E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s16ca-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Block Diagram

Atmel

```
ITTEQ; IT instruction for STREXEQ and CMPEQSTREXEQ R0, R1, [LockAddr]; Try and claim the lockCMPEQR0, #0; Did this succeed?BNEtry; No - try again....; Yes - we have the lock
```

12.6.4.9 CLREX

Clear Exclusive.

Syntax

CLREX{cond}

where:

cond is an optional condition code, see "Conditional Execution".

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write a 1 to its destination register and fail to perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception occurs between a load exclusive instruction and the matching store exclusive instruction in a synchronization operation.

See "Synchronization Primitives" for more information.

Condition Flags

These instructions do not change the flags.

Examples

CLREX

Atmel

				with top halfword of R5, subtracts second from
				first, adds R6, writes to R0
R1,	R3,	R2,	R0	Multiplies bottom halfword of R3 with top
				halfword of R2, multiplies top halfword of R3
				with bottom halfword of R2, subtracts second from
				first, adds R0, writes to R1
R3,	R6,	R2,	R7	Multiplies bottom halfword of R6 with bottom
				halfword of R2, multiplies top halfword of R6
				with top halfword of R2, subtracts second from
				first, adds R6:R3, writes to R6:R3
R3,	R6,	R2,	R7	Multiplies bottom halfword of R6 with top
				halfword of R2, multiplies top halfword of R6
				with bottom halfword of R2, subtracts second from
				first, adds R6:R3, writes to R6:R3.
	R1, R3, R3,	R1, R3, R3, R6, R3, R6,	R1, R3, R2, R3, R6, R2, R3, R6, R2,	; R1, R3, R2, R0 ; ; R3, R6, R2, R7 ; R3, R6, R2, R7 ; ; R3, R6, R2, R7 ; ;

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UQADD16	R7,	R4,	R2	Adds halfwords in R4 to corresponding halfword in R2,
				saturates to 16 bits, writes to corresponding halfword of R7
UQADD8	R4,	R2,	R5	Adds bytes of R2 to corresponding byte of R5, saturates
				to 8 bits, writes to corresponding bytes of R4
UQSUB16	R6,	R3,	R0	Subtracts halfwords in R0 from corresponding halfword
				in R3, saturates to 16 bits, writes to corresponding
				halfword in R6
UQSUB8	R1,	R5,	R6	Subtracts bytes in R6 from corresponding byte of R5,
				saturates to 8 bits, writes to corresponding byte of R1.

12.6.9.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see "Conditional Execution".

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. *Isb* must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-*lsb*.

Operation

BFC clears a bitfield in a register. It clears *width* bits in *Rd*, starting at the low bit position *lsb*. Other bits in *Rd* are unchanged.

BFI copies a bitfield into one register from another register. It replaces *width* bits in *Rd* starting at the low bit position *lsb*, with *width* bits from *Rn* starting at bit[0]. Other bits in *Rd* are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

BFC	R4,	#8,	#12		;	Clear	bit	8	to	bit	19	(12	bi	ts)	of	R4	tc	0
BFI	R9,	R2,	#8,	#12	;	Replac	e b	it	8 t	o bi	.t 19	9 (1	.2	bits	;) (of	R9	with
					;	bit O	to]	oit	11	fro	m R2	2.						

Atmel

16.6.12 RTC Valid Entry Register

Name:	RTC_VER						
Address:	0x400E148C						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	_	_	_	—	—	—	_
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
_	-	—	—	-	—	-	-
7	6	5	4	3	2	1	0
_	-	_	_	NVCALALR	NVTIMALR	NVCAL	NVTIM

• NVTIM: Non-valid Time

0: No invalid data has been detected in RTC_TIMR (Time Register).

1: RTC_TIMR has contained invalid data since it was last programmed.

• NVCAL: Non-valid Calendar

0: No invalid data has been detected in RTC_CALR (Calendar Register).

1: RTC_CALR has contained invalid data since it was last programmed.

• NVTIMALR: Non-valid Time Alarm

0: No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1: RTC_TIMALR has contained invalid data since it was last programmed.

