

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s16ba-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.3.3 48-lead LQFP and QFN Pinout

1	ADVREF	13	VDDIO	25	TDI/PB4	37	TDO/TRACESWO/PB5
2	GND	14	PA16/PGMD4	26	PA6/PGMNOE	38	JTAGSEL
3	PB0/AD4	15	PA15/PGMD3	27	PA5/PGMRDY	39	TMS/SWDIO/PB6
4	PB1/AD5	16	PA14/PGMD2	28	PA4/PGMNCMD	40	TCK/SWCLK/PB7
5	PB2/AD6	17	PA13/PGMD1	29	NRST	41	VDDCORE
6	PB3/AD7	18	VDDCORE	30	TST	42	ERASE/PB12
7	VDDIN	19	PA12/PGMD0	31	PA3	43	DDM/PB10
8	VDDOUT	20	PA11/PGMM3	32	PA2/PGMEN2	44	DDP/PB11
9	PA17/PGMD5/AD0	21	PA10/PGMM2	33	VDDIO	45	XOUT/PB8
10	PA18/PGMD6/AD1	22	PA9/PGMM1	34	GND	46	XIN/PB9/PGMCK
11	PA19/PGMD7/AD2	23	PA8/XOUT32/PGMM0	35	PA1/PGMEN1	47	VDDIO
12	PA20/AD3	24	PA7/XIN32/PGMNVALID	36	PA0/PGMEN0	48	VDDPLL

Table 4-7. SAM4S4/S2 48-pin LQFP and QFN Pinout

Note: The bottom pad of the QFN package must be connected to ground.

12.4.1.8	Program Status Re	egister					
Name:	PSR						
Access:	Read/Write						
Reset:	0x000000000						
31	30	29	28	27	26	25	24
N	Z	С	V	Q	IC	I/IT	Т
23	22	21	20	19	18	17	16
				_			
15	14	13	12	11	10	9	8
		IC	:I/IT			_	ISR_NUMBER
7	6	5	4	3	2	1	0
			ISR_N	UMBER			

The Program Status Register (PSR) combines:

- Application Program Status Register (APSR)
- Interrupt Program Status Register (IPSR)
- Execution Program Status Register (EPSR).

These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR accesses these registers individually or as a combination of any two or all three registers, using the register name as an argument to the MSR or MRS instructions. For example:

- Read of all the registers using PSR with the MRS instruction
- Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name	Access	Combination
PSR	Read/Write ⁽¹⁾⁽²⁾	APSR, EPSR, and IPSR
IEPSR	Read-only	EPSR and IPSR
IAPSR	Read/Write ⁽¹⁾	APSR and IPSR
EAPSR	Read/Write ⁽²⁾	APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions "MRS" and "MSR" for more information about how to access the program status registers.

Atmel

- Rd is the destination register.
- Rn is the first register holding the operand.
- Rm is the second register holding the operand.

Operation

The SEL instruction:

- 1. Reads the value of each bit of APSR.GE.
- 2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second operand register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples

SADD16 R0, R1, R2 ; Set GE bits based on result SEL R0, R0, R3 ; Select bytes from R0 or R3, based on GE.

14.4 Functional Description

14.4.1 Reset Controller Overview

The Reset Controller is made up of an NRST manager and a reset state manager. It runs at slow clock and generates the following reset signals:

- proc_nreset: processor reset line (also resets the Watchdog Timer)
- periph_nreset: affects the whole set of embedded peripherals
- nrst_out: drives the NRST pin

These reset signals are asserted by the Reset Controller, either on events generated by peripherals, events on NRST pin, or on software action. The reset state manager controls the generation of reset signals and provides a signal to the NRST manager when an assertion of the NRST pin is required.

The NRST manager shapes the NRST assertion during a programmable time, thus controlling external device resets.

The Reset Controller Mode Register (RSTC_MR), used to configure the Reset Controller, is powered with VDDIO, so that its configuration is saved as long as VDDIO is on.

14.4.2 NRST Manager

The NRST manager samples the NRST input pin and drives this pin low when required by the reset state manager. Figure 14-2 shows the block diagram of the NRST manager.

Figure 14-2. NRST Manager

14.4.2.1 NRST Signal or Interrupt

The NRST manager samples the NRST pin at slow clock speed. When the line is detected low, a User Reset is reported to the reset state manager.

