjects
Page 12	ADC channels of Table 2 is updated. Table 3 is added.
Page 12	Description for Chip Identification Number of Section 1.4 is updated.
Page 20	The pad type is corrected for P1.6 in Table 6.
Page 32	The t_{C12} , f_{C12} , t_{C10} , f_{C10} , t_{C8} and f_{C8} parameters are updated in Table 12.
Page 35	Figure 8 is added.
Page 38	The t_{SR} and t_{TSAL} parameters are updated in Table 15.
Page 41	Parameter name for t_{PSER} is updated. The N_{WSFLASH} parameter and test condition for t_{RET} are added to Table 18.
Page 44	The min value for $V_{\rm DDPBO}$ parameter is added to Table 20. Footnote 1 is updated.
Page 46	The Δf_{LTT} parameter is added to Table 21.
Page 47	Figure 14 is added.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

ARM[®], ARM Powered[®] and AMBA[®] are registered trademarks of ARM, Limited.

Cortex[™], CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.

The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

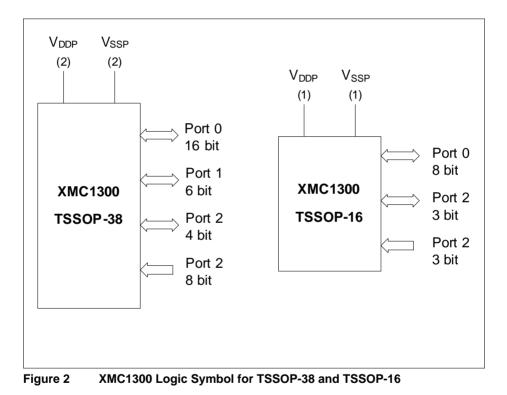
Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

Derivative	Value	Marking
XMC1301-T016F0008	00013032 01CF00FF 00001FF7 0000100F 00000B00 00001000 00003000 101ED083 _H	AA
XMC1301-T016F0016	00013032 01CF00FF 00001FF7 0000100F 00000B00 00001000 00005000 101ED083 _H	AA
XMC1301-T016X0008	00013033 01CF00FF 00001FF7 0000100F 00000B00 00001000 00003000 101ED083 _H	AA
XMC1301-T016X0016	00013033 01CF00FF 00001FF7 0000100F 00000B00 00001000 00005000 101ED083 _H	AA
XMC1302-T016X0008	00013033 01FF00FF 00001FF7 0000900F 00000B00 00001000 00003000 101ED083 _H	AA
XMC1302-T016X0016	00013033 01FF00FF 00001FF7 0000900F 00000B00 00001000 00005000 101ED083 _H	AA
XMC1302-T016X0032	00013033 01FF00FF 00001FF7 0000900F 00000B00 00001000 00009000 101ED083 _H	AA
XMC1301-T038F0008	00013012 01CF00FF 00001FF7 0000100F 00000B00 00001000 00003000 101ED083 _H	AA
XMC1301-T038F0016	00013012 01CF00FF 00001FF7 0000100F 00000B00 00001000 00005000 101ED083 _H	AA
XMC1301-T038F0032	00013012 01CF00FF 00001FF7 0000100F 00000B00 00001000 00009000 101ED083 _H	AA
XMC1302-T038X0016	00013013 01FF00FF 00001FF7 0000900F 00000B00 00001000 00005000 101ED083 _H	AA
XMC1302-T038X0032	00013013 01FF00FF 00001FF7 0000900F 00000B00 00001000 00009000 101ED083 _H	AA
XMC1302-T038X0064	00013013 01FF00FF 00001FF7 0000900F 00000B00 00001000 00011000 101ED083 _H	AA
XMC1302-T038X0128	00013013 01FF00FF 00001FF7 0000900F 00000B00 00001000 00021000 101ED083 _H	AA
XMC1302-T038X0200	00013013 01FF00FF 00001FF7 0000900F 00000B00 00001000 00033000 101ED083 _H	AA
XMC1301-Q024F0008	00013062 01CF00FF 00001FF7 0000100F 00000B00 00001000 00003000 101ED083 _H	AA
XMC1301-Q024F0016	00013062 01CF00FF 00001FF7 0000100F 00000B00 00001000 00005000 101ED083 _H	AA

