

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	200KB (200K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	38-TFSOP (0.173", 4.40mm Width)
Supplier Device Package	PG-TSSOP-38
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc1302t038x0200aaxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

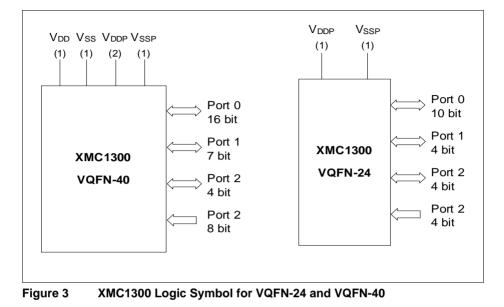
Derivative	ADC channel	ACMP	BCCU	MATH	
XMC1301-T016	11	2	-	-	
XMC1302-T016	11	2	1	1	
XMC1301-T038	16	3	-	-	
XMC1302-T038	16	3	1	1	
XMC1301-Q024	13	3	-	-	
XMC1302-Q024	13	3	1	1	
XMC1301-Q040	16	3			
XMC1302-Q040	16	3	1	1	

Table 2 Features of XMC1300 Device Types¹⁾

1) Features that are not included in this table are available in all the derivatives

Table 3ADC Channels 1)

Package	VADC0 G0	VADC0 G1
PG-TSSOP-16	CH0CH5	CH0CH4
PG-TSSOP-28	CH0CH7	CH0 CH4, CH7
PG-TSSOP-38	CH0CH7	CH0CH7
PG-VQFN-24	CH0CH7	CH0CH4
PG-VQFN-40	CH0CH7	CH1, CH5 CH7


 Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

1.4 Chip Identification Number

The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CS0) at address location : $1000 0F00_{\rm H}$ (MSB) - $1000 0F1B_{\rm H}$ (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively.

General Device Information

General Device Information

Function	VQFN 40	TSSOP 38	VQFN 24	TSSOP 16	Pad Type	Notes
P0.13	38	32	24	-	STD_INOUT	
P0.14	39	33	23	13	STD_INOUT	
P0.15	40	34	24	14	STD_INOUT	
P1.0	22	16	14	-	High Current	
P1.1	21	15	13	-	High Current	
P1.2	20	14	12	-	High Current	
P1.3	19	13	11	-	High Current	
P1.4	18	12	-	-	High Current	
P1.5	17	11	-	-	High Current	
P1.6	16	-	-	-	STD_INOUT	
P2.0	1	35	1	15	STD_INOUT/AN	
P2.1	2	36	2	-	STD_INOUT/AN	
P2.2	3	37	3	-	STD_IN/AN	
P2.3	4	38	-	-	STD_IN/AN	
P2.4	5	1	-	-	STD_IN/AN	
P2.5	6	2	-	-	STD_IN/AN	
P2.6	7	3	4	16	STD_IN/AN	
P2.7	8	4	5	1	STD_IN/AN	
P2.8	9	5	5	1	STD_IN/AN	
P2.9	10	6	6	2	STD_IN/AN	
P2.10	11	7	7	3	STD_INOUT/AN	
P2.11	12	8	8	4	STD_INOUT/AN	
VSS	13	9	9	5	Power	Supply GND, ADC reference GND
VDD	14	10	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage. VDD has to be supplied with the same voltage as VDDP

General Device Information

2.2.2 Port I/O Functions

The following general building block is used to describe each PORT pin:

Table 7	Port I/O	Function	Description

Function		Outputs		Inputs			
	ALT1	ALTn	HWO0	HWI0	Input	Input	
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA		
Pn.y	MODA.OUT				MODA.INA	MODC.INB	

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWI0, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Table 8 Port I/O Functions