NVCALALR: Non-valid Calendar Alarm

0: No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1: RTC_CALALR has contained invalid data since it was last programmed.

22.5 Cortex-M Cache Controller (CMCC) User Interface

Offset	Register	Name	Access	Reset
0x00	Cache Controller Type Register	CMCC_TYPE	Read-only	-
0x04	Cache Controller Configuration Register	CMCC_CFG	Read/Write	0x0000000
0x08	Cache Controller Control Register	CMCC_CTRL	Write-only	-
0x0C	Cache Controller Status Register	CMCC_SR	Read-only	0x0000001
0x10-0x1C	Reserved	_	-	-
0x20	Cache Controller Maintenance Register 0	CMCC_MAINT0	Write-only	-
0x24	Cache Controller Maintenance Register 1	CMCC_MAINT1	Write-only	-
0x28	Cache Controller Monitor Configuration Register	CMCC_MCFG	Read/Write	0x0000000
0x2C	Cache Controller Monitor Enable Register	CMCC_MEN	Read/Write	0x0000000
0x30	Cache Controller Monitor Control Register	CMCC_MCTRL	Write-only	-
0x34	Cache Controller Monitor Status Register	CMCC_MSR	Read-only	0x0000000
0x38-0xFC	Reserved	-	-	-

Table 22-1. Register Mapping

27.6.6 Receive Next Counter Register

Name:	PERIPH_RNCR						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	_	-	_	-
23	22	21	20	19	18	17	16
_	-	_	-	_	-	_	-
15	14	13	12	11	10	9	8
			RXN	CTR			
7	6	5	4	3	2	1	0
			RXN	CTR			

• RXNCTR: Receive Next Counter

RXNCTR contains the next receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

Atmel

29.17.18PMC Fast Startup Mode Register

Name:	PMC_FSMR						
Address:	0x400E0470						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	-	—	-	—	—	—	-
23	22	21	20	19	18	17	16
_	FL	PM	LPM	—	USBAL	RTCAL	RTTAL
15	14	13	12	11	10	9	8
FSTT15	FSTT14	FSTT13	FSTT12	FSTT11	FSTT10	FSTT9	FSTT8
7	6	5	4	3	2	1	0
FSTT7	FSTT6	FSTT5	FSTT4	FSTT3	FSTT2	FSTT1	FSTT0

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

• FSTT0–FSTT15: Fast Startup Input Enable 0 to 15

0: The corresponding wake-up input has no effect on the PMC.

1: The corresponding wake-up input enables a fast restart signal to the PMC.

• RTTAL: RTT Alarm Enable

0: The RTT alarm has no effect on the PMC.

1: The RTT alarm enables a fast restart signal to the PMC.

• RTCAL: RTC Alarm Enable

0: The RTC alarm has no effect on the PMC.

1: The RTC alarm enables a fast restart signal to the PMC.

• USBAL: USB Alarm Enable

0: The USB alarm has no effect on the PMC.

1: The USB alarm enables a fast restart signal to the PMC.

• LPM: Low-power Mode

0: The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes the processor enter Sleep mode.

1: The WaitForEvent (WFE) instruction of the processor makes the system to enter Wait mode.

FLPM: Flash Low-power Mode

Value	Name	Description
0	FLASH_STANDBY	Flash is in Standby Mode when system enters Wait Mode
1	FLASH_DEEP_POWERDOWN	Flash is in Deep-power-down mode when system enters Wait Mode
2	FLASH_IDLE	Idle mode

31.6.53 PIO Parallel Capture Interrupt Status Register

Name:	PIO_PCISR						
Address:	0x400E0F60 (PI	OA), 0x400E11	60 (PIOB), 0x4	00E1360 (PIOC	C)		
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	Ι	Ι	1	Ι	1	-
7	6	5	4	3	2	1	0
_	—	_	_	RXBUFF	ENDRX	OVRE	DRDY

• DRDY: Parallel Capture Mode Data Ready

0: No new data is ready to be read since the last read of PIO_PCRHR.

1: A new data is ready to be read since the last read of PIO_PCRHR.

