

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s2cb-anr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.6 100-ball VFBGA Pinout

Table 4-3. SAM4SD32/SD16/SA16/S16/S8/S4/S2 100-ball VFBGA Pinout

A1	ADVREF	C6	PC9	F1	VDDOUT	H	H6	PA12/PGMD0
A2	VDDPLL	C7	TMS/SWDIO/PB6	F2	PA18/PGMD6/AD1	F	H7	PA9/PGMM1
A3	PB9/PGMCK/XIN	C8	PA1/PGMEN1	F3	PA17/PGMD5/AD0	F	-18	VDDCORE
A4	PB8/XOUT	C9	PA0/PGMEN0	F4	GND	H	-19	PA6/PGMNOE
A5	JTAGSEL	C10	PC16	F5	GND	Н	110	PA5/PGMRDY
A6	DDP/PB11	D1	PB1/AD5	F6	PC26		J1	PA20/AD3/PGMD8
A7	DDM/PB10	D2	PC30/AD14	F7	PA4/PGMNCMD		J2	PC12/AD12
A8	PC20	D3	PC31	F8	PA28		J3	PA16/PGMD4
A9	PC19	D4	PC22	F9	TST		J4	PC6
A10	TDO/TRACESWO/PB5	D5	PC5	F10	PC8		J5	PA24/PGMD12
B1	GNDANA	D6	PA29	G1	PC15/AD11		J6	PA25/PGMD13
B2	PC25	D7	PA30	G2	PA19/PGMD7/AD2		J7	PA11/PGMM3
B3	PB14/DAC1	D8	GND	G3	PA21/AD8/PGMD9		J8	VDDCORE
B4	PB13/DAC0	D9	PC14	G4	PA15/PGMD3		J9	VDDCORE
B5	PC23	D10	PC11	G5	PC3	J	10	TDI/PB4
B6	PC21	E1	VDDIN	G6	PA10/PGMM2	۲	< 1	PA23/PGMD11
B7	TCK/SWCLK/PB7	E2	PB3/AD7	G7	PC1	k	<2	PC0
B8	PA31	E3	PB2/AD6	G8	PC28	۲	< 3	PC7
B9	PC18	E4	GND	G9	NRST	۲	< 4	PA13/PGMD1
B10	PC17	E5	GND	G10	PA27/PGMD15	۲	< 5	PA26/PGMD14
C1	PB0/AD4	E6	GND	H1	PC13/AD10	۲	< 6	PC2
C2	PC29/AD13	E7	VDDIO	H2	PA22/AD9/PGMD10	۲	< 7	VDDIO
C3	PC24	E8	PC10	H3	PC27	۲	< 8	VDDIO
C4	ERASE/PB12	E9	PA2/PGMEN2	H4	PA14/PGMD2	۲	< 9	PA8/XOUT32/PGMM0
C5	VDDCORE	E10	PA3	H5	PC4	к	10	PA7/XIN32/ PGMNVALID

5.6.1 Backup Mode

The purpose of Backup mode is to achieve the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is 1 μ A typical (VDDIO = 1.8V at 25°C).

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or crystal oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

The SAM4S can be woke up from this mode using the pins WKUP0–15, the supply monitor (SM), the RTT or RTC wake-up event.

Backup mode is entered by writing a 1 to the VROFF bit of the Supply Controller Control Register (SUPC_CR) (A key is needed to write the VROFF bit; refer to Section 18. "Supply Controller (SUPC)".) and with the SLEEPDEEP bit in the Cortex-M4 System Control Register set to 1. (See the power management description in Section 12. "ARM Cortex-M4 Processor").

To enter Backup mode using the VROFF bit:

1. Write a 1 to the VROFF bit of SUPC_CR.

To enter Backup mode using the WFE instruction:

- 1. Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
- 2. Execute the WFE instruction of the processor.

