
Microchip Technology - ATSAM4S2CB-CFNR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-VFBGA

Supplier Device Package 100-VFBGA (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4s2cb-cfnr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4s2cb-cfnr-4382220
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4.2.5 64-ball WLCSP Pinout

Table 4-5. SAM4SD32/S32/SD16/S16/S8 64-ball WLCSP Pinout

A1 PA31 C1 GND E1 PA29 G1 PA5

A2 PB7 C2 PA1 E2 TST G2 PA6

A3 VDDCORE C3 PA0 E3 NRST G3 PA9

A4 PB10 C4 PB12 E4 PA28 G4 PA11

A5 VDDIO C5 ADVREF E5 PA25 G5 VDDCORE

A6 GND C6 PB3 E6 PA23 G6 PA14

A7 PB9 C7 PB1 E7 PA18 G7 PA20

A8 PB14 C8 PB0 E8 VDDIN G8 PA19

B1 PB5 D1 VDDIO F1 PA27 H1 PA7

B2 JTAGSEL D2 PA3 F2 VDDCORE H2 PA8

B3 PB6 D3 PA30 F3 PA4 H3 PA10

B4 PB11 D4 PA2 F4 PB4 H4 PA12

B5 PB13 D5 PA13 F5 PA26 H5 PA24

B6 VDDPLL D6 PA21 F6 PA16 H6 PA15

B7 PB8 D7 PA17 F7 PA22 H7 VDDIO

B8 GND D8 PB2 F8 VDDOUT H8 GND

Table 4-6. SAM4S4/S2 64-ball WLCSP Pinout

A1 PB5 C1 GND E1 PA3 G1 VDDCORE

A2 PA31 C2 PA0 E2 PA30 G2 PA4

A3 VDDCORE C3 PB7 E3 PA29 G3 PA9

A4 VDDIO C4 PB12 E4 PA27 G4 PA11

A5 GND C5 PA10 E5 PA24 G5 PA25

A6 PB8 C6 PB0 E6 PA18 G6 PA14

A7 PB9 C7 PB2 E7 PA17 G7 VDDIO

A8 ADVREF C8 PB1 E8 VDDIN G8 PA19

B1 PA1 D1 VDDIO F1 TST H1 PB4

B2 JTAGSEL D2 PA2 F2 NRST H2 PA7

B3 PB10 D3 PA28 F3 PA5 H3 PA8

B4 PB11 D4 PB6 F4 PA6 H4 PA12

B5 PB13 D5 PA26 F5 PA13 H5 VDDCORE

B6 VDDPLL D6 PA23 F6 PA22 H6 PA15

B7 PB14 D7 PA16 F7 PA21 H7 GND

B8 GNDANA D8 PB3 F8 VDDOUT H8 PA20
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

24

12.6.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:

SHADD16 Signed Halving Add 16.

SHADD8 Signed Halving Add 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDB8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1

 ; and writes halved result to corresponding halfword in
 ; R1

SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.
127SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:

SSAT16 Saturates a signed halfword value to a signed range.

USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2

; as 9-bit values, writes to corresponding halfword
 ; of R7

USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

12.6.7.3 QADD and QSUB

Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

162

• MSTKERR: Memory Manager Fault on Stacking for Exception Entry

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor
has not written a fault address to SCB_MMFAR.

• MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR
value has been overwritten.

• IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

• PRECISERR: Precise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

• IMPRECISERR: Imprecise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
that both this bit and one of the precise fault status bits are set to 1.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

226

31.6.29 PIO Slow Clock Divider Debouncing Register

Name: PIO_SCDR

Address: 0x400E0E8C (PIOA), 0x400E108C (PIOB), 0x400E128C (PIOC)

Access: Read/Write

• DIV: Slow Clock Divider Selection for Debouncing

tdiv_slck = ((DIV + 1) × 2) × tslck

31 30 29 28 27 26 25 24
– – – – – – – –

23 22 21 20 19 18 17 16
– – – – – – – –

15 14 13 12 11 10 9 8

– – DIV

7 6 5 4 3 2 1 0
DIV
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

616

32.8.8 Loop Mode

The receiver can be programmed to receive transmissions from the transmitter. This is done by setting the Loop
Mode (LOOP) bit in the SSC_RFMR. In this case, RD is connected to TD, RF is connected to TF and RK is
connected to TK.