The DRDY flag is automatically reset when PIO_PCRHR is read or when the parallel capture mode is disabled.

OVRE: Parallel Capture Mode Overrun Error

0: No overrun error occurred since the last read of this register.

1: At least one overrun error occurred since the last read of this register.

The OVRE flag is automatically reset when this register is read or when the parallel capture mode is disabled.

• ENDRX: End of Reception Transfer

0: The End of Transfer signal from the reception PDC channel is inactive.

1: The End of Transfer signal from the reception PDC channel is active.

• RXBUFF: Reception Buffer Full

0: The signal Buffer Full from the reception PDC channel is inactive.

1: The signal Buffer Full from the reception PDC channel is active.

34.8.1 TWI Control Register

Name:	TWI_CR						
Address:	0x40018000 (0),	0x4001C000 (1)				
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	_	_	_	-	_	-
	-		-		-		-
23	22	21	20	19	18	17	16
_	-	-	—	-	—	-	_
	-		-	-		-	
15	14	13	12	11	10	9	8
_	—	-	—	-	—	-	—
7	6	5	4	3	2	1	0
SWRST	QUICK	SVDIS	SVEN	MSDIS	MSEN	STOP	START

• START: Send a START Condition

0: No effect.

1: A frame beginning with a START bit is transmitted according to the features defined in the TWI Master Mode Register (TWI_MMR).

This action is necessary for the TWI to read data from a slave. When configured in Master mode with a write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).

• STOP: Send a STOP Condition

0: No effect.

1: STOP condition is sent just after completing the current byte transmission in Master read mode.

- In single data byte master read, the START and STOP must both be set.
- In multiple data bytes master read, the STOP must be set after the last data received but one.
- In Master read mode, if a NACK bit is received, the STOP is automatically performed.
- In master data write operation, a STOP condition is sent when transmission of the current data has ended.

MSEN: TWI Master Mode Enabled

0: No effect.

1: Enables the Master mode (MSDIS must be written to 0).

Note: Switching from Slave to Master mode is only permitted when TXCOMP = 1.

MSDIS: TWI Master Mode Disabled

0: No effect.

1: The Master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are transmitted in case of write operation. In read operation, the character being transferred must be completely received before disabling.

Peripheral Clock	Baud Rate (bit/s)	CD	Baud Rate Error	Pulse Time (µs)
3,686,400	19,200	12	0.00%	9.77
20,000,000	19,200	65	0.16%	9.77
32,768,000	19,200	107	0.31%	9.77
40,000,000	19,200	130	0.16%	9.77
3,686,400	9,600	24	0.00%	19.53
20,000,000	9,600	130	0.16%	19.53
32,768,000	9,600	213	0.16%	19.53
40,000,000	9,600	260	0.16%	19.53
3,686,400	2,400	96	0.00%	78.13
20,000,000	2,400	521	0.03%	78.13
32,768,000	2,400	853	0.04%	78.13

Table 36-12. IrDA Baud Rate Error (Continued)

36.6.5.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin, the Filter Counter starts counting down at the peripheral clock speed. If a rising edge is detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is detected when the counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 36-34 illustrates the operations of the IrDA demodulator.

The programmed value in the US_IF register must always meet the following criteria:

t_{peripheral clock} × (IRDA_FILTER + 3) < 1.41 μs

As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in US_FIDI must be set to a value higher than 0 in order to make sure IrDA communications operate correctly.

36.6.6 RS485 Mode

The USART features the RS485 mode to enable line driver control. While operating in RS485 mode, the USART behaves as though in Asynchronous or Synchronous mode and configuration of all the parameters is possible. The difference is that the RTS pin is driven high when the transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical connection of the USART to an RS485 bus is shown in Figure 36-35.

38.8.2 Data Transfer Operation

The High Speed MultiMedia Card allows several read/write operations (single block, multiple blocks, stream, etc.). These kinds of transfer can be selected setting the Transfer Type (TRTYP) field in the HSMCI Command Register (HSMCI_CMDR).