In both cases, exit from Backup mode happens if one of the following enable wake-up events occurs:

- Level transition, configurable debouncing on pins WKUPEN0-15
- Supply Monitor alarm
- RTC alarm
- RTT alarm

5.6.2 Wait Mode

The purpose of Wait mode is to achieve very low power consumption while maintaining the whole device in a powered state for a startup time of less than 10 μ s. Current consumption in Wait mode is typically 32 μ A (total current consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered by setting the WAITMODE bit to 1 in the PMC Clock Generator Main Oscillator Register (CKGR_MOR) in conjunction with the Flash Low Power Mode field FLPM = 0 or FLPM = 1 in the PMC Fast Startup Mode Register (PMC_FSMR) or by the WFE instruction.

The Cortex-M4 is able to handle external or internal events in order to wake-up the core. This is done by configuring the external lines WKUP0–15 as fast startup wake-up pins (refer to Section 5.8 "Fast Start-up"). RTC or RTT Alarm and USB wake-up events can be used to wake up the CPU.

To enter Wait mode with WAITMODE bit:

- 1. Select the 4/8/12 MHz fast RC oscillator as Main Clock.
- 2. Set the FLPM field in the PMC_FSMR.
- 3. Set Flash wait state to 0.
- 4. Set the WAITMODE bit = 1 in CKGR_MOR.
- 5. Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR).

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic	Operands	Description	Flags
QSUB16	{Rd,} Rn, Rm	Saturating Subtract 16	-
QSUB8	{Rd,} Rn, Rm	Saturating Subtract 8	-
RBIT	Rd, Rn	Reverse Bits	_
REV	Rd, Rn	Reverse byte order in a word	_
REV16	Rd, Rn	Reverse byte order in each halfword	-
REVSH	Rd, Rn	Reverse byte order in bottom halfword and sign extend	-
ROR, RORS	Rd, Rm, <rs #n></rs #n>	Rotate Right	N,Z,C
RRX, RRXS	Rd, Rm	Rotate Right with Extend	N,Z,C
RSB, RSBS	{Rd,} Rn, Op2	Reverse Subtract	N,Z,C,V
SADD16	{Rd,} Rn, Rm	Signed Add 16	GE
SADD8	{Rd,} Rn, Rm	Signed Add 8 and Subtract with Exchange	GE
SASX	{Rd,} Rn, Rm	Signed Add	GE
SBC, SBCS	{Rd,} Rn, Op2	Subtract with Carry	N,Z,C,V
SBFX	Rd, Rn, #lsb, #width	Signed Bit Field Extract	-
SDIV	{Rd,} Rn, Rm	Signed Divide	_
SEL	{Rd,} Rn, Rm	Select bytes	-
SEV	-	Send Event	-
SHADD16	{Rd,} Rn, Rm	Signed Halving Add 16	-
SHADD8	{Rd,} Rn, Rm	Signed Halving Add 8	-
SHASX	{Rd,} Rn, Rm	Signed Halving Add and Subtract with Exchange	-
SHSAX	{Rd,} Rn, Rm	Signed Halving Subtract and Add with Exchange	-
SHSUB16	{Rd,} Rn, Rm	Signed Halving Subtract 16	-
SHSUB8	{Rd,} Rn, Rm	Signed Halving Subtract 8	-
SMLABB, SMLABT, SMLATB, SMLATT	Rd, Rn, Rm, Ra	Signed Multiply Accumulate Long (halfwords)	Q
SMLAD, SMLADX	Rd, Rn, Rm, Ra	Signed Multiply Accumulate Dual	Q
SMLAL	RdLo, RdHi, Rn, Rm	Signed Multiply with Accumulate ($32 \times 32 + 64$), 64-bit result	-
SMLALBB, SMLALBT, SMLALTB, SMLALTT	RdLo, RdHi, Rn, Rm	Signed Multiply Accumulate Long, halfwords	-
SMLALD, SMLALDX	RdLo, RdHi, Rn, Rm	Signed Multiply Accumulate Long Dual	-
SMLAWB, SMLAWT	Rd, Rn, Rm, Ra	Signed Multiply Accumulate, word by halfword	Q
SMLSD	Rd, Rn, Rm, Ra	Signed Multiply Subtract Dual	Q
SMLSLD	RdLo, RdHi, Rn, Rm	Signed Multiply Subtract Long Dual	
SMMLA	Rd, Rn, Rm, Ra	Signed Most significant word Multiply Accumulate	-
SMMLS, SMMLR	Rd, Rn, Rm, Ra	Signed Most significant word Multiply Subtract	-
SMMUL, SMMULR	{Rd,} Rn, Rm	Signed Most significant word Multiply	_
SMUAD	{Rd,} Rn, Rm	Signed dual Multiply Add	Q