32.8.9 Interrupt

Most bits in the SSC_SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is controlled by
writing the Interrupt Enable Register (SSC_IER) and Interrupt Disable Register (SSC_IDR). These registers
enable and disable, respectively, the corresponding interrupt by setting and clearing the corresponding bit in the
Interrupt Mask Register (SSC_IMR), which controls the generation of interrupts by asserting the SSC interrupt line
connected to the interrupt controller.

Figure 32-19. Interrupt Block Diagram

SSC_IMR

PDC

Interrupt
Control

SSC Interrupt

Set

RXRDY
OVRUN

RXSYNC

Receiver

Transmitter

TXRDY
TXEMPTY
TXSYNC

TXBUFE
ENDTX

RXBUFF
ENDRX

Clear

SSC_IER SSC_IDR
657SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

33.8.1 SPI Control Register

Name: SPI_CR

Address: 0x40008000

Access: Write-only

• SPIEN: SPI Enable

0: No effect.

1: Enables the SPI to transfer and receive data.

• SPIDIS: SPI Disable

0: No effect.

1: Disables the SPI.

All pins are set in Input mode after completion of the transmission in progress, if any.

If a transfer is in progress when SPIDIS is set, the SPI completes the transmission of the shifter register and does not start
any new transfer, even if the SPI_THR is loaded.

Note: If both SPIEN and SPIDIS are equal to one when the SPI_CR is written, the SPI is disabled.

• SWRST: SPI Software Reset

0: No effect.

1: Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.

The SPI is in Slave mode after software reset.

PDC channels are not affected by software reset.

• LASTXFER: Last Transfer

0: No effect.

1: The current NPCS is de-asserted after the character written in TD has been transferred. When SPI_CSRx.CSAAT is set,
the communication with the current serial peripheral can be closed by raising the corresponding NPCS line as soon as TD
transfer is completed.

Refer to Section 33.7.3.5 “Peripheral Selection” for more details.

31 30 29 28 27 26 25 24

– – – – – – – LASTXFER

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

SWRST – – – – – SPIDIS SPIEN
705SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

After a START or a REPEATED START, the decoding of the address starts. If the slave address is decoded,
SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the TWI_RHR.

If a STOP condition or a REPEATED START + an address different from SADR is detected, SVACC is reset.

Figure 34-25 describes the write operation.

Figure 34-25. Write Access Ordered by a Master

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.

2. RXRDY is set when data has been transmitted from the internal shifter to the TWI_RHR and reset when this data is read.

General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of GENERAL CALL, it is up to the programmer to decode the commands which come
afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and program a new
SADR if the programming sequence matches.

Figure 34-26 describes the GENERAL CALL access.

Figure 34-26. Master Performs a General Call

Note: This method allows the user to create a personal programming sequence by choosing the programming bytes and the
number of them. The programming sequence has to be provided to the master.

RXRDY

Read RHR

SVREAD has to be taken into account only while SVACC is active

TWD

SVACC

SVREAD

EOSACC

SADR does not match,
TWI answers with a NACK

SADRS ADR W NA W A DATA A A DATA NA S/SrDATA NA P/S/Sr

SADR matches,
TWI answers with an ACK

0000000 + W

GENERAL CALL PS AGENERAL CALL Reset or write DADD A New SADRDATA1 A DATA2 AA

New SADR
Programming sequence

TXD

GACC

SVACC

RESET command = 00000110X
WRITE command = 00000100X

Reset after read
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

740

34.8.10 TWI Receive Holding Register

Name: TWI_RHR

Address: 0x40018030 (0), 0x4001C030 (1)

Access: Read-only

• RXDATA: Master or Slave Receive Holding Data

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

RXDATA
759SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

35.4 Product Dependencies

35.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The user must first configure the corresponding PIO Controller to
enable I/O line operations of the UART.

35.4.2 Power Management

The UART clock can be controlled through the Power Management Controller (PMC). In this case, the user must
first configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

35.4.3 Interrupt Sources

The UART interrupt line is connected to one of the interrupt sources of the Interrupt Controller. Interrupt handling
requires programming of the Interrupt Controller before configuring the UART.

35.5 Functional Description

The UART operates in Asynchronous mode only and supports only 8-bit character handling (with parity). It has no
clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate
generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented
features are compatible with those of a standard USART.