Table 4 XMC1300 Chip Identification Number



General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

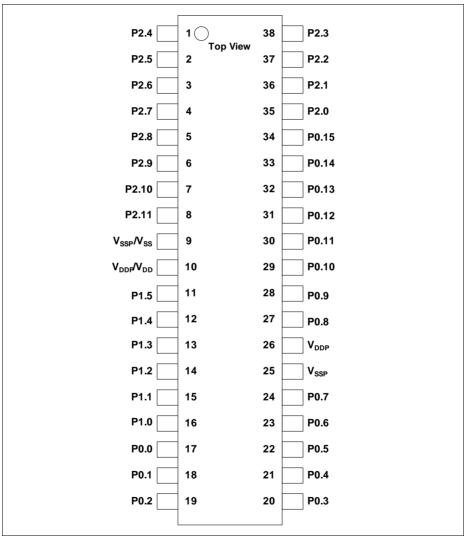
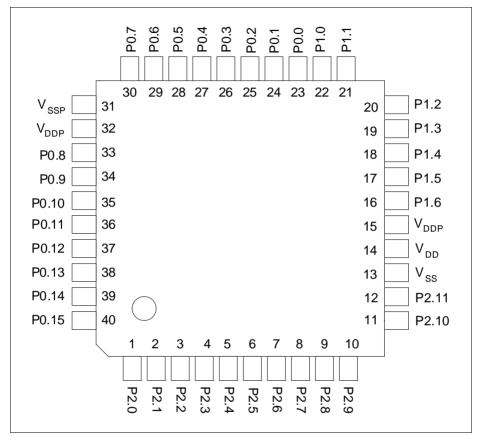



Figure 4 XMC1300 PG-TSSOP-38 Pin Configuration (top view)

XMC1300 XMC1000 Family

General Device Information

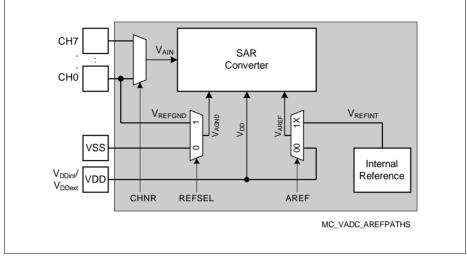
3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Cond ition	
Junction temperature	T_{J}	SR	-40	-	115	°C	-	
Storage temperature	Ts	SR	-40	-	125	°C	-	
Voltage on power supply pin with respect to $V_{\rm SSP}$	V_{DDP}	SR	-0.3	-	6	V	-	
Voltage on any pin with respect to $V_{\rm SSP}$	V_{IN}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	whichever is lower	
Voltage on any analog input pin with respect to $V_{\rm SSP}$	V_{AIN} V_{AREF}	SR	-0.5	-	V_{DDP} + 0.5 or max. 6	V	-	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	10	mA	-	
Absolute sum of all input currents during overload condition	$\Sigma I_{\sf IN} $	SR	_	-	50	mA	-	
Analog comparator input voltage	V_{CM}	SR	-0.3	-	V _{DDP} + 0.3	V		

Table 9 Absolute Maximum Rating Parameters

3.1.3 Operating Conditions


The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1300. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol		Values	3	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Ambient Temperature	$T_{\rm A}{ m SR}$	-40	-	85	°C	Temp. Range F
		-40	-	105	°C	Temp. Range X
Digital supply voltage ¹⁾	$V_{\rm DDP}{ m SR}$	1.8	-	5.5	V	
MCLK Frequency	$f_{\rm MCLK}{ m CC}$	_	-	33.2	MHz	CPU clock
PCLK Frequency	$f_{PCLK}CC$	-	-	66.4	MHz	Peripherals clock

Table 10 Operating Conditions Parameters

1) See also the Supply Monitoring thresholds, Chapter 3.3.3.