12.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax

```
B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm
```

where:

В	is branch (immediate).
BL	is branch with link (immediate).
BX	is branch indirect (register).
BLX	is branch indirect with link (register).
cond	is an optional condition code, see "Conditional Execution" .
label	is a PC-relative expression. See "PC-relative Expressions" .
Rm	is a register that indicates an address to branch to. Bit[0] of the value in <i>Rm</i> must be 1, but the address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

- The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
- The BX and BLX instructions result in a UsageFault exception if bit[0] of *Rm* is 0.

B*cond* label is the only conditional instruction that can be either inside or outside an IT block. All other branch instructions must be conditional inside an IT block, and must be unconditional outside the IT block, see "IT".

The table below shows the ranges for the various branch instructions.

Instruction	Branch Range			
B label	-16 MB to +16 MB			
Bcond label (outside IT block)	–1 MB to +1 MB			
Bcond label (inside IT block)	-16 MB to +16 MB			
BL{ <i>cond</i> } label	-16 MB to +16 MB			
BX{ <i>cond</i> } Rm	Any value in register			
BLX{ <i>cond</i> } Rm	Any value in register			

Table 12-26. Branch Ranges

The .W suffix might be used to get the maximum branch range. See "Instruction Width Selection" .

Restrictions

The restrictions are:

- Do not use PC in the BLX instruction
- For BX and BLX, bit[0] of *Rm* must be 1 for correct execution but a branch occurs to the target address created by changing bit[0] to 0
- When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

B*cond* is the only conditional instruction that is not required to be inside an IT block. However, it has a longer branch range when it is inside an IT block.

12.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read/Write

31	30	29	28	27	26	25	24
			PRI	_15			
23	22	21	20	19	18	17	16
			PRI	_14			
15	14	13	12	11	10	9	8
_	-	_	-	-	-	_	-
7	6	5	4	3	2	1	0
_	-	-	_	_	_	_	-

• PRI_15: Priority

Priority of system handler 15, SysTick exception.

• PRI_14: Priority

Priority of system handler 14, PendSV.

22.4.2.1 Cache Invalidate-by-Line Operation

When an invalidate-by-line command is issued, the cache controller resets the valid bit information of the decoded cache line. As the line is no longer valid, the replacement counter points to that line.

Use the following sequence to invalidate one line of cache:

- 1. Disable the cache controller by clearing the CEN bit of CMCC_CTRL.
- 2. Check the CSTS bit of CMCC_SR to verify that the cache is successfully disabled.
- 3. Perform an invalidate-by-line by configuring the bits INDEX and WAY in the Maintenance Register 1 (CMCC_MAINT1).
- 4. Enable the cache controller by writing a one the CEN bit of the CMCC_CTRL.

22.4.2.2 Cache Invalidate All Operation

To invalidate all cache entries, write a one to the INVALL bit of the Maintenance Register 0 (CMCC_MAINT0).

22.4.3 Cache Performance Monitoring

The Cortex-M cache controller includes a programmable 32-bit monitor counter. The monitor can be configured to count the number of clock cycles, the number of data hits or the number of instruction hits.

Use the following sequence to activate the counter:

- 1. Configure the monitor counter by writing to the MODE field of the Monitor Configuration register (CMCC_MCFG).
- 2. Enable the counter by writing a one to the MENABLE bit of the Monitor Enable register (CMCC_MEN).
- If required, clear the counter by writing a one to the SWRST bit of the Monitor Control register (CMCC_MCTRL).
- 4. Check the value of the monitor counter by reading the EVENT_CNT field of the CMCC_MSR.