These operations can be done using the features of the Peripheral DMA Controller (PDC). If the PDCMODE bit is set in HSMCI_MR, then all reads and writes use the PDC facilities.

In all cases, the block length (BLKLEN field) must be defined either in the HSMCI Mode Register (HSMCI_MR) or in the HSMCI Block Register (HSMCI_BLKR). This field determines the size of the data block.

Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions are defined (the host can use either one at any time):

• Open-ended/Infinite Multiple block read (or write):

The number of blocks for the read (or write) multiple block operation is not defined. The card will continuously transfer (or program) data blocks until a stop transmission command is received.

• Multiple block read (or write) with predefined block count (since version 3.1 and higher):

The card will transfer (or program) the requested number of data blocks and terminate the transaction. The stop command is not required at the end of this type of multiple block read (or write), unless terminated with an error. In order to start a multiple block read (or write) with predefined block count, the host must correctly program the HSMCI Block Register (HSMCI_BLKR). Otherwise the card will start an open-ended multiple block read. The BCNT field of the HSMCI_BLKR defines the number of blocks to transfer (from 1 to 65535 blocks). Programming the value 0 in the BCNT field corresponds to an infinite block transfer.

38.8.3 Read Operation

The following flowchart (Figure 38-8) shows how to read a single block with or without use of PDC facilities. In this example, a polling method is used to wait for the end of read. Similarly, the user can configure the HSMCI Interrupt Enable Register (HSMCI_IER) to trigger an interrupt at the end of read.

38.11.1 Boot Procedure, Processor Mode

- 1. Configure the HSMCI data bus width programming SDCBUS Field in the HSMCI_SDCR. The BOOT_BUS_WIDTH field located in the device Extended CSD register must be set accordingly.
- 2. Set the byte count to 512 bytes and the block count to the desired number of blocks, writing BLKLEN and BCNT fields of the HSMCI_BLKR.
- 3. Issue the Boot Operation Request command by writing to the HSMCI_CMDR with SPCMD field set to BOOTREQ, TRDIR set to READ and TRCMD set to "start data transfer".
- 4. The BOOT_ACK field located in the HSMCI_CMDR must be set to one, if the BOOT_ACK field of the MMC device located in the Extended CSD register is set to one.
- 5. Host processor can copy boot data sequentially as soon as the RXRDY flag is asserted.
- 6. When Data transfer is completed, host processor shall terminate the boot stream by writing the HSMCI_CMDR with SPCMD field set to BOOTEND.

38.12 HSMCI Transfer Done Timings

38.12.1 Definition

The XFRDONE flag in the HSMCI_SR indicates exactly when the read or write sequence is finished.

38.12.2 Read Access

During a read access, the XFRDONE flag behaves as shown in Figure 38-11.

38.12.3 Write Access

During a write access, the XFRDONE flag behaves as shown in Figure 38-12.

38.14 High Speed MultiMedia Card Interface (HSMCI) User Interface

Offset	Register	Name	Access	Reset
0x00	Control Register	HSMCI_CR	Write-only	_
0x04	Mode Register	HSMCI_MR	Read/Write	0x0
0x08	Data Timeout Register	HSMCI_DTOR	Read/Write	0x0
0x0C	SD/SDIO Card Register	HSMCI_SDCR	Read/Write	0x0
0x10	Argument Register	HSMCI_ARGR	Read/Write	0x0
0x14	Command Register	HSMCI_CMDR	Write-only	-
0x18	Block Register	HSMCI_BLKR	Read/Write	0x0
0x1C	Completion Signal Timeout Register	HSMCI_CSTOR	Read/Write	0x0
0x20	Response Register ⁽¹⁾	HSMCI_RSPR	Read-only	0x0
0x24	Response Register ⁽¹⁾	HSMCI_RSPR	Read-only	0x0
0x28	Response Register ⁽¹⁾	HSMCI_RSPR	Read-only	0x0
0x2C	Response Register ⁽¹⁾	HSMCI_RSPR	Read-only	0x0
0x30	Receive Data Register	HSMCI_RDR	Read-only	0x0
0x34	Transmit Data Register	HSMCI_TDR	Write-only	-
0x38–0x3C	Reserved	-	-	-
0x40	Status Register	HSMCI_SR	Read-only	0xC0E5
0x44	Interrupt Enable Register	HSMCI_IER	Write-only	-
0x48	Interrupt Disable Register	HSMCI_IDR	Write-only	-
0x4C	Interrupt Mask Register	HSMCI_IMR	Read-only	0x0
0x50	Reserved	-	-	_
0x54	Configuration Register	HSMCI_CFG	Read/Write	0x00
0x58–0xE0	Reserved	-	-	-
0xE4	Write Protection Mode Register	HSMCI_WPMR	Read/Write	_
0xE8	Write Protection Status Register	HSMCI_WPSR	Read-only	-
0xEC-0xFC	Reserved	-	-	-
0x100–0x128	Reserved for PDC registers	-	-	-
0x12C-0x1FC	Reserved	-	-	-
0x200	FIFO Memory Aperture0	HSMCI_FIFO0	Read/Write	0x0
0x5FC	FIFO Memory Aperture255	HSMCI_FIFO255	Read/Write	0x0