Function	Outputs					Inputs															
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	HWO0	HWO1	HWIO	HWI1	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input
P0.0	ERU0. PDOUT0		ERU0. GOUT0	CCU40. OUT0	CCU80. OUT00	USIC0_CH0 .SELO0	USIC0_CH1 .SELO0					BCCU0. TRAPINB	CCU40. INOC			USIC0_CH0 .DX2A	USIC0_CH1 .DX2A				
P0.1	ERU0. PDOUT1		ERU0. GOUT1	CCU40. OUT1	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP						CCU40. IN1C								
P0.2	ERU0. PDOUT2		ERU0. GOUT2	CCU40. OUT2	CCU80. OUT02	VADC0. EMUX02	CCU80. OUT10						CCU40. IN2C								
P0.3	ERU0. PDOUT3		ERU0. GOUT3	CCU40. OUT3	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11						CCU40. IN3C								
P0.4	BCCU0. OUT0			CCU40. OUT1	CCU80. OUT13	VADC0. EMUX00	WWDT. SERVICE_ OUT						CCU80. INOB								
P0.5	BCCU0. OUT1			CCU40. OUT0	CCU80. OUT12	ACMP2. OUT	CCU80. OUT01						CCU80. IN1B								
P0.6	BCCU0. OUT2			CCU40. OUT0	CCU80. OUT11	USIC0_CH1 .MCLKOUT	USIC0_CH1 .DOUT0						CCU40. INOB			USIC0_CH1 .DX0C					
P0.7	BCCU0. OUT3			CCU40. OUT1	CCU80. OUT10	USIC0_CH0 .SCLKOUT	USIC0_CH1 .DOUT0						CCU40. IN1B			USIC0_CH0 .DX1C	USIC0_CH1 .DX0D	USIC0_CH1 .DX1C			
P0.8	BCCU0. OUT4			CCU40. OUT2	CCU80. OUT20	USIC0_CH0 .SCLKOUT	USIC0_CH1 .SCLKOUT						CCU40. IN2B			USIC0_CH0 .DX1B	USIC0_CH1 .DX1B				
P0.9	BCCU0. OUT5			CCU40. OUT3	CCU80. OUT21	USIC0_CH0 .SELO0	USIC0_CH1 .SELO0						CCU40. IN3B			USIC0_CH0 .DX2B	USIC0_CH1 .DX2B				
P0.10	BCCU0. OUT6			ACMP0. OUT	CCU80. OUT22	USIC0_CH0 .SELO1	USIC0_CH1 .SELO1						CCU80. IN2B			USIC0_CH0 .DX2C	USIC0_CH1 .DX2C				
P0.11	BCCU0. OUT7			USIC0_CH0 .MCLKOUT	CCU80. OUT23	USIC0_CH0 .SELO2	USIC0_CH1 .SELO2									USIC0_CH0 .DX2D	USIC0_CH1 .DX2D				
P0.12	BCCU0. OUT6				CCU80. OUT33	USIC0_CH0 .SELO3	CCU80. OUT20					BCCU0. TRAPINA	CCU40. IN0A	CCU40. IN1A	CCU40. IN2A	CCU40. IN3A	CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	USIC0_CH0 .DX2E
P0.13	WWDT. SERVICE_ OUT				CCU80. OUT32	USIC0_CH0 .SELO4	CCU80. OUT21						CCU80. IN3B	POSIF0. IN0B		USIC0_CH0 .DX2F					
P0.14	BCCU0. OUT7				CCU80. OUT31	USIC0_CH0 .DOUT0	USIC0_CH0 .SCLKOUT							POSIF0. IN1B		USIC0_CH0 .DX0A	USIC0_CH0 .DX1A				
P0.15	BCCU0. OUT8				CCU80. OUT30	USIC0_CH0 .DOUT0	USIC0_CH1 .MCLKOUT							POSIF0. IN2B		USIC0_CH0 .DX0B					
P1.0	BCCU0. OUT0	CCU40. OUT0			CCU80. OUT00	ACMP1. OUT	USIC0_CH0 .DOUT0		USIC0_CH0 .DOUT0		USIC0_CH0 .HWIN0			POSIF0. IN2A		USIC0_CH0 .DX0C					
P1.1	VADC0. EMUX00	CCU40. OUT1			CCU80. OUT01	USIC0_CH0 .DOUT0	USIC0_CH1 .SELO0		USIC0_CH0 .DOUT1		USIC0_CH0 .HWIN1			POSIF0. IN1A		USIC0_CH0 .DX0D	USIC0_CH0 .DX1D	USIC0_CH1 .DX2E			
P1.2	VADC0. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	USIC0_CH1 .DOUT0		USIC0_CH0 .DOUT2		USIC0_CH0 .HWIN2			POSIF0. IN0A		USIC0_CH1 .DX0B					
P1.3	VADC0. EMUX02	CCU40. OUT3			CCU80. OUT11	USIC0_CH1 .SCLKOUT	USIC0_CH1 .DOUT0		USIC0_CH0 .DOUT3		USIC0_CH0 .HWIN3					USIC0_CH1 .DX0A	USIC0_CH1 .DX1A				
P1.4	VADC0. EMUX10	USIC0_CH1 .SCLKOUT			CCU80. OUT20	USIC0_CH0 .SELO0	USIC0_CH1 .SELO1									USIC0_CH0 .DX5E	USIC0_CH1 .DX5E				
P1.5	VADC0. EMUX11	USIC0_CH0 .DOUT0		BCCU0. OUT1	CCU80. OUT21	USIC0_CH0 .SELO1	USIC0_CH1 .SELO2									USIC0_CH1 .DX5F					