26.7.2 NAND Flash Support

The SMC integrates circuitry that interfaces to NAND Flash devices.

The NAND Flash logic is driven by the SMC. It depends on the programming of the SMC_NFCSx field in the CCFG_SMCNFCS register on the Bus Matrix User Interface. For details on this register, refer to the section "Bus Matrix (MATRIX)" of this datasheet. Access to an external NAND Flash device via the address space reserved to the chip select programmed.

The user can connect up to four NAND Flash devices with separate chip selects.

The NAND Flash logic drives the read and write command signals of the SMC on the NANDOE and NANDWE signals when the NCSx programmed is active. NANDOE and NANDWE are disabled as soon as the transfer address fails to lie in the NCSx programmed address space.

Figure 26-3. NAND Flash Signal Multiplexing on SMC Pins

* in CCFG_SMCNFCS Matrix register

- Note: When the NAND Flash logic is activated, (SMC_NFCSx=1), the NWE pin cannot be used in PIO mode but only in Peripheral mode (NWE function). If the NWE function is not used for other external memories (SRAM, LCD), it must be configured in one of the following modes:
 - PIO Input with pull-up enabled (default state after reset)
 - PIO Output set at level 1

The address latch enable and command latch enable signals on the NAND Flash device are driven by address bits A22 and A21of the address bus. Any bit of the address bus can also be used for this purpose. The command, address or data words on the data bus of the NAND Flash device use their own addresses within the NCSx address space (configured by the register CCFG_SMCNFCS on the Bus Matrix User Interface). The chip enable (CE) signal of the device and the ready/busy (R/B) signals are connected to PIO lines. The CE signal then remains asserted even when NCS3 is not selected, preventing the device from returning to Standby mode. The NANDCS output signal should be used in accordance with the external NAND Flash device type.

Two types of CE behavior exist depending on the NAND Flash device:

- Standard NAND Flash devices require that the CE pin remains asserted Low continuously during the read busy period to prevent the device from returning to Standby mode. Since the SMC asserts the NCSx signal High, it is necessary to connect the CE pin of the NAND Flash device to a GPIO line, in order to hold it low during the busy period preceding data read out.
- This restriction has been removed for "CE don't care" NAND Flash devices. The NCSx signal can be directly connected to the CE pin of the NAND Flash device.

Figure 26-4 illustrates both topologies: Standard and "CE don't care" NAND Flash.

31.5.15 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:

- PIO Enable Register
- PIO Disable Register
- PIO Output Enable Register
- PIO Output Disable Register
- PIO Input Filter Enable Register
- PIO Input Filter Disable Register
- PIO Multi-driver Enable Register
- PIO Multi-driver Disable Register
- PIO Pull-Up Disable Register
- PIO Pull-Up Enable Register
- PIO Peripheral ABCD Select Register 1
- PIO Peripheral ABCD Select Register 2
- PIO Output Write Enable Register
- PIO Output Write Disable Register
- PIO Pad Pull-Down Disable Register
- PIO Pad Pull-Down Enable Register
- PIO Parallel Capture Mode Register

31.6.25 PIO Peripheral ABCD Select Register 2

Name: PIO_	ABCDSR2
------------	---------

Access: Read/Write

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Peripheral Select

If the same bit is set to 0 in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral C function.

If the same bit is set to 1 in PIO_ABCDSR1:

- 0: Assigns the I/O line to the Peripheral B function.
- 1: Assigns the I/O line to the Peripheral D function.

32.9.5 SSC Transmit Clock Mode Register

Name:	SSC_TCMR						
Address:	0x40004018						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			PER	RIOD			
23	22	21	20	19	18	17	16
			511	DLY			
15	14	13	12	11	10	9	8
-	-	-	Ι		STA	ART	
7	6	5	4	3	2	1	0
	CKG	CKI		CKO		C	KS

This register can only be written if the WPEN bit is cleared in the SSC Write Protection Mode Register.