However, the NRST manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing a 0 to the URSTEN bit in the RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in the Reset Controller Status Register (RSTC_SR). As soon as the NRST pin is asserted, bit URSTS in the RSTC_SR is set. This bit is cleared only when the RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, set the URSTIEN bit in the RSTC_MR.

Atmel

15.5.2 Real-time Timer Alarm Register

Name:	RTT_AR						
Address:	0x400E1434						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			ALM	٧V			
23	22	21	20	19	18	17	16
			ALM	٨٧			
15	14	13	12	11	10	9	8
			ALM	٨V			
7	6	5	4	3	2	1	0
			ALM	٧V			

• ALMV: Alarm Value

When the CRTV value in RTT_VR equals the ALMV field, the ALMS flag is set in RTT_SR. As soon as the ALMS flag rises, the CRTV value equals ALMV+1 (refer to Figure 15-2).

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR) when writing a new ALMV value.

Atmel

Figure 18-6. Low-power Debouncer (Push-to-Make Switch, Pull-up Resistors)

Figure 18-7. Low-power Debouncer (Push-to-Break Switch, Pull-down Resistors)

The debouncing period duration is configurable. The period is set for all debouncers (i.e., the duration cannot be adjusted for each debouncer). The number of successive identical samples to wake up the system can be configured from 2 up to 8 in the LPDBC field of SUPC_WUMR. The period of time between two samples can be configured by programming the TPERIOD field in the RTC_MR. Power parameters can be adjusted by modifying the period of time in the THIGH field in RTC_MR.

The wake-up polarity of the inputs can be independently configured by writing WKUPT0 and/ or WKUPT1 fields in SUPC_WUMR.

In order to determine which wake-up/tamper pin triggers the system wake-up, a status flag is associated for each low-power debouncer. These flags are read in SUPC_SR.

A debounce event (tamper detection) can perform an immediate clear (0 delay) on the first half the generalpurpose backup registers (GPBR). The LPDBCCLR bit must be set in SUPC_WUMR.

Note that it is not mandatory to use the RTCOUTx pin when using the WKUP0/WKUP1 pins as tampering inputs in any mode. Using the RTCOUTx pin provides a "sampling mode" to further reduce the power consumption of the

31.6.5 PIO Output Disable Register

Name:	PIO_ODR						
Address:	0x400E0E14 (P	IOA), 0x400E1	014 (PIOB), 0x4	00E1214 (PIO	C)		
Access:	Write-only						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0-P31: Output Disable

0: No effect.

1: Disables the output on the I/O line.

31.6.21 PIO Pull-Up Disable Register

Name: PIO_PUDR

Address: 0x400E0E60 (PIOA), 0x400E1060 (PIOB), 0x400E1260 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	1.4	10	10	- 11	10	0	0
10	14	15	12	11	10	9	0
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0-P31: Pull-Up Disable

0: No effect.

1: Disables the pull-up resistor on the I/O line.

31.6.30 PIO Pad Pull-Down Disable Register

Name: PIO_PPDDR

Address: 0x400E0E90 (PIOA), 0x400E1090 (PIOB), 0x400E1290 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	1.4	10	10	- 11	10	0	0
10	14	15	12	11	10	9	0
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0-P31: Pull-Down Disable

0: No effect.

1: Disables the pull-down resistor on the I/O line.

• FSOS: Receive Frame Sync Output Selection

Value	Name	Description
0	NONE	None, RF pin is an input
1	NEGATIVE	Negative Pulse, RF pin is an output
2	POSITIVE	Positive Pulse, RF pin is an output
3	LOW	Driven Low during data transfer, RF pin is an output
4	HIGH	Driven High during data transfer, RF pin is an output
5	TOGGLING	Toggling at each start of data transfer, RF pin is an output

• FSEDGE: Frame Sync Edge Detection

Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

Value	Name	Description
0	POSITIVE	Positive Edge Detection
1	NEGATIVE	Negative Edge Detection

• FSLEN_EXT: FSLEN Field Extension

Extends FSLEN field. For details, refer to FSLEN bit description on page 664.

