
Microchip Technology - ATSAM4S16BB-ANR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 47

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 11x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4s16bb-anr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4s16bb-anr-4394276
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


Pre-indexed Addressing 

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

Post-indexed Addressing 

The address obtained from the register Rn is used as the address for the memory access. The offset value is
added to or subtracted from the address, and written back into the register Rn. The assembly language syntax for
this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed
or unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Restrictions

For load instructions:

 Rt can be SP or PC for word loads only

 Rt must be different from Rt2 for two-word loads

 Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

 Bit[0] of the loaded value must be 1 for correct execution

 A branch occurs to the address created by changing bit[0] of the loaded value to 0

 If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

 Rt can be SP for word stores only

 Rt must not be PC

 Rn must not be PC

 Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags

These instructions do not change the flags.

Table 12-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed 
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

Two words
multiple of 4 in the 
range -1020 to 1020

multiple of 4 in the 
range -1020 to 1020

multiple of 4 in the 
range -1020 to 1020
105SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



12.6.4.8 LDREX and STREX

Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. 

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address.
The address used in any Store-Exclusive instruction must be the same as the address in the most recently
executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same
data size as the value loaded by the preceding Load-exclusive instruction. This means software must always use a
Load-exclusive instruction and a matching Store-Exclusive instruction to perform a synchronization operation, see
“Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the
store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is
guaranteed that no other process in the system has accessed the memory location between the Load-exclusive
and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum. 

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding
Load-Exclusive instruction is unpredictable.

Restrictions

In these instructions:

 Do not use PC

 Do not use SP for Rd and Rt

 For STREX, Rd must be different from both Rt and Rn

 The value of offset must be a multiple of four in the range 0–1020.

Condition Flags

These instructions do not change the flags.

Examples
 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
LDREX R0, [LockAddr] ; Load the lock value
CMP  R0, #0 ; Is the lock free?
113SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the
“Vector Table Offset Register” .

12.8.2.1 NVIC Programming Hints

The software uses the CPSIE I and CPSID I instructions to enable and disable the interrupts. The CMSIS provides
the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

 The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit 
integers, so that:

̶ The array ISER[0] to ISER[1] corresponds to the registers ISER0–ISER1

̶ The array ICER[0] to ICER[1] corresponds to the registers ICER0–ICER1

̶ The array ISPR[0] to ISPR[1] corresponds to the registers ISPR0–ISPR1

̶ The array ICPR[0] to ICPR[1] corresponds to the registers ICPR0–ICPR1

̶ The array IABR[0] to IABR[1] corresponds to the registers IABR0–IABR1

 The Interrupt Priority Registers (IPR0–IPR8) provide an 8-bit priority field for each interrupt and each register 
holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-30
shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables
that have one bit per interrupt.

Table 12-29. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (IRQ-Number) if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

Table 12-30. Mapping of Interrupts

Interrupts

CMSIS Array Elements (1)

Set-enable Clear-enable Set-pending Clear-pending Active Bit

0–31 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]

32–35 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]
197SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



12.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERx [x=0..7]

Access: Read/Write

Reset: 0x000000000

These registers disable interrupts, and show which interrupts are enabled.

• CLRENA: Interrupt Clear-enable

Write:

0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

31 30 29 28 27 26 25 24

CLRENA

23 22 21 20 19 18 17 16

CLRENA

15 14 13 12 11 10 9 8

CLRENA

7 6 5 4 3 2 1 0

CLRENA
201SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



22.5.2 Cache Controller Configuration Register

Name: CMCC_CFG

Address: 0x4007C004

Access: Read/Write

• GCLKDIS: Disable Clock Gating

0: Clock gating is activated.

1: Clock gating is disabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – GCLKDIS
391SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



26.8.1.2 NOR Flash

Hardware Configuration

Software Configuration

Configure the SMC CS0 Setup, Pulse, Cycle and Mode depending on Flash timings and system bus frequency.

26.9 Standard Read and Write Protocols

In the following sections, NCS represents one of the NCS[0..3] chip select lines.

26.9.1 Read Waveforms

The read cycle is shown on Figure 26-5.

The read cycle starts with the address setting on the memory address bus. 

