

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s16ca-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16.6.1 RTC Control Register

Name:	RTC_CR						
Address:	0x400E1460						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	-	_	-	_	-	_	-
23	22	21	20	19	18	17	16
_	-	_	_	_	_	CALE	VSEL
15	14	13	12	11	10	9	8
_	-	_	_	_	_	TIMEVSEL	
7	6	5	4	3	2	1	0
-	_	_	_	_	_	UPDCAL	UPDTIM

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

• UPDTIM: Update Request Time Register

0: No effect.

1: Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

• UPDCAL: Update Request Calendar Register

0: No effect.

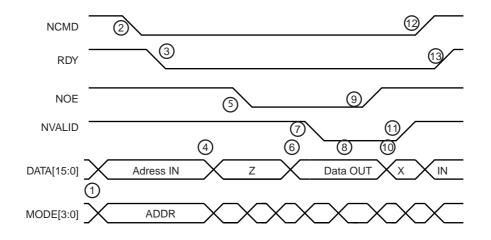
1: Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once this bit is set and acknowledged by the bit ACKUPD of the RTC_SR.

• TIMEVSEL: Time Event Selection

The event that generates the flag TIMEV in RTC_SR depends on the value of TIMEVSEL.

Value	Name	Description			
0	MINUTE	Minute change			
1	HOUR	Hour change			
2	MIDNIGHT	Every day at midnight			
3	NOON	Every day at noon			


Table 21-4. Write Handshake (Continued)

Step	Programmer Action	Device Action	Data I/O
4	Releases MODE and DATA signals	Executes command and polls NCMD high	Input
5	Sets NCMD signal	Executes command and polls NCMD high	Input
6	Waits for RDY high	Sets RDY	Input

21.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 21-3 and Table 21-5.

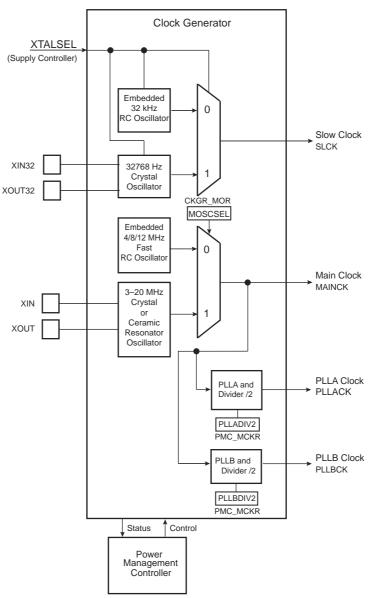
Figure 21-3. Parallel Programming Timing, Read Sequence

Table 21-5. Read Handshake

Step	Programmer Action	Device Action	DATA I/O
1	Sets MODE and DATA signals	Waits for NCMD low	Input
2	Clears NCMD signal	Latch MODE and DATA	Input
3	Waits for RDY low	Clears RDY signal	Input
4	Sets DATA signal in tristate	Waits for NOE Low	Input
5	Clears NOE signal	_	Tristate
6	Waits for NVALID low	Sets DATA bus in output mode and outputs the flash contents.	Output
7	-	Clears NVALID signal	Output
8	Reads value on DATA Bus	Waits for NOE high	Output
9	Sets NOE signal		Output
10	Waits for NVALID high	Sets DATA bus in input mode	X
11	Sets DATA in output mode	Sets NVALID signal	Input
12	Sets NCMD signal	Waits for NCMD high	Input
13	Waits for RDY high	Sets RDY signal	Input

23.7.13 CRCCU Interrupt Disable Register

Name:	CRCCU_IDR						
Address:	0x40044044						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	_	_	-	_	_	—
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	-	_	_	_	_	_	ERRIDR


• ERRIDR: CRC Error Interrupt Disable

0: No effect

1: Disable interrupt

28.3 Block Diagram

Atmel

29.17.3 PMC System Clock Status Register

Name:	PMC_SCSR						
Address:	0x400E0408						
Access:	Read-only						
31	30	29	28	27	26	25	24
—	-	_	_	_	_	_	_
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
	-	-	-	-	-	-	
15	14	13	12	11	10	9	8
-	_	-	-	-	PCK2	PCK1	PCK0
7	6	5	4	3	2	1	0
UDP	-	_	_	_	_	_	_

• UDP: USB Device Port Clock Status

0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

• PCKx: Programmable Clock x Output Status

0: The corresponding Programmable Clock output is disabled.

1: The corresponding Programmable Clock output is enabled.