35.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the
transmitter. The baud rate clock is the peripheral clock divided by 16 times the clock divisor (CD) value written in
the Baud Rate Generator register (UART_BRGR). If UART_BRGR is set to 0, the baud rate clock is disabled and
the UART remains inactive. The maximum allowable baud rate is peripheral clock divided by 16. The minimum
allowable baud rate is peripheral clock divided by (16 x 65536).

Table 35-2. I/O Lines

Instance Signal I/O Line Peripheral

UART0 URXD0 PA9 A

UART0 UTXD0 PA10 A

UART1 URXD1 PB2 A

UART1 UTXD1 PB3 A

Table 35-3. Peripheral IDs

Instance ID

UART0 8

UART1 9
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

762

If STTTO is performed, the counter clock is stopped until a first character is received. The idle state on RXD before
the start of the frame does not provide a time-out. This prevents having to obtain a periodic interrupt and enables a
wait of the end of frame when the idle state on RXD is detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This enables generation
of a periodic interrupt so that a user time-out can be handled, for example when no key is pressed on a keyboard.

Figure 36-23 shows the block diagram of the Receiver Time-out feature.

Figure 36-23. Receiver Time-out Block Diagram

Table 36-10 gives the maximum time-out period for some standard baud rates.

36.6.3.12 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of a received
character is detected at level 0. This can occur if the receiver and the transmitter are fully desynchronized.

A framing error is reported on the FRAME bit of US_CSR. The FRAME bit is asserted in the middle of the stop bit
as soon as the framing error is detected. It is cleared by writing a 1 to the RSTSTA bit in the US_CR.

Table 36-10. Maximum Time-out Period

Baud Rate (bit/s) Bit Time (µs) Time-out (ms)

600 1,667 109,225

1,200 833 54,613

2,400 417 27,306

4,800 208 13,653

9,600 104 6,827

14,400 69 4,551

19,200 52 3,413

28,800 35 2,276

38,400 26 1,704

56,000 18 1,170

57,600 17 1,138

200,000 5 328

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

798

36.7.1 USART Control Register

Name: US_CR

Address: 0x40024000 (0), 0x40028000 (1)

Access: Write-only

For SPI control, see Section 36.7.2 ”USART Control Register (SPI_MODE)”.

• RSTRX: Reset Receiver

0: No effect.

1: Resets the receiver.

• RSTTX: Reset Transmitter

0: No effect.

1: Resets the transmitter.

• RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

• RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

• TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

• TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

• RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in US_CSR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – RTSDIS RTSEN DTRDIS DTREN

15 14 13 12 11 10 9 8

RETTO RSTNACK RSTIT SENDA STTTO STPBRK STTBRK RSTSTA

7 6 5 4 3 2 1 0

TXDIS TXEN RXDIS RXEN RSTTX RSTRX – –
815SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

• ONEBIT: Start Frame Delimiter Selector

0: Start frame delimiter is COMMAND or DATA SYNC.

1: Start frame delimiter is one bit.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

822

• ETRGS: External Trigger

0: No effect.

1: Enables the External Trigger Interrupt.
891SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

38.14.3 HSMCI Data Timeout Register

Name: HSMCI_DTOR

Address: 0x40000008

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• DTOCYC: Data Timeout Cycle Number

This field determines the maximum number of Master Clock cycles that the HSMCI waits between two data block transfers.
It equals (DTOCYC x Multiplier).

• DTOMUL: Data Timeout Multiplier

If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the HSMCI
Status Register (HSMCI_SR) rises.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– DTOMUL DTOCYC

Value Name Description

0 1 DTOCYC

1 16 DTOCYC x 16

2 128 DTOCYC x 128

3 256 DTOCYC x 256

4 1024 DTOCYC x 1024

5 4096 DTOCYC x 4096

6 65536 DTOCYC x 65536

7 1048576 DTOCYC x 1048576
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

928

40.7.5 UDP Interrupt Disable Register

Name: UDP_IDR

Address: 0x40034014

Access: Write-only

• EP0INT: Disable Endpoint 0 Interrupt

• EP1INT: Disable Endpoint 1 Interrupt

• EP2INT: Disable Endpoint 2 Interrupt

• EP3INT: Disable Endpoint 3 Interrupt

• EP4INT: Disable Endpoint 4 Interrupt

• EP5INT: Disable Endpoint 5 Interrupt

• EP6INT: Disable Endpoint 6 Interrupt

• EP7INT: Disable Endpoint 7 Interrupt

0: No effect

1: Disables corresponding Endpoint Interrupt

• RXSUSP: Disable UDP Suspend Interrupt

0: No effect

1: Disables UDP Suspend Interrupt

• RXRSM: Disable UDP Resume Interrupt

0: No effect

1: Disables UDP Resume Interrupt

• SOFINT: Disable Start Of Frame Interrupt

0: No effect

1: Disables Start Of Frame Interrupt

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – WAKEUP – SOFINT EXTRSM RXRSM RXSUSP