A21

A1
A0

A2
A3
A4
A5
A6
A7
A8

A15

A9

A12
A13

A11
A10

A14

A16

D6

D0

D3
D4

D2
D1

D5

D7

A17

A20

A18
A19

D[0..7]

A[0..21]

NRST
NWE

NCS0
NRD

3V3

3V3
C2
100NF
C2
100NF

C1
100NF
C1
100NF

U1U1

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

A21
A20
A19

WE
RESET

WP

OE
CE
VPP

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

VCCQ

VSS
VSS

VCC
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

450



Figure 26-16. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle

26.11.3 Reload User Configuration Wait State

The user may change any of the configuration parameters by writing the SMC user interface. 

When detecting that a new user configuration has been written in the user interface, the SMC inserts a wait state
before starting the next access. This “Reload User Configuration Wait State” is used by the SMC to load the new
set of parameters to apply to next accesses.

The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If accesses before
and after re-programming the user interface are made to different devices (Chip Selects), then one single Chip
Select Wait State is applied.

On the other hand, if accesses before and after writing the user interface are made to the same device, a Reload
Configuration Wait State is inserted, even if the change does not concern the current Chip Select.

26.11.3.1 User Procedure

To insert a Reload Configuration Wait State, the SMC detects a write access to any SMC_MODE register of the
user interface. If the user only modifies timing registers (SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in
the user interface, he must validate the modification by writing the SMC_MODE, even if no change was made on
the mode parameters. 

The user must not change the configuration parameters of an SMC Chip Select (Setup, Pulse, Cycle, Mode) if
accesses are performed on this CS during the modification. Any change of the Chip Select parameters, while
fetching the code from a memory connected on this CS, may lead to unpredictable behavior. The instructions used
to modify the parameters of an SMC Chip Select can be executed from the internal RAM or from a memory
connected to another CS.

A[25:2]

write cycle
(WRITE_MODE = 1)

Early Read
wait state

MCK

NRD

internal write controlling signal

external write controlling signal
(NWE)

D[7:0]

read cycle

no hold read setup = 1

(READ_MODE = 0 or READ_MODE = 1)
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

462



29.17.16PMC Status Register

Name: PMC_SR

Address: 0x400E0468

Access: Read-only 

• MOSCXTS: Main Crystal Oscillator Status

0: Main crystal oscillator is not stabilized.

1: Main crystal oscillator is stabilized.

• LOCKA: PLLA Lock Status

0: PLLA is not locked

1: PLLA is locked.

• LOCKB: PLLB Lock Status

0: PLLB is not locked

1: PLLB is locked.

• MCKRDY: Master Clock Status

0: Master Clock is not ready.

1: Master Clock is ready.

• OSCSELS: Slow Clock Oscillator Selection

0: Internal slow clock RC oscillator is selected.

1: External slow clock 32 kHz oscillator is selected.

• PCKRDYx: Programmable Clock Ready Status

0: Programmable Clock x is not ready.

1: Programmable Clock x is ready. 

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – FOS CFDS CFDEV MOSCRCS MOSCSELS

15 14 13 12 11 10 9 8

– – – – – PCKRDY2 PCKRDY1 PCKRDY0

7 6 5 4 3 2 1 0

OSCSELS – – – MCKRDY LOCKB LOCKA MOSCXTS
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

548



31.6.6 PIO Output Status Register

Name: PIO_OSR

Address: 0x400E0E18 (PIOA), 0x400E1018 (PIOB), 0x400E1218 (PIOC)

Access: Read-only 

• P0–P31: Output Status

0: The I/O line is a pure input.

1: The I/O line is enabled in output.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
593SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



Figure 34-17. TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

732



1. Initialize the transmit PDC (memory pointers, transfer size).

2. Start the transfer by setting the PDC TXTEN bit.

3. Wait for the PDC ENDTX flag by using either the polling method or the ENDTX interrupt.

4. Disable the PDC by setting the PDC TXTDIS bit.

5. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC in Slave Mode

The following procedure shows an example of data transmission with PDC where the number of characters to be
received is known.

1. Initialize the receive PDC (memory pointers, transfer size).

2. Set the PDC RXTEN bit.

3. Wait for the PDC ENDRX flag by using either the polling method or the ENDRX interrupt.

4. Disable the PDC by setting the PDC RXTDIS bit.

5. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

34.7.5.7 Read Write Flowcharts

The flowchart shown in Figure 34-31 gives an example of read and write operations in Slave mode. A polling or
interrupt method can be used to check the status bits. The interrupt method requires that the Interrupt Enable
Register (TWI_IER) be configured first.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

744



• SVEN: TWI Slave Mode Enabled

0: No effect.