CKS: Transmit Clock Selection

Value	Name	Description
0	МСК	Divided Clock
1	RK	RK Clock signal
2	ТК	TK pin

CKO: Transmit Clock Output Mode Selection

Value	Name	Description
0	NONE	None, TK pin is an input
1	CONTINUOUS	Continuous Transmit Clock, TK pin is an output
2	TRANSFER	Transmit Clock only during data transfers, TK pin is an output

• CKI: Transmit Clock Inversion

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal input is sampled on Transmit clock rising edge.

1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

• CKG: Transmit Clock Gating Selection

Value	Name	Description
0	CONTINUOUS	None
1	EN_TF_LOW	Transmit Clock enabled only if TF Low
2	EN_TF_HIGH	Transmit Clock enabled only if TF High

33.8.8 SPI Interrupt Mask Register

Name:	SPI_IMR						
Address:	0x4000801C						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	_	_	-	-	-
15	14	13	12	11	10	9	8
_	_	—	_	_	UNDES	TXEMPTY	NSSR
7	6	5	4	3	2	1	0
TXBUFE	RXBUFF	ENDTX	ENDRX	OVRES	MODF	TDRE	RDRF

The following configuration values are valid for all listed bit names of this register:

- 0: The corresponding interrupt is not enabled.
- 1: The corresponding interrupt is enabled.
- RDRF: Receive Data Register Full Interrupt Mask
- TDRE: SPI Transmit Data Register Empty Interrupt Mask
- MODF: Mode Fault Error Interrupt Mask
- OVRES: Overrun Error Interrupt Mask
- ENDRX: End of Receive Buffer Interrupt Mask
- ENDTX: End of Transmit Buffer Interrupt Mask
- RXBUFF: Receive Buffer Full Interrupt Mask
- TXBUFE: Transmit Buffer Empty Interrupt Mask
- NSSR: NSS Rising Interrupt Mask
- TXEMPTY: Transmission Registers Empty Mask
- UNDES: Underrun Error Interrupt Mask

36.6 Functional Description

36.6.1 Baud Rate Generator

The baud rate generator provides the bit period clock, also named the baud rate clock, to both the receiver and the transmitter.

The baud rate generator clock source is selected by configuring the USCLKS field in the USART Mode Register (US_MR) to one of the following:

- The peripheral clock
- A division of the peripheral clock, where the divider is product-dependent, but generally set to 8
- The external clock, available on the SCK pin

The baud rate generator is based upon a 16-bit divider, which is programmed with the CD field of the Baud Rate Generator register (US_BRGR). If a 0 is written to CD, the baud rate generator does not generate any clock. If a 1 is written to CD, the divider is bypassed and becomes inactive.

If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin must be longer than a peripheral clock period. The frequency of the signal provided on SCK must be at least 3 times lower than the frequency provided on the peripheral clock in USART mode (field USART_MODE differs from 0xE or 0xF), or 6 times lower in SPI mode (field USART_MODE equals 0xE or 0xF).

Figure 36-2. Baud Rate Generator

36.6.1.1 Baud Rate in Asynchronous Mode

If the USART is programmed to operate in Asynchronous mode, the selected clock is first divided by CD, which is field programmed in the US_BRGR. The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8, depending on how the OVER bit in the US_MR is programmed.

If OVER is set, the receiver sampling is eight times higher than the baud rate clock. If OVER is cleared, the sampling is performed at 16 times the baud rate clock.

The baud rate is calculated as per the following formula:

$$Baudrate = \frac{SelectedClock}{(8(2 - Over)CD)}$$

This gives a maximum baud rate of peripheral clock divided by 8, assuming that the peripheral clock is the highest possible clock and that the OVER bit is set.

Atmel

• Receive data

36.6.5.1 IrDA Modulation

For baud rates up to and including 115.2 kbit/s, the RZI modulation scheme is used. "0" is represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are shown in Table 36-11.