Table 11 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbo	bl	Limit	Values	Unit	Test Conditions
			Min.	Max.	_	
Maximum current into V_{DDP} (TSSOP16, VQFN24)	I _{MVDD1}	SR	-	130	mA	3)
Maximum current into V_{DDP} (TSSOP38, VQFN40)	I _{MVDD2}	SR	-	260	mA	3)
$\begin{tabular}{l} \hline \hline Maximum current out of \\ $V_{\rm SS}$ (TSSOP16, $VQFN24$) \end{tabular}$	I _{MVSS1}	SR	-	130	mA	3)
$\begin{tabular}{l} \hline W aximum current out of V_{SS} (TSSOP38, $VQFN40$) \end{tabular}$	I _{MVSS2}	SR	-	260	mA	3)

 Not subject to production test, verified by design/characterization. Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.

2) An additional error current (I_{INJ}) will flow if an overload current flows through an adjacent pin.

3) Not subject to production test, verified by design/characterization.

4) Not subject to production test, verified by design/characterization. However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

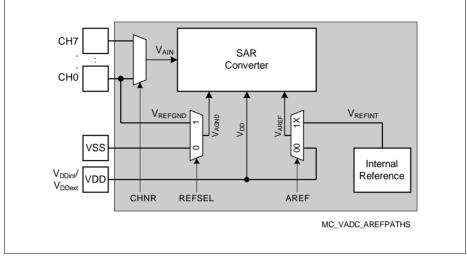

3.2.2 Analog to Digital Converters (ADC)

Table 12 shows the Analog to Digital Converter (ADC) characteristics.

Table 12	ADC Characteristics	(Operating Conditions apply)
	ADO Onalacterístics	(operating conditions apply)

Parameter	Symbol		Value	S	Unit	Note /	
		Min. Typ. Max.			Test Condition		
Supply voltage range (internal reference)	$V_{\rm DD_int}{\rm SR}$	1.8	-	3.0	V	SHSCFG.AREF = 11 _B	
		3.0	-	5.5	V	SHSCFG.AREF = 10 _B	
Supply voltage range (external reference)	$V_{\rm DD_ext}{\rm SR}$	3.0	-	5.5	V	SHSCFG.AREF = 00 _B	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Auxiliary analog reference ground (SH0-CH0, SH1-CH0)	$V_{REFGND}SR$	V _{SSP} - 0.05	-	V _{DDP} + 0.05	V		
Internal reference	$V_{REFINT}CC$	4.82	5	5.18	V	-40°C - 105°C	
voltage (full scale value)		4.9	5	5.1	V	0°C - 85°C ¹⁾	
Switched capacitance of an analog input ¹⁾	C_{AINS} CC	-	1.2	2	pF	GNCTRxz.GAINy = 00 _B (unity gain)	
		-	1.2	2	pF	GNCTRxz.GAINy = 01 _B (gain g1)	
		-	4.5	6	pF	GNCTRxz.GAINy = 10 _B (gain g2)	
		-	4.5	6	pF	GNCTRxz.GAINy = 11 _B (gain g3)	
Total capacitance of an analog input	$C_{\text{AINT}} \operatorname{CC}$	-	-	10	pF	1)	
Total capacitance of the reference input	$C_{AREFT}CC$	-	-	10	pF	1)	

3.2.4 Analog Comparator Characteristics

Table 14 below shows the Analog Comparator characteristics.