1: Enables the Slave mode (SVDIS must be written to 0)

Note: Switching from master to Slave mode is only permitted when TXCOMP = 1.

• SVDIS: TWI Slave Mode Disabled

0: No effect.

1: The Slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read oper-
ation. In write operation, the character being transferred must be completely received before disabling.

• QUICK: SMBus Quick Command

0: No effect.

1: If Master mode is enabled, a SMBus Quick Command is sent.

• SWRST: Software Reset

0: No effect.

1: Equivalent to a system reset.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

748



35. Universal Asynchronous Receiver Transmitter (UART)

35.1 Description

The Universal Asynchronous Receiver Transmitter (UART) features a two-pin UART that can be used for
communication and trace purposes and offers an ideal medium for in-situ programming solutions.

Moreover, the association with a peripheral DMA controller (PDC) permits packet handling for these tasks with
processor time reduced to a minimum.

35.2 Embedded Characteristics
 Two-pin UART

̶ Independent Receiver and Transmitter with a Common Programmable Baud Rate Generator

̶ Even, Odd, Mark or Space Parity Generation

̶ Parity, Framing and Overrun Error Detection

̶ Automatic Echo, Local Loopback and Remote Loopback Channel Modes

̶ Interrupt Generation

̶ Support for Two PDC Channels with Connection to Receiver and Transmitter

35.3 Block Diagram

Figure 35-1. UART Block Diagram

Peripheral DMA Controller
Baud Rate
Generator

Transmit

Receive

Interrupt
Control

Parallel
Input/
Output

UTXD

URXD

uart_irq

APB

bus clock Bridge

peripheral clockPMC

UART

Table 35-1. UART Pin Description

Pin Name Description Type

URXD UART Receive Data Input

UTXD UART Transmit Data Output
761SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



Figure 37-5. Capture Mode

TI
M

E
R

_C
LO

C
K

1
TI

M
E

R
_C

LO
C

K
2

TI
M

E
R

_C
LO

C
K

3
TI

M
E

R
_C

LO
C

K
4

TI
M

E
R

_C
LO

C
K

5

X
C

0
X

C
1

X
C

2

TC
C

LK
S

C
LK

I

Q
S R

S R

Q

C
LK

S
TA

C
LK

E
N

C
LK

D
IS

B
U

R
S

T

TI
O

B

R
eg

is
te

r C

C
ap

tu
re

 
R

eg
is

te
r A

 
C

ap
tu

re
 

R
eg

is
te

r B
C

om
pa

re
 R

C
 =

 

C
ou

nt
er

A
B

E
TR

G

S
W

TR
G

E
TR

G
E

D
G

C
P

C
TR

G

TC1_IMR

Tr
ig

LDRBS

LDRAS

ETRGS

TC1_SR

LOVRS

COVFS

S
Y

N
C

1

M
TI

O
B

TI
O

A

M
TI

O
A

LD
R

A

LD
B

S
TO

P

If 
R

A
 is

 n
ot

 lo
ad

ed
or

 R
B

 is
 L

oa
de

d
If 

R
A

 is
 L

oa
de

d

LD
B

D
IS

CPCS

IN
T

E
dg

e
D

et
ec

to
r

E
dg

e 
D

et
ec

to
r

LD
R

B

E
dg

e 
D

et
ec

to
r

C
LK

O
V

F

R
E

S
E

T

Ti
m

er
/C

ou
nt

er
  C

ha
nn

el

P
er

ip
he

ra
l C

lo
ck

S
yn

ch
ro

no
us

E
dg

e 
D

et
ec

tio
n

859SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



37.7 Timer Counter (TC) User Interface

Notes: 1. Channel index ranges from 0 to 2.