3.2.3 Out of Range Comparator (ORC) Characteristics

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the V_{DDP} on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol			Values	5	Unit	Note / Test Condition	
			Min.	Тур.	Max.			
DC Switching Level	V_{ODC}	CC	60	-	120	mV	$V_{\rm AIN} \geq V_{\rm DDP} + V_{\rm ODC}$	
Hysteresis	$V_{\rm OHYS}$	CC	25	-	V _{ODC}	mV		
Always detected	t _{OPDD}	СС	103	-	-	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
Overvoltage Pulse			88	-	-	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Never detected	t _{OPDN}	СС	-	-	21	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
Overvoltage Pulse			-	-	11	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Detection Delay	t _{ODD}	CC	39	-	132	ns	$V_{\text{AIN}} \ge V_{\text{DDP}}$ + 150 mV	
			31	-	121	ns	$V_{\rm AIN} \ge V_{\rm DDP}$ + 350 mV	
Release Delay	t _{ORD}	СС	44	-	240	ns	$V_{\text{AIN}} \le V_{\text{DDP}}; V_{\text{DDP}} = 5 \text{ V}$	
			57	-	340	ns	$V_{\text{AIN}} \le V_{\text{DDP}}; V_{\text{DDP}} = 3.3$	
Enable Delay	t _{OED}	CC	-	-	300	ns	ORCCTRL.ENORCx = 1	

Table 13Out of Range Comparator (ORC) Characteristics (Operating
Conditions apply; V_{DDP} = 3.0 V - 5.5 V; C₁ = 0.25 pF)

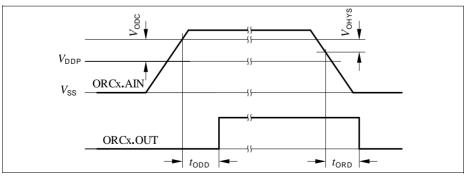


Figure 9 ORCx.OUT Trigger Generation

3.2.6 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Parameter	Symbol		Value	s	Unit	Note /
		Min. Typ. ²⁾ Max.			Test Condition	
Active mode current ³⁾	I _{DDPA} CC	-	9.2	12	mA	$f_{\text{MCLK}} = 32 \text{ MHz}$ $f_{\text{PCLK}} = 64 \text{ MHz}$
		-	4	-	mA	$f_{MCLK} = 1 \text{ MHz}$ $f_{PCLK} = 1 \text{ MHz}$
Sleep mode current Peripherals clock enabled ⁴⁾	I _{DDPSE} CC	-	6.6	-	mA	$f_{MCLK} = 32 \text{ MHz}$ $f_{PCLK} = 64 \text{ MHz}$
Sleep mode current Peripherals clock disabled ⁵⁾	I _{DDPSD} CC	-	1.2	-	mA	$f_{MCLK} = 1 \text{ MHz}$ $f_{PCLK} = 1 \text{ MHz}$
Deep Sleep mode current ⁶⁾	I _{DDPDS} CC	-	0.24	-	mA	
Wake-up time from Sleep to Active mode ⁷⁾	t _{SSA} CC	-	6	-	cycles	
Wake-up time from Deep Sleep to Active mode ⁸⁾	t _{DSA} CC	-	280	-	μsec	

Table 16 Power Supply Parameters¹⁾

1) Not all parameters are 100% tested, but are verified by design/characterisation and test correlation.

2) The typical values are measured at $T_A = +25 \text{ °C}$ and $V_{DDP} = 5 \text{ V}$.

3) CPU and all peripherals clock enabled, Flash is in active mode.

4) CPU is sleep, all peripherals clock enabled and Flash is in active mode.

5) CPU is sleep, Flash is powered down and code executed from RAM after wake-up.

6) CPU is sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.

7) CPU is sleep, Flash is in active mode during sleep mode.

8) CPU is sleep, Flash is in power down mode during deep sleep mode.

