
Microchip Technology - ATSAM4S2BB-AN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 47

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4s2bb-an

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4s2bb-an-4388068
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector
table are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the
“Vector Table Offset Register” .

12.8.2.1 NVIC Programming Hints

The software uses the CPSIE I and CPSID I instructions to enable and disable the interrupts. The CMSIS provides
the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts

void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS
documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:

 The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit
integers, so that:

̶ The array ISER[0] to ISER[1] corresponds to the registers ISER0–ISER1

̶ The array ICER[0] to ICER[1] corresponds to the registers ICER0–ICER1

̶ The array ISPR[0] to ISPR[1] corresponds to the registers ISPR0–ISPR1

̶ The array ICPR[0] to ICPR[1] corresponds to the registers ICPR0–ICPR1

̶ The array IABR[0] to IABR[1] corresponds to the registers IABR0–IABR1

 The Interrupt Priority Registers (IPR0–IPR8) provide an 8-bit priority field for each interrupt and each register
holds four priority fields.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-30
shows how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables
that have one bit per interrupt.

Table 12-29. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (IRQ-Number) if IRQn is pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

void NVIC_SystemReset (void) Reset the system

Table 12-30. Mapping of Interrupts

Interrupts

CMSIS Array Elements (1)

Set-enable Clear-enable Set-pending Clear-pending Active Bit

0–31 ISER[0] ICER[0] ISPR[0] ICPR[0] IABR[0]

32–35 ISER[1] ICER[1] ISPR[1] ICPR[1] IABR[1]
197SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write

• PRI_15: Priority

Priority of system handler 15, SysTick exception.

• PRI_14: Priority

Priority of system handler 14, PendSV.

31 30 29 28 27 26 25 24

PRI_15

23 22 21 20 19 18 17 16

PRI_14

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

222

16. Real-time Clock (RTC)

16.1 Description

The Real-time Clock (RTC) peripheral is designed for very low power consumption. For optimal functionality, the
RTC requires an accurate external 32.768 kHz clock, which can be provided by a crystal oscillator.

It combines a complete time-of-day clock with alarm and a Gregorian or Persian calendar, complemented by a
programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit data bus.

The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour
mode or 12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit
data bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an
incompatible date according to the current month/year/century.

A clock divider calibration circuitry can be used to compensate for crystal oscillator frequency inaccuracy.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from
32.768 kHz.

16.2 Embedded Characteristics
 Ultra Low Power Consumption

 Full Asynchronous Design

 Gregorian Calendar up to 2099 or Persian Calendar

 Programmable Periodic Interrupt

 Safety/security features:

̶ Valid Time and Date Programmation Check

̶ On-The-Fly Time and Date Validity Check

 Crystal Oscillator Clock Calibration

 Waveform Generation

 Register Write Protection
293SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

18. Supply Controller (SUPC)

18.1 Description

The Supply Controller (SUPC) controls the supply voltages of the system and manages the Backup mode. In this
mode, current consumption is reduced to a few microamps for backup power retention. Exit from this mode is
possible on multiple wake-up sources. The SUPC also generates the slow clock by selecting either the low-power
RC oscillator or the low-power crystal oscillator.

18.2 Embedded Characteristics
 Manages the Core Power Supply VDDCORE and Backup Mode by Controlling the Embedded Voltage

Regulator

 A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE Triggers a Core Reset

 Generates the Slow Clock SLCK by Selecting Either the 22-42 kHz Low-Power RC Oscillator or the 32 kHz
Low-Power Crystal Oscillator

 Low-power Tamper Detection on Two Inputs

 Anti-tampering by Immediate Clear of the General-purpose Backup Registers

 Supports Multiple Wake-up Sources for Exit from Backup Mode

̶ 16 Wake-up Inputs with Programmable Debouncing

̶ Real-Time Clock Alarm

̶ Real-Time Timer Alarm

̶ Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage Threshold
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

328

Figure 18-3. Raising the VDDIO Power Supply

18.4.6 Core Reset

The Supply Controller manages the vddcore_nreset signal to the Reset Controller, as described in Section 18.4.5
”Backup Power Supply Reset”. The vddcore_nreset signal is normally asserted before shutting down the core
power supply and released as soon as the core power supply is correctly regulated.

There are two additional sources which can be programmed to activate vddcore_nreset:

 a supply monitor detection

 a brownout detection

18.4.6.1 Supply Monitor Reset

The supply monitor is capable of generating a reset of the system. This is enabled by setting the SMRSTEN bit in
SUPC_SMMR.