2. Read-only if TC_CMRx.WAVE = 0

Table 37-6. Register Mapping

Offset(1) Register Name Access Reset

0x00 + channel * 0x40 + 0x00 Channel Control Register TC_CCR Write-only –

0x00 + channel * 0x40 + 0x04 Channel Mode Register TC_CMR Read/Write 0

0x00 + channel * 0x40 + 0x08 Stepper Motor Mode Register TC_SMMR Read/Write 0

0x00 + channel * 0x40 + 0x0C Reserved – – –

0x00 + channel * 0x40 + 0x10 Counter Value TC_CV Read-only 0

0x00 + channel * 0x40 + 0x14 Register A TC_RA Read/Write(2) 0

0x00 + channel * 0x40 + 0x18 Register B TC_RB Read/Write(2) 0

0x00 + channel * 0x40 + 0x1C Register C TC_RC Read/Write 0

0x00 + channel * 0x40 + 0x20 Status Register TC_SR Read-only 0

0x00 + channel * 0x40 + 0x24 Interrupt Enable Register TC_IER Write-only –

0x00 + channel * 0x40 + 0x28 Interrupt Disable Register TC_IDR Write-only –

0x00 + channel * 0x40 + 0x2C Interrupt Mask Register TC_IMR Read-only 0

0xC0 Block Control Register TC_BCR Write-only –

0xC4 Block Mode Register TC_BMR Read/Write 0

0xC8 QDEC Interrupt Enable Register TC_QIER Write-only –

0xCC QDEC Interrupt Disable Register TC_QIDR Write-only –

0xD0 QDEC Interrupt Mask Register TC_QIMR Read-only 0

0xD4 QDEC Interrupt Status Register TC_QISR Read-only 0

0xD8 Fault Mode Register TC_FMR Read/Write 0

0xE4  Write Protection Mode Register TC_WPMR Read/Write 0

 0xE8–0xFC Reserved – – –
875SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



 Configuration of the period for each channel (CPRD in the PWM_CPRDx register). Writing in PWM_CPRDx 
register is possible while the channel is disabled. After validation of the channel, the user must use 
PWM_CPRDUPDx register to update PWM_CPRDx as explained below.

 Configuration of the duty-cycle for each channel (CDTY in the PWM_CDTYx register). Writing in 
PWM_CDTYx register is possible while the channel is disabled. After validation of the channel, the user 
must use PWM_CDTYUPDx register to update PWM_CDTYx as explained below.

 Configuration of the dead-time generator for each channel (DTH and DTL in PWM_DTx) if enabled (DTE bit 
in the PWM_CMRx). Writing in the PWM_DTx register is possible while the channel is disabled. After 
validation of the channel, the user must use PWM_DTUPDx register to update PWM_DTx

 Selection of the synchronous channels (SYNCx in the PWM_SCM register)

 Selection of the moment when the WRDY flag and the corresponding Peripheral DMA Controller transfer 
request are set (PTRM and PTRCS in the PWM_SCM register)

 Configuration of the Update mode (UPDM in PWM_SCM register)

 Configuration of the update period (UPR in PWM_SCUP register) if needed

 Configuration of the comparisons (PWM_CMPVx and PWM_CMPMx)

 Configuration of the event lines (PWM_ELMRx)

 Configuration of the fault inputs polarity (FPOL in PWM_FMR)

 Configuration of the fault protection (FMOD and FFIL in PWM_FMR, PWM_FPV and PWM_FPE1)

 Enable of the interrupts (writing CHIDx and FCHIDx in PWM_IER1, and writing WRDYE, ENDTXE, 
TXBUFE, UNRE, CMPMx and CMPUx in PWM_IER2)

 Enable of the PWM channels (writing CHIDx in the PWM_ENA register)

39.6.5.2 Source Clock Selection Criteria

The large number of source clocks can make selection difficult. The relationship between the value in the PWM
Channel Period Register (PWM_CPRDx) and the PWM Channel Duty Cycle Register (PWM_CDTYx) helps the
user select the appropriate clock. The event number written in the Period Register gives the PWM accuracy. The
Duty-Cycle quantum cannot be lower than 1/CPRDx value. The higher the value of PWM_CPRDx, the greater the
PWM accuracy. 

For example, if the user sets 15 (in decimal) in PWM_CPRDx, the user is able to set a value from between 1 up to
14 in PWM_CDTYx. The resulting duty-cycle quantum cannot be lower than 1/15 of the PWM period.

39.6.5.3 Changing the Duty-Cycle, the Period and the Dead-Times

It is possible to modulate the output waveform duty-cycle, period and dead-times. 