Table 36-11.	IrDA Pulse Duration
--------------	---------------------

Baud Rate	Pulse Duration (3/16)
2.4 kbit/s	78.13 µs
9.6 kbit/s	19.53 µs
19.2 kbit/s	9.77 µs
38.4 kbit/s	4.88 µs
57.6 kbit/s	3.26 µs
115.2 kbit/s	1.63 µs

Figure 36-33 shows an example of character transmission.

Figure 36-33. IrDA Modulation

36.6.5.2 IrDA Baud Rate

Table 36-12 gives some examples of CD values, baud rate error and pulse duration. Note that the requirement on the maximum acceptable error of $\pm 1.87\%$ must be met.

Peripheral Clock	Baud Rate (bit/s)	CD	Baud Rate Error	Pulse Time (µs)
3,686,400	115,200	2	0.00%	1.63
20,000,000	115,200	11	1.38%	1.63
32,768,000	115,200	18	1.25%	1.63
40,000,000	115,200	22	1.38%	1.63
3,686,400	57,600	4	0.00%	3.26
20,000,000	57,600	22	1.38%	3.26
32,768,000	57,600	36	1.25%	3.26
40,000,000	57,600	43	0.93%	3.26
3,686,400	38,400	6	0.00%	4.88
20,000,000	38,400	33	1.38%	4.88
32,768,000	38,400	53	0.63%	4.88
40,000,000	38,400	65	0.16%	4.88

 Table 36-12.
 IrDA Baud Rate Error

37.3 Block Diagram

Name	Definition
TIMER_CLOCK1	MCK/2
TIMER_CLOCK2	MCK/8
TIMER_CLOCK3	MCK/32
TIMER_CLOCK4	MCK/128
TIMER_CLOCK5	SLCK

Table 37-1. Timer Counter Clock Assignment

Note: 1. When SLCK is selected for Peripheral Clock (CSS = 0 in PMC Master Clock Register), SLCK input is equivalent to Peripheral Clock.

Figure 37-1. Timer Counter Block Diagram

Note: The QDEC connections are detailed in Figure 37-15.

37.6.11.1 WAVSEL = 00

When WAVSEL = 00, the value of TC_CV is incremented from 0 to 2^{16} -1. Once 2^{16} -1 has been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle continues. See Figure 37-7.

An external event trigger or a software trigger can reset the value of TC_CV. It is important to note that the trigger may occur at any time. See Figure 37-8.

RC Compare cannot be programmed to generate a trigger in this configuration. At the same time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in TC_CMR).

38.14.12HSMCI Status Register

Name:	HSMCI_SR						
Address:	0x40000040						
Access:	Read-only						
31	30	29	28	27	26	25	24
UNRE	OVRE	ACKRCVE	ACKRCV	XFRDONE	FIFOEMPTY	_	_
23	22	21	20	19	18	17	16
CSTOE	DTOE	DCRCE	RTOE	RENDE	RCRCE	RDIRE	RINDE
15	14	13	12	11	10	9	8
TXBUFE	RXBUFF	CSRCV	SDIOWAIT	_	_	_	SDIOIRQA
7	6	5	4	3	2	1	0
ENDTX	ENDRX	NOTBUSY	DTIP	BLKE	TXRDY	RXRDY	CMDRDY

• CMDRDY: Command Ready (cleared by writing in HSMCI_CMDR)

- 0: A command is in progress.
- 1: The last command has been sent.

• RXRDY: Receiver Ready (cleared by reading HSMCI_RDR)

- 0: Data has not yet been received since the last read of HSMCI_RDR.
- 1: Data has been received since the last read of HSMCI_RDR.

• TXRDY: Transmit Ready (cleared by writing in HSMCI_TDR)

- 0: The last data written in HSMCI_TDR has not yet been transferred in the Shift Register.
- 1: The last data written in HSMCI_TDR has been transferred in the Shift Register.

• BLKE: Data Block Ended (cleared on read)

This flag must be used only for Write Operations.

0: A data block transfer is not yet finished.

1: A data block transfer has ended, including the CRC16 Status transmission. The flag is set for each transmitted CRC Status.