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Erase Time per page	$t_{ERASE}CC$	6.8	7.1	7.6	ms	
Program time per block	t _{PSER} CC	102	152	204	μS	
Wake-Up time	t _{WU} CC	_	32.2	-	μS	
Read time per word	t _a CC	_	50	-	ns	
Data Retention Time	t _{RET} CC	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States 1)	$N_{\rm WSFLASH}{\rm CC}$	0	0.5	-		$f_{\rm MCLK} = 8 \rm MHz$
		0	1.4	-		$f_{\rm MCLK} = 16 \ {\rm MHz}$
		1	1.9	-		$f_{\rm MCLK} = 32 \ {\rm MHz}$
Erase Cycles per page	N _{ECYC} CC	-	-	5*10 ⁴	cycles	
Total Erase Cycles	N _{TECYC} CC	-	-	2*10 ⁶	cycles	

Table 18 Flash Memory Parameters

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

3.3 AC Parameters

3.3.1 Testing Waveforms

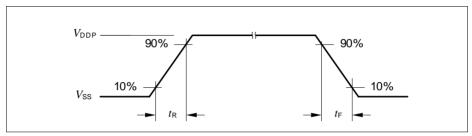


Figure 10 Rise/Fall Time Parameters

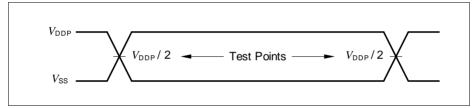


Figure 11 Testing Waveform, Output Delay

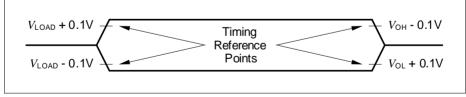
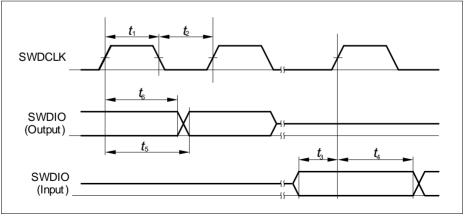
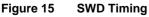


Figure 12 Testing Waveform, Output High Impedance


3.3.5 Serial Wire Debug Port (SW-DP) Timing


The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
SWDCLK high time	t ₁ SR	50	-	500000	ns	-
SWDCLK low time	t_2 SR	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	t ₃ SR	10	-	-	ns	-
SWDIO input hold after SWDCLK rising edge	t ₄ SR	10	-	-	ns	-
SWDIO output valid time	t ₅ CC	-	-	68	ns	C _L = 50 pF
after SWDCLK rising edge		-	-	62	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	t ₆ CC	4	-	-	ns	

SWD Interface Timing Parameters(Operating Conditions apply)

time

Electrical Parameter

Parameter	Symbol			Values	S	Unit	Note /		
			Min.	Тур.	Max.		Test Condition		
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	t ₁₂	SR	10	-	-	ns			
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	10	-	_	ns			
Data output DOUT[3:0] valid	t ₁₄	CC	-	-	80	ns			

Table 26 USIC SSC Slave Mode Timing (cont'd)

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

3.3.7.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 27	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Table 28 USIC IIC Fast Mode Timing ¹⁾

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	20 + 0.1*C _b	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	20 + 0.1*C _b	-	300	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	100	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	1.3	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	0.6	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	0.6	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	0.6	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	0.6	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	1.3	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

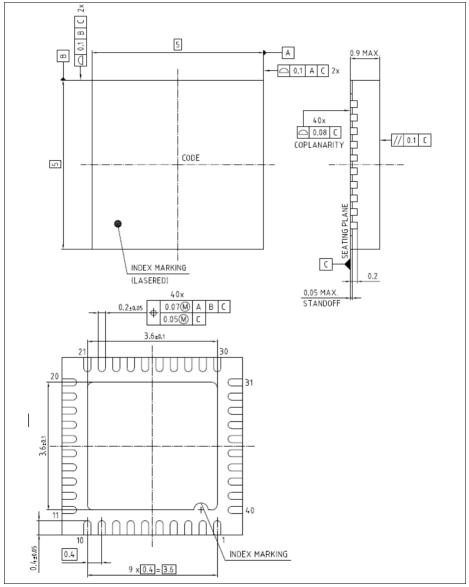
2) C_b refers to the total capacitance of one bus line in pF.

Package and Reliability

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$


The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

Figure 23 PG-VQFN-40-13

All dimensions in mm.

www.infineon.com

Published by Infineon Technologies AG