Table 38-8. Register Mapping

Notes: 1. The Response Register can be read by N accesses at the same HSMCI_RSPR or at consecutive addresses (0x20 to 0x2C). N depends on the size of the response.

38.14.6 HSMCI Command Register

Name:	HSMCI_CMDR						
Address:	0x40000014						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	—	-	BOOT_ACK	ATACS	IOSP	CMD
23	22	21	20	19	18	17	16
-	-		TRTYP		TRDIR	TRC	MD
15	14	13	12	11	10	9	8
_	-	_	MAXLAT	OPDCMD		SPCMD	
7	6	5	4	3	2	1	0
F	RSPTYP			CMD	NB		

This register is write-protected while CMDRDY is 0 in HSMCI_SR. If an Interrupt command is sent, this register is only writable by an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or modified.

• CMDNB: Command Number

This is the command index.

• RSPTYP: Response Type

Value	Name	Description
0	NORESP	No response
1	48_BIT	48-bit response
2	136_BIT	136-bit response
3	R1B	R1b response type

• SPCMD: Special Command

Value	Name	Description
0	STD	Not a special CMD.
1	INIT	Initialization CMD: 74 clock cycles for initialization sequence.
2	SYNC	Synchronized CMD: Wait for the end of the current data block transfer before sending the pending command.
3	CE_ATA	CE-ATA Completion Signal disable Command. The host cancels the ability for the device to return a command completion signal on the command line.
4	IT_CMD	Interrupt command: Corresponds to the Interrupt Mode (CMD40).
5	IT_RESP	Interrupt response: Corresponds to the Interrupt Mode (CMD40).
6	BOR	Boot Operation Request. Start a boot operation mode, the host processor can read boot data from the MMC device directly.
7	EBO	End Boot Operation. This command allows the host processor to terminate the boot operation mode.

••••••		_nabie neg.						
Name:	PWM_FPE							
Address:	0x4002006C							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
			FP	E3				
23	22	21	20	19	18	17	16	
			FP	E2				
15	14	13	12	11	10	9	8	
			FP	E1				
7	6	5	4	3	2	1	0	
			FP	E0				

This register can only be written if bits WPSWS5 and WPHWS5 are cleared in the PWM Write Protection Status Register. Only the first 8 bits (number of fault input pins) of fields FPE0, FPE1, FPE2 and FPE3 are significant.

• FPEx: Fault Protection Enable for channel x

39.7.27 PWM Fault Protection Enable Register

For each bit y of FPEx, where y is the fault input number:

- 0: Fault y is not used for the fault protection of channel x.
- 1: Fault y is used for the fault protection of channel x.

<u>CAUTION</u>: To prevent an unexpected activation of the fault protection, the bit y of FPEx field can be set to '1' only if the corresponding FPOL field has been previously configured to its final value in PWM Fault Mode Register.