31.5.15 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:

- PIO Enable Register
- PIO Disable Register
- PIO Output Enable Register
- PIO Output Disable Register
- PIO Input Filter Enable Register
- PIO Input Filter Disable Register
- PIO Multi-driver Enable Register
- PIO Multi-driver Disable Register
- PIO Pull-Up Disable Register
- PIO Pull-Up Enable Register
- PIO Peripheral ABCD Select Register 1
- PIO Peripheral ABCD Select Register 2
- PIO Output Write Enable Register
- PIO Output Write Disable Register
- PIO Pad Pull-Down Disable Register
- PIO Pad Pull-Down Enable Register
- PIO Parallel Capture Mode Register

31.6.27 PIO Input Filter Slow Clock Enable Register

PIO_IFSCER

Address: Access:	0x400E0E84 (PI Write-only	OA), 0x400E10	084 (PIOB), 0x4	00E1284 (PIO	C)		
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Slow Clock Debouncing Filtering Select

0: No effect.

Name:

1: The debouncing filter is able to filter pulses with a duration < $t_{div_{slck}}/2$.

31.6.30 PIO Pad Pull-Down Disable Register

Name: PIO_PPDDR

Address: 0x400E0E90 (PIOA), 0x400E1090 (PIOB), 0x400E1290 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0-P31: Pull-Down Disable

0: No effect.

1: Disables the pull-down resistor on the I/O line.

36.7.22 USART Write Protection Mode Register

Name:	US_WPMR									
Address:	0x400240E4 (0), 0x400280E4 (1)									
Access:	Read/Write									
31	30	29	28	27	26	25	24			
			WP	KEY						
23	22	21	20	19	18	17	16			
			VVP	KEY						
15	14	13	12	11	10	9	8			
			WP	KEY						
7	6	5	4	3	2	1	0			
_	_	_	_	_	_	_	WPEN			

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x555341 ("USA" in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x555341 ("USA" in ASCII).

See Section 36.6.10 "Register Write Protection" for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

Value	Name	Description
0x555341	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

39.7.1 PWM Clock Register

Name: Address:	PWM_CLK 0x40020000						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-		PR	EB	
23	22	21	20	19	18	17	16
			DI	VB			
15	14	13	12	11	10	9	8
_	-	-	_		PR	EA	
7	6	5	4	3	2	1	0
			DI	VA			

This register can only be written if bits WPSWS0 and WPHWS0 are cleared in the PWM Write Protection Status Register.

• DIVA: CLKA Divide Factor

Value	Name	Description
0	CLKA_POFF	CLKA clock is turned off
1	PREA	CLKA clock is clock selected by PREA
2–255	PREA_DIV	CLKA clock is clock selected by PREA divided by DIVA factor

• DIVB: CLKB Divide Factor

Value	Name	Description
0	CLKB_POFF	CLKB clock is turned off
1	PREB	CLKB clock is clock selected by PREB
2–255	PREB_DIV	CLKB clock is clock selected by PREB divided by DIVB factor

PREA: CLKA Source Clock Selection

Value	Name	Description
0	CLK	Peripheral clock
1	CLK_DIV2	Peripheral clock/2
2	CLK_DIV4	Peripheral clock/4
3	CLK_DIV8	Peripheral clock/8
4	CLK_DIV16	Peripheral clock/16
5	CLK_DIV32	Peripheral clock/32
6	CLK_DIV64	Peripheral clock/64
7	CLK_DIV128	Peripheral clock/128
8	CLK_DIV256	Peripheral clock/256

39.7.5 PWM Interrupt Enable Register 1

Name:	PWM_IER1						
Address:	0x40020010 Write-only						
Access:	write-only						
31	30	29	28	27	26	25	24
-	-	_	-	-	-	—	-
	-	-	-	-	-	-	
23	22	21	20	19	18	17	16
-	-	-	—	FCHID3	FCHID2	FCHID1	FCHID0
	-	-	-	-	-	-	
15	14	13	12	11	10	9	8
-	-	-	-	-	-	—	-
7	6	5	4	3	2	1	0
—	—	—	—	CHID3	CHID2	CHID1	CHID0

CHIDx: Counter Event on Channel x Interrupt Enable

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Enable

39.7.12 PWM Sync Channels Update Period Update Register

Name:	PWM_SCUPUP	D					
Address:	0x40020030						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	_	—	_	—	—	_	—
	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	_	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	—	-	-	-	-
7	6	5	4	3	2	1	0
_	—	_	_		UPR	UPD	

This register acts as a double buffer for the UPR value. This prevents an unexpected automatic trigger of the update of synchronous channels.