32.9.15 SSC Interrupt Disable Register

Name:	SSC_IDR						
Address:	0x40004048						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	_	_	_	-	_	-
	-						
23	22	21	20	19	18	17	16
-	-	_	_	_	-	_	-
	-						
15	14	13	12	11	10	9	8
-	-	_	_	RXSYN	TXSYN	CP1	CP0
7	6	5	4	3	2	1	0
RXBUFF	ENDRX	OVRUN	RXRDY	TXBUFE	ENDTX	TXEMPTY	TXRDY

• TXRDY: Transmit Ready Interrupt Disable

0: No effect.

1: Disables the Transmit Ready Interrupt.

• TXEMPTY: Transmit Empty Interrupt Disable

0: No effect.

1: Disables the Transmit Empty Interrupt.

• ENDTX: End of Transmission Interrupt Disable

- 0: No effect.
- 1: Disables the End of Transmission Interrupt.

• TXBUFE: Transmit Buffer Empty Interrupt Disable

0: No effect.

1: Disables the Transmit Buffer Empty Interrupt.

• RXRDY: Receive Ready Interrupt Disable

0: No effect.

1: Disables the Receive Ready Interrupt.

• OVRUN: Receive Overrun Interrupt Disable

0: No effect.

1: Disables the Receive Overrun Interrupt.

• ENDRX: End of Reception Interrupt Disable

- 0: No effect.
- 1: Disables the End of Reception Interrupt.

34.7.3 Master Mode

34.7.3.1 Definition

The master is the device that starts a transfer, generates a clock and stops it.

34.7.3.2 Application Block Diagram

Figure 34-4. Master Mode Typical Application Block Diagram

* Rp: Pull-up value as given by the I²C Standard

34.7.3.3 Programming Master Mode

The following fields must be programmed before entering Master mode:

- 1. TWI_MMR.DADR (+ IADRSZ + IADR if a 10-bit device is addressed): The device address is used to access slave devices in Read or Write mode.
- 2. TWI_CWGR.CKDIV + CHDIV + CLDIV: Clock waveform.
- 3. TWI_CR.SVDIS: Disables the Slave mode
- 4. TWI_CR.MSEN: Enables the Master mode
- Note: If the TWI is already in Master mode, the device address (DADR) can be configured without disabling the Master mode.

34.7.3.4 Master Transmitter Mode

After the master initiates a START condition when writing into the Transmit Holding register (TWI_THR), it sends a 7-bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer direction—0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. If the slave does not acknowledge the byte, then the Not Acknowledge flag (NACK) is set in the TWI Status Register (TWI_SR) of the master and a STOP condition is sent. The NACK flag must be cleared by reading the TWI Status Register (TWI_SR) before the next write into the TWI Transmit Holding Register(TWI_THR). As with the other status bits, an interrupt can be generated if enabled in the Interrupt Enable register (TWI_IER). If the slave acknowledges the byte, the data written in the TWI_THR is then shifted in the internal shifter and transferred. When an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR.

TXRDY is used as Transmit Ready for the PDC transmit channel.

While no new data is written in the TWI_THR, the serial clock line (SCL) is tied low. When new data is written in the TWI_THR, the TWCK/SCL is released and the data is sent. Setting the STOP bit in TWI_CR generates a STOP condition.

35.6.5 UART Interrupt Mask Register

Name:	UART_IMR						
Address:	0x400E0610 (0)	, 0x400E0810	(1)				
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	—	—	—	—	—	—
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
_	-	-	RXBUFF	TXBUFE	-	TXEMPTY	_
7	6	5	4	3	2	1	0
PARE	FRAME	OVRE	ENDTX	ENDRX	_	TXRDY	RXRDY

The following configuration values are valid for all listed bit names of this register:

- 0: The corresponding interrupt is disabled.
- 1: The corresponding interrupt is enabled.
- RXRDY: Mask RXRDY Interrupt
- TXRDY: Disable TXRDY Interrupt
- ENDRX: Mask End of Receive Transfer Interrupt
- ENDTX: Mask End of Transmit Interrupt
- OVRE: Mask Overrun Error Interrupt
- FRAME: Mask Framing Error Interrupt
- PARE: Mask Parity Error Interrupt
- TXEMPTY: Mask TXEMPTY Interrupt
- TXBUFE: Mask TXBUFE Interrupt
- RXBUFF: Mask RXBUFF Interrupt

36.7.2 USART Control Register (SPI_MODE)

Name:	US_CR (SPI_MODE)									
Address:	0x40024000 (0)	0x40024000 (0), 0x40028000 (1)								
Access:	Write-only									
31	30	29	28	27	26	25	24			
_	-	—	_	_	-	_	—			
23	22	21	20	19	18	17	16			
-	-	-	_	RCS	FCS	-	-			
15	14	13	12	11	10	9	8			
	-	-	_	-	-	-	RSTSTA			
7	6	5	4	3	2	1	0			
TXDIS	TXEN	RXDIS	RXEN	RSTTX	RSTRX	_	-			

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits OVRE, UNRE in US_CSR.