39.7.41 PWM Channel Counter Register

Name:	PWM_CCNTx [x=03]							
Address:	0x40020214 [0],	0x40020214 [0], 0x40020234 [1], 0x40020254 [2], 0x40020274 [3]						
Access:	Read-only							
31	30	29	28	27	26	25	24	
-	-	-	—	-	—	_	_	
23	22	21	20	19	18	17	16	
	CNT							
15	14	13	12	11	10	9	8	
	CNT							
7	6	5	4	3	2	1	0	
			CN	1T				

Only the first 16 bits (channel counter size) are significant.

• CNT: Channel Counter Register

Channel counter value. This register is reset when:

- the channel is enabled (writing CHIDx in the PWM_ENA register).
- the channel counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is left-aligned.

42.7.6 ADC Channel Disable Register

Name:	ADC_CHDR						
Address:	0x40038014						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	-	-	_	-	-	-
23	22	21	20	19	18	17	16
-	—	-	-	—	-	-	-
15	14	13	12	11	10	9	8
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
7	6	5	4	3	2	1	0
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

This register can only be written if the WPEN bit is cleared in the ADC Write Protection Mode Register.

• CHx: Channel x Disable

0: No effect.

1: Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and then reenabled during a conversion, its associated data and corresponding EOCx and GOVRE flags in ADC_ISR and OVREx flags in ADC_OVER are unpredictable.

Table 49-9. SAM4S Datasheet Rev. 11100C 09-Jan-13 Revision History (Continued)

Doc. Rev. 11100C	Comments	Change Request Ref.
	CMCC Updated access condition from Write-only to Read-only in Section 22.5.4 "Cache Controller Status Register" and Section 22.5.10 "Cache Controller Monitor Status Register". Index bitfield size increased from 4 to 5 bits in Section 22.5.6 "Cache Controller Maintenance Register 1", bitfield description completed. "0xXX - 0xFC" offset replaced with "0x38 - 0xFC" in the last row in Table 22-1 "Register Mapping". In Figure 22-	8373
	1, replaced "Cortex MPPB" with "APB Interface" in Block Diagram.	
	TRWIDTH bittield description table completed in Section 23.6.2 "Transfer Control Register".	8303
	Updated Section 23.1 "Description" and Section 23.5.2 "CRC Calculation Unit Operation".	rto
	PDC	
	Offset data for Register Mapping updated in Table 27-1 "Register Mapping".	7976
	"ABP bridge" changed to "APB bridge" in Section 27.1 "Description".	rfo
	PMC	
	Section 28.5.6 "Software Sequence to Detect the Presence of Fast Crystal" added.	8371
	Updated CKGR_MOR register reset value to 0x0000_0008 in Section 29.17 "Power Management Controller (PMC) User Interface".	8448
	CHIPID	
	Section 30.3.1 "Chip ID Register", in ARCH bitfield description table, rows sharing SAM3/SAM4 names reconfigured with standalone rows for each name.	7730 7977,
	Section 30.3.1 "Chip ID Register", in ARCH bitfield description table, various devices added or removed.	8034, 8383
	Section 30.3.1 "Chip ID Register", in SRAMSIZ bitfield description table, replaced 1K/1Kbyte with 192K/192Kbyte for value1.	8036
	In Section 30.2 "Embedded Characteristics", updated Table 30-1 "SAM4S Chip ID Registers".	rfo
	PIO	
	DSIZE bit description updated in Section 31.7.49 "PIO Parallel Capture Mode Register".	7705
	Section 31.4.2 "External Interrupt Lines" added. Section 31.4.4 "Interrupt Generation" updated.	rfo
	SSC	
	Removed Table 30-4 in Section 32.7.1.1 "Clock Divider".	7303
	Last line (PDC register) updated in Table 32-5 "Register Mapping".	7071
	Reworked tables and bitfield descriptions in Section 32.9.3 "SSC Receive Clock Mode Register", Section 32.9.4 "SSC Receive Frame Mode Register", Section 32.9.5 "SSC Transmit Clock Mode Register", Section 32.9.6 "SSC Transmit Frame Mode Register".	8466
	SPI	
	In Section 33.2 "Embedded Characteristics", added the 2 first bullets, deleted the previous last bullet.	8544