Table 14 Analog Comparator Characteristics (Operating Conditions apply)

Parameter	Symbol		Li	mit Val	ues	Unit	Notes/ Test Conditions	
			Min.	Тур.	Max.			
Input Voltage	V _{CMP}	SR	-0.05	-	V _{DDP} + 0.05	V		
Input Offset	V _{CMPOFF}	CC	-	+/-3	-	mV	High power mode $\Delta V_{\rm CMP}$ < 200 mV	
			-	+/-20	-	mV	Low power mode ²⁾ $\Delta V_{\rm CMP}$ < 200 mV	
Propagation Delay ¹⁾²⁾	t _{PDELAY}	CC	-	25	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	80	-	ns	High power mode, $\Delta V_{\rm CMP}$ = 25 mV	
			-	250	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 100 mV	
			-	700	-	ns	Low power mode, $\Delta V_{\rm CMP}$ = 25 mV	
Current Consumption ²⁾	I _{ACMP}	CC	-	100	-	μA	First active ACMP in high power mode, $\Delta V_{\rm CMP}$ > 30 mV	
			-	66	-	μA	Each additional ACMP in high power mode, ΔV_{CMP} > 30 mV	
			-	10	-	μΑ	First active ACMP in low power mode	
			_	6	-	μA	Each additional ACMP in low power mode	
Input Hysteresis ²⁾	$V_{\rm HYS}$	СС	-	15	-	mV		
Filter Delay ¹⁾²⁾	t _{FDELAY}	СС	-	5	-	ns		

37

1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.

2) Not subject to production test, verified by design.

Table 17 provides the active current consumption of some modules operating at 5 V power supply at 25 °C. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition
		Тур.		
Baseload current	I _{CPUDDC}	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ²⁾
VADC and SHS	I _{ADCDDC}	3.4	mA	Set CGATCLR0.VADC to 1 ³⁾
USIC0	I _{USICODDC}	0.87	mA	Set CGATCLR0.USIC0 to 14)
CCU40	I _{CCU40DDC}	0.94	mA	Set CGATCLR0.CCU40 to 1 ⁵⁾
CCU80	I _{CCU80DDC}	0.42	mA	Set CGATCLR0.CCU80 to 16)
POSIF0	I _{PIF0DDC}	0.26	mA	Set CGATCLR0.POSIF0 to 17)
BCCU0	I _{BCCU0DDC}	0.24	mA	Set CGATCLR0.BCCU0 to 18)
MATH	I _{MATHDDC}	0.35	mA	Set CGATCLR0.MATH to 19)
WDT	I _{WDTDDC}	0.03	mA	Set CGATCLR0.WDT to 1 ¹⁰⁾
RTC	I _{RTCDDC}	0.01	mA	Set CGATCLR0.RTC to 1 ¹¹⁾

Table 17 Typical Active Current Consumption¹⁾

1) Not subject to production test, verified by design/characterisation.

2) Baseload current is measured with device running in user mode, MCLK=PCLK=32 MHz, with an endless loop in the flash memory. The clock to the modules stated in CGATSTAT0 are gated.

3) Active current is measured with: module enabled, MCLK=32 MHz, running in auto-scan conversion mode

4) Active current is measured with: module enabled, alternating messages sent to PC at 57.6kbaud every 200ms

- Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU4 slice for PWM switching from 1500Hz and 1000Hz at regular intervals, 1 CCU4 slice in capture mode for reading period and duty cycle
- 6) Active current is measured with: module enabled, MCLK=PCLK=32 MHz, 1 CCU8 slice with PWM frequency at 1500Hz and a period match interrupt used to toggle duty cycle between 10% and 90%
- 7) Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, hall sensor mode
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s
- Active current is measured with: module enabled, MCLK=32 MHz, PCLK=64MHz, tangent calculation in while loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11
- 10) Active current is measured with: module enabled, MCLK=32 MHz, time-out mode; WLB = 0, WUB = 0x00008000; WDT serviced every 1s

40

11) Active current is measured with: module enabled, MCLK=32 MHz, Periodic interrupt enabled

3.3.3 Power-Up and Supply Threshold Charcteristics

Table 20 provides the characteristics of the supply threshold in XMC1300.