• UPRUPD: Update Period Update

Defines the wanted time between each update of the synchronous channels if automatic trigger of the update is activated (UPDM = 1 or UPDM = 2 in PWM Sync Channels Mode Register). This time is equal to UPR+1 periods of the synchronous channels.

This flag is used to generate a Data IN transaction (device to host). Device firmware checks that it can write a data payload in the FIFO, checking that TXPKTRDY is cleared. Transfer to the FIFO is done by writing in the UDP_FDRx. Once the data payload has been transferred to the FIFO, the firmware notifies the USB device setting TXPKTRDY to one. USB bus transactions can start. TXCOMP is set once the data payload has been received by the host.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before accessing DPR.

• FORCESTALL: Force Stall (used by Control, Bulk and Isochronous Endpoints)

Read:

0: Normal state

1: Stall state

Write:

0: Return to normal state

1: Send STALL to the host

Refer to chapters 8.4.5 and 9.4.5 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the STALL handshake.

Control endpoints: During the data stage and status stage, this bit indicates that the microcontroller cannot complete the request.

Bulk and interrupt endpoints: This bit notifies the host that the endpoint is halted.

The host acknowledges the STALL, device firmware is notified by the STALLSENT flag.

• RX_DATA_BK1: Receive Data Bank 1 (only used by endpoints with ping-pong attributes)

This flag generates an interrupt while it is set to one.

Write (cleared by the firmware):

0: Notifies USB device that data have been read in the FIFO's Bank 1.

1: To leave the read value unchanged.

Read (Set by the USB peripheral):

0: No data packet has been received in the FIFO's Bank 1.

1: A data packet has been received, it has been stored in FIFO's Bank 1.

When the device firmware has polled this bit or has been interrupted by this signal, it must transfer data from the FIFO to microcontroller memory. The number of bytes received is available in RXBYTECNT field. Bank 1 FIFO values are read through UDP_FDRx. Once a transfer is done, the device firmware must release Bank 1 to the USB device by clearing RX_DATA_BK1.

After setting or clearing this bit, a wait time of 3 UDPCK clock cycles and 3 peripheral clock cycles is required before accessing DPR.

• DIR: Transfer Direction (only available for control endpoints) (Read/Write)

0: Allows Data OUT transactions in the control data stage.

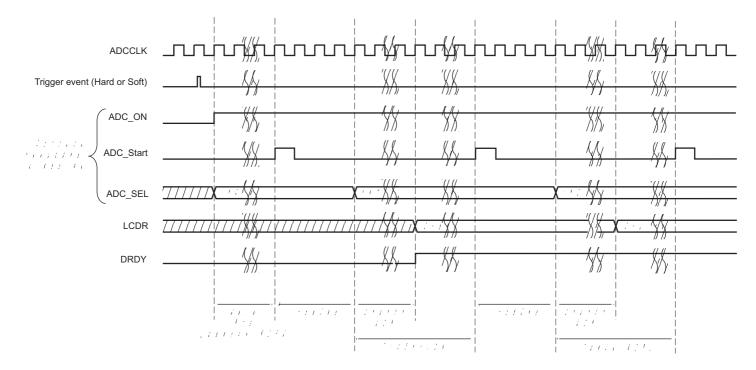
1: Enables Data IN transactions in the control data stage.

Refer to Chapter 8.5.3 of the Universal Serial Bus Specification, Rev. 2.0 for more information on the control data stage.

This bit must be set before UDP_CSRx/RXSETUP is cleared at the end of the setup stage. According to the request sent in the setup data packet, the data stage is either a device to host (DIR = 1) or host to device (DIR = 0) data transfer. It is not necessary to check this bit to reverse direction for the status stage.

41.7.3 ACC Interrupt Enable Register

Name:	ACC_IER						
Address:	0x40040024						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
_	-	-	—	-	—	_	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	—	_	_	_	_	_	CE


• CE: Comparison Edge


0: No effect.