To prevent unexpected output waveform, the user must use the PWM Channel Duty Cycle Update Register
(PWM_CDTYUPDx), the PWM Channel Period Update Register (PWM_CPRDUPDx) and the PWM Channel
Dead Time Update Register (PWM_DTUPDx) to change waveform parameters while the channel is still enabled.

 If the channel is an asynchronous channel (SYNCx = 0 in PWM Sync Channels Mode Register 
(PWM_SCM)), these registers hold the new period, duty-cycle and dead-times values until the end of the 
current PWM period and update the values for the next period.

 If the channel is a synchronous channel and update method 0 is selected (SYNCx = 1 and UPDM = 0 in 
PWM_SCM register), these registers hold the new period, duty-cycle and dead-times values until the bit 
UPDULOCK is written at ‘1’ (in PWM Sync Channels Update Control Register (PWM_SCUC)) and the end 
of the current PWM period, then update the values for the next period.

 If the channel is a synchronous channel and update method 1 or 2 is selected (SYNCx = 1 and UPDM = 1 or 
2 in PWM_SCM register):

̶ registers PWM_CPRDUPDx and PWM_DTUPDx hold the new period and dead-times values until the 
bit UPDULOCK is written at ‘1’ (in PWM_SCUC) and the end of the current PWM period, then update 
the values for the next period. 
975SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



39.7.22 PWM Output Selection Clear Update Register

Name: PWM_OSCUPD

Address: 0x40020058

Access: Write-only

• OSCUPHx: Output Selection Clear for PWMH output of the channel x

0: No effect.

1: Dead-time generator output DTOHx selected as PWMH output of channel x at the beginning of the next channel x PWM 
period.

• OSCUPLx: Output Selection Clear for PWML output of the channel x

0: No effect.

1: Dead-time generator output DTOLx selected as PWML output of channel x at the beginning of the next channel x PWM 
period.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – OSCUPL3 OSCUPL2 OSCUPL1 OSCUPL0

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – OSCUPH3 OSCUPH2 OSCUPH1 OSCUPH0
1005SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



40.7.5 UDP Interrupt Disable Register 

Name: UDP_IDR

Address: 0x40034014

Access: Write-only 

• EP0INT: Disable Endpoint 0 Interrupt

• EP1INT: Disable Endpoint 1 Interrupt

• EP2INT: Disable Endpoint 2 Interrupt

• EP3INT: Disable Endpoint 3 Interrupt

• EP4INT: Disable Endpoint 4 Interrupt

• EP5INT: Disable Endpoint 5 Interrupt

• EP6INT: Disable Endpoint 6 Interrupt

• EP7INT: Disable Endpoint 7 Interrupt

0: No effect

1: Disables corresponding Endpoint Interrupt

• RXSUSP: Disable UDP Suspend Interrupt

0: No effect

1: Disables UDP Suspend Interrupt

• RXRSM: Disable UDP Resume Interrupt

0: No effect

1: Disables UDP Resume Interrupt

• SOFINT: Disable Start Of Frame Interrupt

0: No effect

1: Disables Start Of Frame Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
1051SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15



40.7.13 UDP Transceiver Control Register 

Name: UDP_TXVC

Address: 0x40034074

Access: Read/Write  

WARNING: The UDP peripheral clock in the Power Management Controller (PMC) must be enabled before any read/write 
operations to the UDP registers including the UDP_TXVC register.

• TXVDIS: Transceiver Disable

When UDP is disabled, power consumption can be reduced significantly by disabling the embedded transceiver. This can 
be done by setting TXVDIS bit.

To enable the transceiver, TXVDIS must be cleared.

• PUON: Pull-up On

0: The 1.5KΩ integrated pull-up on DDP is disconnected.

1: The 1.5 KΩ integrated pull-up on DDP is connected.

NOTE: If the USB pull-up is not connected on DDP, the user should not write in any UDP register other than the 
UDP_TXVC register. This is because if DDP and DDM are floating at 0, or pulled down, then SE0 is received by the device 
with the consequence of a USB Reset. 

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – PUON TXVDIS

7 6 5 4 3 2 1 0

– – – – – – – –
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1068



Table 45-27. 48-lead LQFP Package Reference

JEDEC Drawing Reference

JESD97 Classification e3
1215SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15