Refer to the MMC or SD Specification for more details concerning the CRC Status.

• DTIP: Data Transfer in Progress (cleared at the end of CRC16 calculation)

0: No data transfer in progress.

1: The current data transfer is still in progress, including CRC16 calculation.

• NOTBUSY: HSMCI Not Busy

A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data transfer block length becomes free.

Refer to the MMC or SD Specification for more details concerning the busy behavior.

39.7.6 PWM Interrupt Disable Register 1

Name:	PWM_IDR1						
Address:	0x40020014						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	_	_	_	-	-	-
						-	-
23	22	21	20	19	18	17	16
-	-	_	_	FCHID3	FCHID2	FCHID1	FCHID0
	-						
15	14	13	12	11	10	9	8
_	-	_	_	_	_	—	-
7	6	5	4	3	2	1	0
_	-	_	_	CHID3	CHID2	CHID1	CHID0

CHIDx: Counter Event on Channel x Interrupt Disable

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Disable

41.7.6 ACC Interrupt Status Register

Name:	ACC_ISR						
Address:	0x40040030						
Access:	Read-only						
31	30	29	28	27	26	25	24
MASK	-	_	_	_	_	-	_
23	22	21	20	19	18	17	16
_	—	—	_	—	—	—	_
15	14	13	12	11	10	9	8
-	-	_	-	-	-	-	-
7	6	5	4	3	2	1	0
_	-	_	_	_	_	SCO	CE

• CE: Comparison Edge (cleared on read)

0: No edge occurred (defined by EDGETYP) on analog comparator output since the last read of ACC_ISR.

1: A selected edge (defined by EDGETYP) on analog comparator output occurred since the last read of ACC_ISR.

• SCO: Synchronized Comparator Output

Returns an image of the analog comparator output after being pre-processed (refer to Figure 41-1 on page 1069). If INV = 0

SCO = 0 if inn > inp SCO = 1 if inp > inn If INV = 1

SCO = 1 if inn > inp

SCO = 0 if inp > inn

• MASK: Flag Mask

0: The CE flag and SCO value are valid.

1: The CE flag and SCO value are invalid.

43.6 Functional Description

43.6.1 Digital-to-Analog Conversion

The DACC uses the peripheral clock divided by two to perform conversions. This clock is named DAC clock. Once a conversion starts, the DACC takes 25 clock periods to provide the analog result on the selected analog output.

43.6.2 Conversion Results

When a conversion is completed, the resulting analog value is available at the selected DACC channel output and the EOC bit in the DACC Interrupt Status Register (DACC_ISR) is set.

Reading the DACC_ISR clears the EOC bit.

43.6.3 Conversion Triggers

In free-running mode, conversion starts as soon as at least one channel is enabled and data is written in the DACC Conversion Data Register (DACC_CDR). 25 DAC clock periods later, the converted data is available at the corresponding analog output as stated above.

In external trigger mode, the conversion waits for a rising edge on the selected trigger to begin.

Warning: Disabling the external trigger mode automatically sets the DACC in free-running mode.

43.6.4 Conversion FIFO

A four half-word FIFO is used to handle the data to be converted.

If the TXRDY flag in the DACC_ISR is active, the DACC is ready to accept conversion requests by writing data into the DATA field in the DACC_CDR. Data which cannot be converted immediately is stored in the DACC FIFO.

When the FIFO is full or when the DACC is not ready to accept conversion requests, the TXRDY flag is inactive.

The WORD field of the DACC Mode Register (DACC_MR) allows the user to switch between half-word and word transfers in order to write into the FIFO.

In half-word transfer mode, only the 16 LSBs of DACC_CDR data are processed. Bits DATA[15:0] are stored in the FIFO. Bits DATA[11:0] are used as data. Bits DATA[15:12] are used for channel selection if the TAG field is set in DACC_MR.

In word transfer mode, each time DACC_CDR is written, two data items are stored in the FIFO. The first data item sampled for conversion is DATA[15:0] and the second is DATA[31:16]. Bits DATA[15:12] and DATA[31:28] are used for channel selection if the TAG field is set in DACC_MR.