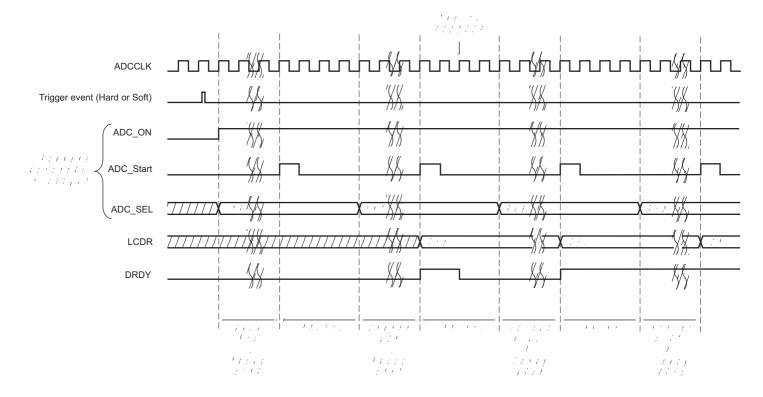

1: Enables the interrupt when the selected edge (defined by EDGETYP) occurs.

Figure 42-2. Sequence of ADC Conversions When Tracking Time > Conversion Time

Atmel

42.6.2 ADC Clock

The ADC uses the ADC clock (ADCCLK) to perform conversions. The ADC clock frequency is selected in the PRESCAL field of ADC_MR.

The ADC clock frequency is between $f_{peripheral clock}/2$, if PRESCAL is 0, and $f_{peripheral clock}/512$, if PRESCAL is set to 255 (0xFF).

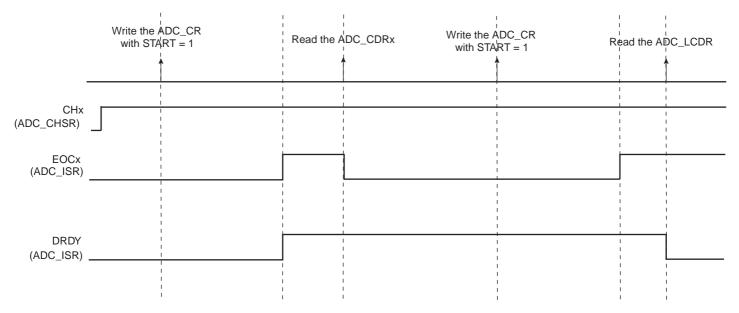
PRESCAL must be programmed to provide the ADC clock frequency parameter given in the section 'Electrical Characteristics'.

42.6.3 ADC Reference Voltage

The conversion is performed on a full range between 0V and the reference voltage pin ADVREF. Analog inputs between these voltages convert to values based on a linear conversion.

42.6.4 Conversion Resolution

The ADC analog cell features12-bit resolution.


42.6.5 Conversion Results

When a conversion is completed, the resulting digital value is stored in the Channel Data register (ADC_CDRx) of the current channel and in the ADC Last Converted Data register (ADC_LCDR). By setting the TAG option in the Extended Mode Register (ADC_EMR), the ADC_LCDR presents the channel number associated with the last converted data in the CHNB field.

The channel EOC bit and the DRDY bit in the Interrupt Status register (ADC_ISR) are set. In the case of a connected PDC channel, DRDY rising triggers a data request. In any case, either EOC and DRDY can trigger an interrupt.

Reading one of the ADC_CDRx clears the corresponding EOC bit. Reading ADC_LCDR clears the DRDY bit.

Figure 42-4. EOCx and DRDY Flag Behavior

If ADC_CDR is not read before further incoming data is converted, the corresponding OVREx flag is set in the Overrun Status register (ADC_OVER).

New data converted when DRDY is high sets the GOVRE bit in ADC_ISR.

Atmel

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{PULLDOWN}	Pull-down Resistor	PA0-PA31, PB0-PB14, PC0-PC31, NRST	70	100	130	kΩ
	On-die Series	PA4-PA31, PB0-PB9, PB12-PB14, PC0-PC31	_	36	_	
R _{ODT}	Termination Resistor	PA0-PA3	_	18	_	Ω
		Random 144-bit Read @ 25°C: Maximum read frequency at VDDCORE = 1.2V, VDDIO = 3.3V	_	16	25	
I _{cc}	Flash Active Current on VDDCORE	Random 72-bit Read @ 25°C: Maximum read frequency at VDDCORE = 1.2V, VDDIO = 3.3V	_	10	18	mA
		Program ⁽³⁾ onto VDDCORE = 1.2V, VDDIO = $3.3V @ 25^{\circ}C$	_	3	5	
		Random 144-bit read: Maximum read frequency at VDDCORE = 1.2V, VDDIO = 3.3V @ 25°C	_	3	16	
I _{CC33}	Flash Active Current on VDDIO	Random 72-bit read:Maximum read frequency at VDDCORE = 1.2V,VDDIO = 3.3V @ 25°C		3	5	mA
		Program ⁽³⁾ onto VDDCORE = 1.2V, VDDIO = 3.3V @ 25°C	_	10	15	