If SMRSTEN is set and if a supply monitor detection occurs, the vddcore_nreset signal is immediately activated for
a minimum of one slow clock cycle.

18.4.6.2 Brownout Detector Reset

The brownout detector provides the bodcore_in signal to the SUPC. This signal indicates that the voltage
regulation is operating as programmed. If this signal is lost for longer than 1 slow clock period while the voltage
regulator is enabled, the SUPC asserts vddcore_nreset if BODRSTEN is written to 1 in SUPC_MR.

Zero-Power Power-On
Reset Cell output

22 - 42 kHz RC
Oscillator output

Fast RC
Oscillator output

Backup Power Supply

vr_on

bodcore_in

vddcore_nreset

NRST
(no ext. drive assumed)

proc_nreset

Note: After “proc_nreset” rising, the core starts fetching instructions from Flash at 4 MHz.

periph_nreset

7 x Slow Clock Cycles 3 x Slow Clock
Cycles

2 x Slow Clock
Cycles

6.5 x Slow Clock
Cycles

TON Voltage
Regulator

Zero-Power POR

Core Power Supply

RSTC.ERSTL

(5 for startup slow RC + 2 for synchro.)

default = 2
333SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23. Cyclic Redundancy Check Calculation Unit (CRCCU)

23.1 Description

The Cyclic Redundancy Check Calculation Unit (CRCCU) has its own DMA which functions as a Master with the
Bus Matrix. Three different polynomials are available: CCITT802.3, CASTAGNOLI and CCITT16.

The CRCCU is designed to perform data integrity checks of off-/on-chip memories as a background task without
CPU intervention.

23.2 Embedded Characteristics
 Data Integrity Check of Off-/On-Chip Memories

 Background Task Without CPU Intervention

 Performs Cyclic Redundancy Check (CRC) Operation on Programmable Memory Area

 Programmable Bus Burden

Note: The CRCCU is designed to verify data integrity of off-/on-chip memories, thus the CRC must be generated and verified
by the CRCCU. The CRCCU performs the CRC from LSB to MSB. If the CRC has been performed with the same
polynomial by another device, a bit-reverse must be done on each byte before using the CRCCU.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

400

23.6 Transfer Control Registers Memory Mapping

Note: These registers are memory mapped.

Table 23-2. Transfer Control Register Memory Mapping

Offset Register Name Access Reset

CRCCU_DSCR + 0x0 CRCCU Transfer Address Register TR_ADDR Read/Write 0x00000000

CRCCU_DSCR + 0x4 CRCCU Transfer Control Register TR_CTRL Read/Write 0x00000000

CRCCU_DSCR + 0xC–0x10 Reserved – – –

CRCCU_DSCR+0x10 CRCCU Transfer Reference Register TR_CRC Read/Write 0x00000000
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

404

31.6.23 PIO Pull-Up Status Register

Name: PIO_PUSR

Address: 0x400E0E68 (PIOA), 0x400E1068 (PIOB), 0x400E1268 (PIOC)

Access: Read-only

• P0–P31: Pull-Up Status

0: Pull-up resistor is enabled on the I/O line.

1: Pull-up resistor is disabled on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

610

• CKG: Receive Clock Gating Selection

• START: Receive Start Selection

• STOP: Receive Stop Selection

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

• STTDLY: Receive Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

• PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD + 1) Receive Clock.

Value Name Description

0 CONTINUOUS None

1 EN_RF_LOW Receive Clock enabled only if RF Low

2 EN_RF_HIGH Receive Clock enabled only if RF High

Value Name Description

0 CONTINUOUS
Continuous, as soon as the receiver is enabled, and immediately after the end of transfer of the
previous data.

1 TRANSMIT Transmit start

2 RF_LOW Detection of a low level on RF signal

3 RF_HIGH Detection of a high level on RF signal

4 RF_FALLING Detection of a falling edge on RF signal

5 RF_RISING Detection of a rising edge on RF signal

6 RF_LEVEL Detection of any level change on RF signal

7 RF_EDGE Detection of any edge on RF signal

8 CMP_0 Compare 0
663SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

32.9.8 SSC Transmit Holding Register

Name: SSC_THR

Address: 0x40004024

Access: Write-only

• TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in SSC_TFMR.

31 30 29 28 27 26 25 24

TDAT

23 22 21 20 19 18 17 16

TDAT

15 14 13 12 11 10 9 8

TDAT

7 6 5 4 3 2 1 0

TDAT
671SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 34-22. Multi-master Flowchart

34.7.5 Slave Mode

34.7.5.1 Definition

Slave mode is defined as a mode where the device receives the clock and the address from another device called
the master.