• UNRE: Underrun Error (cleared by writing a one to bit US_CR.RSTSTA)

0: No SPI underrun error has occurred since the last RSTSTA.

1: At least one SPI underrun error has occurred since the last RSTSTA.

• TXBUFE: TX Buffer Empty (cleared by writing US_TCR or US_TNCR)

0: US_TCR or US_TNCR have a value other than $0^{(1)}$.

1: Both US_TCR and US_TNCR have a value of $0^{(1)}$.

• RXBUFF: RX Buffer Full (cleared by writing US_RCR or US_RNCR)

0: US_RCR or US_RNCR have a value other than $0^{(1)}$.

1: Both US_RCR and US_RNCR have a value of $0^{(1)}$.

Note: 1. US_RCR, US_RNCR, US_TCR and US_TNCR are PDC registers.

36.7.17 USART Transmitter Timeguard Register

Name:	US_TTGR								
Address:	0x40024028 (0), 0x40028028 (1)								
Access:	Read/Write								
31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	—		
	-	-	-	-		-	-		
23	22	21	20	19	18	17	16		
_	-	-	-	-	Ι	Ι	—		
	-	-	-	-					
15	14	13	12	11	10	9	8		
-	-	-	—	-	-	-	—		
7	6	5	4	3	2	1	0		
	TG								

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• TG: Timeguard Value

0: The transmitter timeguard is disabled.

1–255: The transmitter timeguard is enabled and TG is Timeguard Delay / Bit Period.

36.7.21 USART Manchester Configuration Register

Name:	US_MAN						
Address:	0x40024050 (0)	, 0x40028050 (1)				
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	DRIFT	ONE	RX_MPOL	—	—	RX_	_PP
23	22	21	20	19	18	17	16
_	-	—	_		RX_	_PL	
15	14	13	12	11	10	9	8
_	-	—	TX_MPOL	—	-	TX_	_PP
7	6	5	4	3	2	1	0
_	-	_	_		TX_	PL	

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• TX_PL: Transmitter Preamble Length

- 0: The transmitter preamble pattern generation is disabled
- 1–15: The preamble length is TX_PL \times Bit Period

• TX_PP: Transmitter Preamble Pattern

The following values assume that TX_MPOL field is not set:

Value	Name	Description
0	ALL_ONE	The preamble is composed of '1's
1	ALL_ZERO	The preamble is composed of '0's
2	ZERO_ONE	The preamble is composed of '01's
3	ONE_ZERO	The preamble is composed of '10's

• TX_MPOL: Transmitter Manchester Polarity

0: Logic zero is coded as a zero-to-one transition, Logic one is coded as a one-to-zero transition.

1: Logic zero is coded as a one-to-zero transition, Logic one is coded as a zero-to-one transition.

• RX_PL: Receiver Preamble Length

0: The receiver preamble pattern detection is disabled

1–15: The detected preamble length is $\text{RX}_\text{PL}\times\text{Bit}$ Period

10. The update of these registers will occur at the next PWM period of the synchronous channels when the Update Period is elapsed. Go to Step 8. for new values.

Figure 39-11. Method 2 (UPDM = 1)

Method 3: Automatic write of duty-cycle values and automatic trigger of the update

In this mode, the update of the duty cycle values is made automatically by the Peripheral DMA Controller. The update of the period value, the dead-time values and the update period value must be done by writing in their respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_DTUPDx and PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK which allows to update synchronously (at the same PWM period) the synchronous channels:

- If the bit UPDULOCK is set to '1', the update is done at the next PWM period of the synchronous channels.
- If the UPDULOCK bit is not set to '1', the update is locked and cannot be performed.

After writing the UPDULOCK bit to '1', it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period value is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the Update Period by the field UPR in the PWM_SCUP register. The PWM controller waits UPR+1 periods of synchronous channels before updating automatically the duty values and the update period value.