Warning: Writing in the DACC_CDR while the TXRDY flag is inactive will corrupt FIFO data.

43.6.5 Channel Selection

There are two ways to select the channel to perform data conversion.

- By default, the USER_SEL field of the DACC_MR is used. Data requests are converted to the channel selected with the USER_SEL field.
- Alternatively, the tag mode can be used by setting the TAG field of the DACC_MR to 1. In this mode, the two bits, DACC_CDR[13:12], which are otherwise unused, are employed to select the channel in the same way as with the USER_SEL field. Finally, if the WORD field is set, the two bits, DACC_CDR[13:12] are used for channel selection of the first data and the two bits, DACC_CDR[29:28] for channel selection of the second data.

43.6.6 DACC Timings

The DACC start-up time must be defined by the user in the STARTUP field of the DACC_MR.

Table 49-10. SAM4S Datasheet Rev. 11100B 31-Jul-12 Revision History (Continued)

Doc. Rev. 11100B	Comments	Change Request Ref.
	PMC	
	Added a note in Section 29.17.7 "PMC Clock Generator Main Oscillator Register" on page 528.	7848
	Max MULA/MULB value changed from 2047 to 62 in Section 29.17.9 "PMC Clock Generator PLLA Register" on page 531 and Section 29.17.10 "PMC Clock Generator PLLB Register" on page 532.	8064
	Step 5 in Section 28.2.13 "Programming Sequence" on page 463: Master Clock option added in CSS field.	8170
	Third paragraph added in Section 28.2.12 "Main Crystal Clock Failure Detector" on page 462. WAITMODE bit added in Section 29.17.7 "PMC Clock Generator Main Oscillator Register" on page 528.	8208
	CHIPID	
	Table 30-1 on page 552 modified.	rfo
	ТС	
	Changed TIOA1 in TIOB1 in Section 37.6.14.1 "Description" on page 860 and Section 37.6.14.4 "Position and Rotation Measurement" on page 865.	8101
	PWM	
	Font size enlarged in Figure 39-14 on page 964.	7910
	"CMPS" replaced with "CMPM" in whole document.	8021
	ADC	
	EOCAL pin and description added in Section 42.7.12 "ADC Interrupt Status Register" on page 1106.	rfo
	PDC register row added in Section 42.7 "Analog-to-Digital Converter (ADC) User Interface" on page 1092.	7969
	Added comment in Section 42.7.15 "ADC Compare Window Register" on page 1109.	8045
	Features added in Section 42.2 "Embedded Characteristics" on page 1077.	8088
	Comments added, and removed "offset" in Section 42.6.11 "Automatic Calibration" on page 1090.	8133
	Electrical Characteristics	
	Whole chapter updated. In tables, values updated, and missing values added.	8085, 8245
	Comment for flash erasing added in Section 44.12.9 "Embedded Flash Characteristics" on page 1199.	8223
	Updated conditions for $V_{\text{LINE-TR}}$ and $V_{\text{LOAD-TR}}$ in Table 44-4 on page 1143.	rfo
	Removed the "ADVREF Current" row from Table 43-30 on page 1059.	rfo
	Updated the "Offset Error" parameter description in Table 43-32 on page 1061.	
	Updated the T _{ACCURACY} parameter description in Table 44-6 on page 1144. Updated the temperature sensor description in Section 44.11 "Temperature Sensor" on page 1180 and the slope accuracy parameter data in Table 44-60 on page 1180.	rfo
	Mechanical Characteristics	
	48 pins packages (SAM4S16A and SAM4S8A devices) removed.	8100
	100-ball VFBGA package drawing added in Figure 45-3 on page 1203.	rfo
	Ordering Information	
	Table 47-1 on page 1216 completed with new devices and reordered.	rfo
	Errata	rfo
	Removed the Flash Memory section.	
	Removed the Errata section and added references for two separate errata documents in Section 47. "Ordering Information" on page 1216.	rfo
	Specified the preliminary status of the datasheet.	rfo