Programm the SLAVE mode:
SADR + MSDIS + SVEN

SVACC = 1 ?

TXCOMP = 1 ?

GACC = 1 ?

Decoding of the
programming sequence

Prog seq
OK ?

Change SADR

SVREAD = 1 ?

Read Status Register

RXRDY= 1 ?

Read TWI_RHR

TXRDY= 1 ?EOSACC = 1 ?

Write in TWI_THR

Need to perform
a master access ?

Program the Master mode
DADR + SVDIS + MSEN + CLK + R / W

Read Status Register

ARBLST = 1 ?

MREAD = 1 ?

TXRDY= 0 ?

Write in TWI_THRData to send ?

RXRDY= 0 ?

Read TWI_RHR Data to read?

Stop transfer

Read Status Register

TXCOMP = 0 ?

GENERAL CALL TREATMENT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

No No

No No

No

START
737SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

35.6.5 UART Interrupt Mask Register

Name: UART_IMR

Address: 0x400E0610 (0), 0x400E0810 (1)

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

• RXRDY: Mask RXRDY Interrupt

• TXRDY: Disable TXRDY Interrupt

• ENDRX: Mask End of Receive Transfer Interrupt

• ENDTX: Mask End of Transmit Interrupt

• OVRE: Mask Overrun Error Interrupt

• FRAME: Mask Framing Error Interrupt

• PARE: Mask Parity Error Interrupt

• TXEMPTY: Mask TXEMPTY Interrupt

• TXBUFE: Mask TXBUFE Interrupt

• RXBUFF: Mask RXBUFF Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – RXBUFF TXBUFE – TXEMPTY –

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX – TXRDY RXRDY
773SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

37.7.16 TC QDEC Interrupt Disable Register

Name: TC_QIDR

Address: 0x400100CC (0), 0x400140CC (1)

Access: Write-only

• IDX: Index

0: No effect.

1: Disables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change

0: No effect.

1: Disables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error

0: No effect.

1: Disables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

900

Figure 39-10. Method 1 (UPDM = 0)

Method 2: Manual write of duty-cycle values and automatic trigger of the update

In this mode, the update of the period value, the duty-cycle values, the dead-time values and the update period
value must be done by writing in their respective update registers with the processor (respectively
PWM_CPRDUPDx, PWM_CDTYUPDx, PWM_DTUPDx and PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK in the
PWM_SCUC register, which updates synchronously (at the same PWM period) the synchronous channels:

 If the bit UPDULOCK is set to ‘1’, the update is done at the next PWM period of the synchronous channels.

 If the UPDULOCK bit is not set to ‘1’, the update is locked and cannot be performed.

After writing the UPDULOCK bit to ‘1’, it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the update period by the UPR field in the
PWM_SCUP register. The PWM controller waits UPR+1 period of synchronous channels before updating
automatically the duty values and the update period value.

The status of the duty-cycle value write is reported in the PWM Interrupt Status Register 2 (PWM_ISR2) by the
following flags:

 WRDY: this flag is set to ‘1’ when the PWM Controller is ready to receive new duty-cycle values and a new
update period value. It is reset to ‘0’ when the PWM_ISR2 register is read.

Depending on the interrupt mask in the PWM Interrupt Mask Register 2 (PWM_IMR2), an interrupt can be
generated by these flags.

Sequence for Method 2:

1. Select the manual write of duty-cycle values and the automatic update by setting the field UPDM to ‘1’ in
the PWM_SCM register

2. Define the synchronous channels by the bits SYNCx in the PWM_SCM register.

3. Define the update period by the field UPR in the PWM_SCUP register.

4. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.

5. If an update of the period value and/or of the dead-time values is required, write registers that need to be
updated (PWM_CPRDUPDx, PWM_DTUPDx), else go to Step 8.

6. Set UPDULOCK to ‘1’ in PWM_SCUC.

7. The update of these registers will occur at the beginning of the next PWM period. At this moment the bit
UPDULOCK is reset, go to Step 5. for new values.

8. If an update of the duty-cycle values and/or the update period is required, check first that write of new update
values is possible by polling the flag WRDY (or by waiting for the corresponding interrupt) in the PWM_ISR2.