Table 20Power-Up and Supply Threshold Parameters (Operating Conditions apply) 1)

Parameter	Symbol	\ \	/alues		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
$V_{\rm DDP}$ ramp-up time	t _{RAMPUP} SR	$\begin{array}{c} V_{\rm DDP} / \\ S_{\rm VDDPrise} \end{array}$	-	10 ⁷	μS		
V_{DDP} slew rate	$S_{\rm VDDPOP}{ m SR}$	0	-	0.1	V/µs	Slope during normal operation	
	$S_{\rm VDDP10}~{ m SR}$	0	-	10	V/µs	Slope during fast transient within +/- 10% of $V_{\rm DDP}$	
	S _{VDDPrise} SR	0	-	10	V/µs	Slope during power-on or restart after brownout event	
	$S_{\rm VDDPfall}^{2)}{ m SR}$	0	_	0.25	V/µs	Slope during supply falling out of the +/-10% limits ³⁾	
V_{DDP} prewarning voltage	$V_{DDPPW}CC$	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT = 00 _B	
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT = 01 _B	
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT = 10 _B	
$V_{\rm DDP}$ brownout reset voltage	V _{DDPBO} CC	1.55	1.62	1.75	V	calibrated, before user code starts running	
Start-up time from power-on reset	t _{SSW} SR	_	320	-	μs	Time to the first user code instruction ⁴⁾	

1) Not all parameters are 100% tested, but are verified by design/characterisation.

 A capacitor of at least 100 nF has to be added between V_{DDP} and V_{SSP} to fulfill the requirement as stated for this parameter.

44

- 3) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
- 4) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

45

Figure 13 Supply Threshold Parameters

3.3.4 On-Chip Oscillator Characteristics

 Table 21 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1300.

Parameter	Symbol		Lir	nit Val	ues	Unit	Test Conditions
			Min.	Тур.	Max.		
Nominal frequency	$f_{\sf NOM}$	CC	63.5	64	64.5	MHz	under nominal conditions ¹⁾ after trimming
Accuracy	$\Delta f_{\rm LT}$	CC	-1.7	-	3.4	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = 0 \ ^{\circ}C \ to \ 85 \ ^{\circ}C)^{2)}$
			-3.9	-	4.0	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})^{2)}$
Accuracy with calibration based on temperature sensor	Δf_{LTT}	CC	-1.3	-	1.25	%	with respect to $f_{NOM}(typ)$, over temperature $(T_A = 0 \ ^{\circ}C \ to \ 105 \ ^{\circ}C)^{2)}$
			-2.6	-	1.25	%	with respect to f_{NOM} (typ), over temperature $(T_A = -40 \text{ °C to } 105 \text{ °C})^{2)}$

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and T_{A} = + 25 °C.

2) Not subject to production test, verified by design/characterisation.

3.3.7 Peripheral Timings

3.3.7.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. *Note: Operating Conditions apply.*

Table 25 USIC SSC Master Mode Timing

Parameter	Symbol			Values	8	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	<i>t</i> ₁	CC	80	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	<i>t</i> ₂	CC	0	-	-	ns	
Data output DOUT[3:0] valid time	<i>t</i> ₃	СС	-10	-	10	ns	
Receive data input DX0/DX[5:3] setup time to SCLKOUT receive edge	<i>t</i> ₄	SR	80	-	-	ns	
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	<i>t</i> ₅	SR	0	-	-	ns	

Table 26 USIC SSC Slave Mode Timing

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ S	R	10	_	_	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ S	R	10	_	_	ns	

Note: These parameters are not subject to production test, but verified by design and/or characterization.