Using the Peripheral DMA Controller removes processor overhead by reducing its intervention during the transfer. This significantly reduces the number of clock cycles required for a data transfer, which improves microcontroller performance.

The Peripheral DMA Controller must write the duty-cycle values in the synchronous channels index order. For example if the channels 0, 1 and 3 are synchronous channels, the Peripheral DMA Controller must write the duty-cycle of the channel 0 first, then the duty-cycle of the channel 1, and finally the duty-cycle of the channel 3.

The status of the Peripheral DMA Controller transfer is reported in the PWM_ISR2 by the following flags:

- WRDY: this flag is set to '1' when the PWM Controller is ready to receive new duty-cycle values and a new update period value. It is reset to '0' when the PWM_ISR2 is read. The user can choose to synchronize the WRDY flag and the Peripheral DMA Controller transfer request with a comparison match (see Section 39.6.3 "PWM Comparison Units"), by the fields PTRM and PTRCS in the PWM_SCM register.
- ENDTX : this flag is set to '1' when a PDC transfer is completed
- TXBUFE : this flag is set to '1' when the PDC buffer is empty (no pending PDC transfers)

44.4.3.1 SAM4S4/2 Active Power Consumption

	CoreMark					
	128-bit Flash access ⁽¹⁾ 64-bit Flash access ⁽¹⁾		SRAM			
Core Clock (MHz)	AMP1	AMP2	AMP1	AMP2	AMP2	Unit
120	17.7	21.2	12.8	16.4	16.2	
100	16.1	19.4	11.6	14.8	13.5	
84	13.6	16.8	9.9	13.1	12.0	
64	11.6	14.6	8.5	10.9	9.0	
32	7.3	9.8	5.8	8.0	5.2	
24	6.0	8.3	5.2	7.4	3.9	
12	3.6	5.2	2.7	4.1	2.2	mA
8	2.4	4.6	2.2	3.5	1.5	
4	1.5	2.3	1.2	2.8	1.0	
2	0.7	1.8	0.6	1.9	0.8	
1	0.4	1.1	0.3	1.2	0.7	
0.5	0.2	0.9	0.2	0.9	0.6	

Tahlo 11-21	SAMASA/2 Active Power Consum	ntion with VDDCORE @ 1	2V Running from Flash	Memory or SRAM
	SAMITOT/Z ACTIVE I OWEI CONSUM		Lev Running Hom Hash	

Note: 1. Flash Wait State (FWS) in EEFC_FMR adjusted versus core frequency

44.4.3.2 SAM4S16/S8 Active Power Consumption

Table 44-22. SAM4S16/S8 Active Power Consumption with VDDCORE @ 1.2V Running from Flash Memory or SRAM

	CoreMark					
	128-bit Flash access ⁽¹⁾		64-bit Flash access ⁽¹⁾		SRAM	
Core Clock (MHz)	AMP1	AMP2	AMP1	AMP2	AMP2	Unit
120	24.9	28.8	18	21.4	19.6	
100	21.9	25.4	16.3	19.5	16.5	
84	18.5	21.4	13.8	16.6	13.9	
64	15.0	17.6	11.4	13.9	10.7	
48	11.9	14.3	9.6	11.8	8	
32	8.1	9.9	7.4	9.3	5.4	
24	6.0	7.7	5.8	7.5	4.1	mA
12	3.4	6.1	3.2	6.0	2	
8	2.3	4.5	2.2	4.5	1.2	
4	1.2	2.6	1.2	2.9	1.2	-
2	0.7	1.9	0.7	2.0	0.7	
1	0.4	1.3	0.4	1.6	-	
0.5	0.3	1.1	0.3	1.3	-	

Note: 1. Flash Wait State (FWS) in EEFC_FMR adjusted versus core frequency

48.4.3 PIO

Issue: PB4 Input Low-level Voltage Range

The undershoot is limited to -0.1V.

In normal operating conditions, the $V_{\rm IL}$ minimum value on PB4 is limited to 0V.

Workaround: The voltage on PB4 with respect to ground must be in the range -0.1V to + VDDIO + 0.4V instead of -0.3V to + VDDIO + 0.4V for all other input pins, as shown in Table 44.1 "Absolute Maximum Ratings".

The minimum V_{IL} on PB4 must be 0V instead of -0.3V for all other input pins, as shown in Table 44.3 "DC Characteristics".