9. Write registers that need to be updated (PWM_CDTYUPDx, PWM_SCUPUPD).

CCNT0

CDTYUPD 0x20 0x40 0x60

UPDULOCK

CDTY 0x20 0x40 0x60
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

968

2. During the Status OUT stage, the host emits a zero length packet to the device (Data OUT transaction with no
data).

40.6.2 Handling Transactions with USB 2.0 Device Peripheral

40.6.2.1 Setup Transaction

Setup is a special type of host-to-device transaction used during control transfers. Control transfers must be
performed using endpoints with no ping-pong attributes. A setup transaction needs to be handled as soon as
possible by the firmware. It is used to transmit requests from the host to the device. These requests are then
handled by the USB device and may require more arguments. The arguments are sent to the device by a Data
OUT transaction which follows the setup transaction. These requests may also return data. The data is carried out
to the host by the next Data IN transaction which follows the setup transaction. A status transaction ends the
control transfer.

When a setup transfer is received by the USB endpoint:

 The USB device automatically acknowledges the setup packet

 RXSETUP is set in the UDP_CSRx

 An endpoint interrupt is generated while the RXSETUP is not cleared. This interrupt is carried out to the
microcontroller if interrupts are enabled for this endpoint.

Thus, firmware must detect the RXSETUP polling the UDP_CSRx or catching an interrupt, read the setup packet
in the FIFO, then clear the RXSETUP. RXSETUP cannot be cleared before the setup packet has been read in the
FIFO. Otherwise, the USB device would accept the next Data OUT transfer and overwrite the setup packet in the
FIFO.

Figure 40-5. Setup Transaction Followed by a Data OUT Transaction

RX_Data_BKO
(UDP_CSRx)

ACK
PIDData OUTData OUT

PID
NAK
PID

ACK
PIDData SetupSetup PIDUSB

Bus Packets

RXSETUP Flag

Set by USB Device Cleared by Firmware
Set by USB
Device Peripheral

FIFO (DPR)
Content

Data Setup DataXX XX OUT

Interrupt Pending

Setup Received Setup Handled by Firmware Data Out Received

Data OUTData OUT
PID
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1034

• WAKEUP: USB Bus Wakeup Interrupt

0: USB Bus Wakeup Interrupt is disabled

1: USB Bus Wakeup Interrupt is enabled

Note: When the USB block is in suspend mode, the application may power down the USB logic. In this case, any USB HOST resume
request that is made must be taken into account and, thus, the reset value of the RXRSM bit of the register UDP_IMR is enabled.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1054

41.7.5 ACC Interrupt Mask Register

Name: ACC_IMR

Address: 0x4004002C

Access: Read-only

• CE: Comparison Edge

0: The interrupt is disabled.

1: The interrupt is enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – CE
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1078

Figure 44-17. USB Data Signal Rise and Fall Times

10% 10%

90%VCRS

tr tf
Differential
Data Lines

Rise Time Fall Time

fOSC = 6 MHz/750 kHz
REXT = 27 �

CLOADBuffer

(b)

(a)
1171SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

10-bit ADC Mode

In 10-bit mode, the ADC produces 12-bit output but the output data in the register ADC_CDRx is shifted two bits to
the right, removing the two LSBs of the 12-bit ADC.

The gain and offset have the same values as for 12-bit mode, with digital full-scale output code range reduced to
1024 (vs 4096).

The INL and DNL have the same values as for 12-bit mode.

The dynamic performances are the 12-bit mode values, reduced by 12 dB.

Low Voltage Supply

The ADC performs in 10-bit mode or in 12-bit mode. Working at low voltage (VDDIN or/and VADVREF) between 2 and
2.4V is subject to the following restrictions:

 The field IBCTL must be 00 to reduce the biasing of the ADC under low voltage. See Section 44.8.1.1 “ADC
Bias Current”.

 In 10-bit mode, the ADC clock should not exceed 5 MHz (max signal bandwidth is 250 kHz).

 In 12-bit mode, the ADC clock should not exceed 2 MHz (max signal bandwidth is 100 kHz).

44.8.5.3 ADC Channel Input Impedance

Figure 44-20. Input Channel Model

where:

 Zi is input impedance in single-ended or differential mode

 Ci = 1 to 8 pF ±20% depending on the gain value and mode (SE or DIFF); temperature dependency is
negligible

 RON is typical 2 kΩ and 8 kΩ max (worst case process and high temperature)

 RON is negligible regarding the value of Zi

The following formula is used to calculate input impedance:

where:

 fS is the sampling frequency of the ADC channel

 Typ values are used to compute ADC input impedance Zi

Ci

Zi

RON

GND

Single-ended model

Ci

RON

Differential model

Zi

RON

Zi
1

fS Ci×
----------------=
1179SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1218

46. Marking

All devices are marked with the Atmel logo and the ordering code.

Additional marking is as follows:

where

 “YY”: manufactory year

 “WW”: manufactory week

 “V”: revision

 “XXXXXXXXX”: lot number

YYWW V
XXXXXXXXX ARM