time

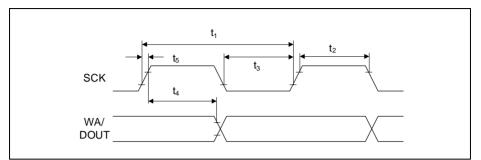

Electrical Parameter

Table 20 USIC SSC Slave Mode Timing (cont d)								
Parameter	Symbol			Value	S	Unit	Note /	
			Min. Typ.	Max.		Test Condition		
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	t ₁₂	SR	10	-	_	ns		
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	10	-	_	ns		
Data output DOUT[3:0] valid	t ₁₄	CC	-	-	80	ns		

Table 26 USIC SSC Slave Mode Timing (cont'd)

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 18	USIC IIS Master	Transmitter Timin	g
-----------	-----------------	-------------------	---

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Clock period	t ₆ SR	4/f _{MCLK}	-	-	ns	
Clock HIGH	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock Low	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	-	-	ns	
Hold time	t ₁₀ SR	10	-	-	ns	

Table 30	USIC IIS Slave	Receiver	Timing
----------	----------------	----------	--------

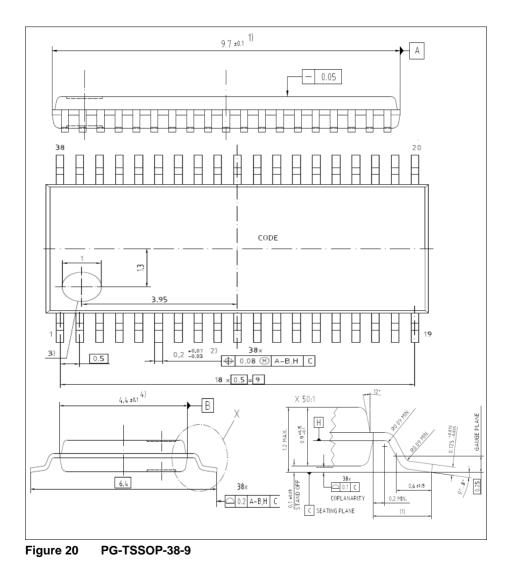



Figure 19 USIC IIS Slave Receiver Timing

Package and Reliability

4.2 Package Outlines

XMC1300 XMC1000 Family

Package and Reliability

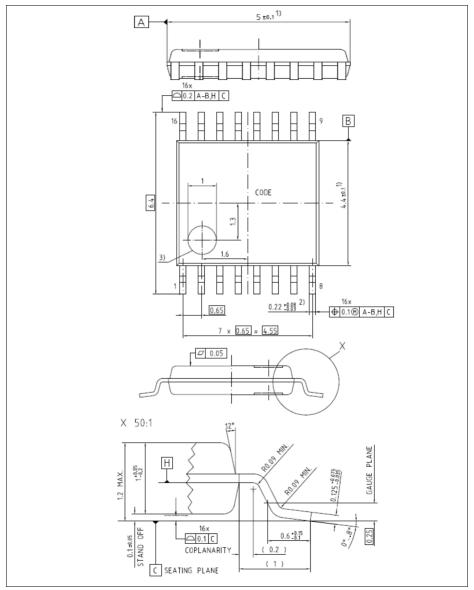
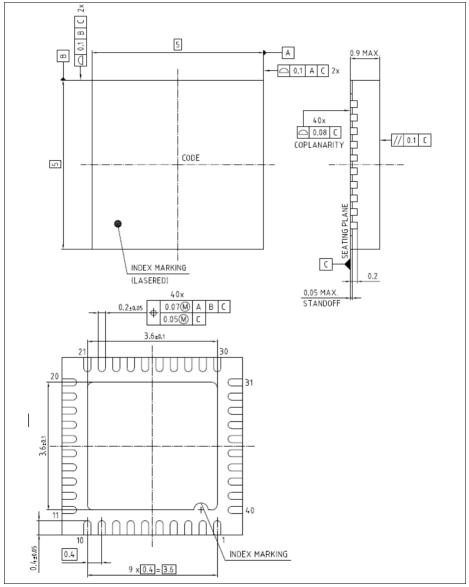



Figure 21 PG-TSSOP-16-8

Package and Reliability

Figure 23 PG-VQFN-40-13

All dimensions in mm.

www.infineon.com

Published by Infineon Technologies AG