Table 44-3. DC Characteristics (Continued)

Note: 1. PA[4–11], PA[15–25], PB[0–9], PB[12–14], PC[0–31]

2. Refer to Section 5.2.2 "VDDIO Versus VDDIN"

3. The Flash programming characteristics are applicable at operating temperature range: $T_A = -40$ to 85 °C.

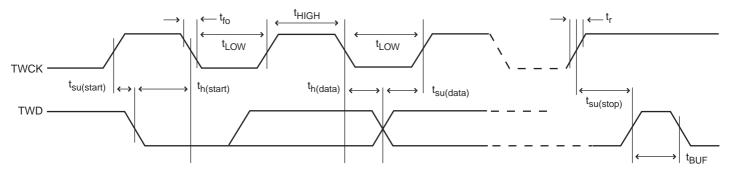

- 2. Pin Group 2 = PA[4–11], PA[15–25], PA[30–31], PB[0–9], PB[12–14], PC[0–31]
- 3. Pin Group 3 = PA[12–13], PA[26–28], PA[30–31]
- 4. Pin Group 4 = PA[0–3]
- 5. Pin Group 5 = PB[10–11]

Table 44-66. SSC Timings

Symbol	Parameter	Conditions		Min	Max	Unit	
	•		Transmitter				
	TK Edge to TF/TD	1.8V dom	ain	-3	5.4		
SSC ₀	(TK Output, TF Output)	3.3V dom	ain	-2.6	5.0	ns	
	TK Edge to TF/TD	1.8V dom	ain	4.5	19.6		
SSC ₁	(TK Input, TF Output)	3.3V dom	ain	3.8	13.3	ns	
	TF Setup Time before TK Edge	1.8V dom	ain	18.9			
SSC ₂	(TK Output)	3.3V dom	ain	12.0	_	ns	
SSC ₃ TF Ho	TF Hold Time after TK Edge	1.8V dom	ain	0	_	ns	
0003	(TK Output)	3.3V dom	ain	0	_	113	
		4.0) (_	2.6	5.4		
	TK Edge to TF/TD	1.8V domain	STTDLY = 0 START = 4, 5 or 7	2.6 + (2 × t _{CPMCK)} ⁽¹⁾	5.4 + (2 × t _{CPMCK)} ⁽¹⁾		
SSC_4	(TK Output, TF Input)		_	2.3	5.0	ns	
		3.3V domain	STTDLY = 0 START = 4, 5 or 7	2.3 + (2 × t _{CPMCK)} ⁽¹⁾	5.0 + (2 × t _{CPMCK)} ⁽¹⁾	+	
SSC_5	TF Setup Time before TK Edge (TK Input)	1.8V dom 3.3V dom		0	-	ns	
SSC_6	TF Hold Time after TK edge (TK Input)	1.8V dom 3.3V dom		t _{CPMCK}	-	ns	
			_	4.5	16.3		
	TK Edge to TF/TD	1.8V domain	STTDLY = 0 START = 4, 5 or 7	4.5 + (3 × t _{СРМСК)} ⁽¹⁾	16.3 + (3 × t _{CPMCK)} ⁽¹⁾		
SSC ₇	(TK Input, TF Input)		-	3.8	13.3	ns	
		3.3V domain	STTDLY = 0 START = 4, 5 or 7	3.8 + (3 × t _{СРМСК)} ⁽¹⁾	13.3 + $(3 \times t_{CPMCK)}^{(1)}$		
			Receiver				
SSC ₈	RF/RD Setup Time before RK Edge (RK Input)	1.8V dom 3.3V dom		0	-	ns	
SSC ₉	RF/RD Hold Time after RK Edge (RK Input)	1.8V dom 3.3V dom		t _{CPMCK}	-	ns	
SSC ₁₀	RK Edge to RF (RK Input)	1.8V dom 3.3V dom		4.7 4	16.1 12.8	ns	
SSC ₁₁	RF/RD Setup Time before RK Edge (RK Output)	1.8V dom 3.3V dom		15.8 - t _{СРМСК} 12.5 - t _{СРМСК}	_	ns	
SSC ₁₂	RF/RD Hold Time after RK Edge (RK Output)	1.8V dom 3.3V dom	ain	t _{СРМСК} - 4.3 t _{СРМСК} - 3.6	-	ns	
SSC ₁₃	RK Edge to RF (RK Output)	1.8V dom 3.3V dom	ain	-3 -2.6	4.3 3.8	ns	
		5.5 v u011		-2.0	5.0	<u> </u>	