7 6 5 4 3 2 1 0

EP7INT EP6INT EP5INT EP4INT EP3INT EP2INT EP1INT EP0INT
1051SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The sequence can be customized by programming the Sequence Channel Registers ADC_SEQR1 and
ADC_SEQR2 and setting the USEQ bit of the Mode Register (ADC_MR). The user can choose a specific order of
channels and can program up to 16 conversions by sequence. The user is free to create a personal sequence by
writing channel numbers in ADC_SEQR1 and ADC_SEQR2. Not only can channel numbers be written in any
sequence, channel numbers can be repeated several times. When the bit USEQ in ADC_MR is set, the fields
USCHx in ADC_SEQR1 and ADC_SEQR2 are used to define the sequence. Only enabled USCHx fields will be
part of the sequence. Each USCHx field has a corresponding enable, CHx, in ADC_CHER (USCHx field with the
lowest x index is associated with bit CHx of the lowest index).

If all ADC channels (i.e., 16) are used on an application board, there is no restriction of usage of the user
sequence. However, if some ADC channels are not enabled for conversion but rather used as pure digital inputs,
the respective indexes of these channels cannot be used in the user sequence fields (see ADC_SEQRx). For
example, if channel 4 is disabled (ADC_CSR[4] = 0), ADC_SEQRx fields USCH1 up to USCH16 must not contain
the value 4. Thus the length of the user sequence may be limited by this behavior.

As an example, if only four channels over 16 (CH0 up to CH3) are selected for ADC conversions, the user
sequence length cannot exceed four channels. Each trigger event may launch up to four successive conversions
of any combination of channels 0 up to 3 but no more (i.e., in this case the sequence CH0, CH0, CH1, CH1, CH1
is impossible).

A sequence that repeats the same channel several times requires more enabled channels than channels actually
used for conversion. For example, the sequence CH0, CH0, CH1, CH1 requires four enabled channels (four free
channels on application boards) whereas only CH0, CH1 are really converted.

Note: The reference voltage pins always remain connected in Normal mode as in Sleep mode.

42.6.8 Comparison Window

The ADC Controller features automatic comparison functions. It compares converted values to a low threshold, a
high threshold or both, depending on the value of the CMPMODE bit in ADC_EMR. The comparison can be done
on all channels or only on the channel specified in the CMPSEL field of ADC_EMR. To compare all channels, the
CMPALL bit of ADC_EMR must be set.

The flag can be read on the COMPE bit of the Interrupt Status register (ADC_ISR) and can trigger an interrupt.

The high threshold and the low threshold can be read/write in the Compare Window register (ADC_CWR).

42.6.9 Differential Inputs

The ADC can be used either as a single-ended ADC (DIFF bit = 0 in ADC_COR) or as a fully differential ADC
(DIFF bit = 1 in ADC_COR) as shown in Figure 42-7. By default, after a reset, the ADC is in Single-ended mode.

If ANACH is set in ADC_MR, the ADC can apply a different mode on each channel. Otherwise the parameters of
CH0 are applied to all channels.

The same inputs are used in Single-ended or Differential mode.

In Single-ended mode, inputs are managed by a 16:1-channel analog multiplexer. In Fully Differential mode, inputs
are managed by an 8:1-channel analog multiplexer. See Table 42-4.

Table 42-4. Input Pins and Channel Numbers

Input Pin

Channel Number

Single-ended Mode Differential Mode

AD0 CH0
CH0

AD1 CH1

AD2 CH2
CH1

AD3 CH3
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1092

Figure 44-17. USB Data Signal Rise and Fall Times

10% 10%

90%VCRS

tr tf
Differential
Data Lines

Rise Time Fall Time

fOSC = 6 MHz/750 kHz
REXT = 27 �

CLOADBuffer

(b)

(a)
1171SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

48. Errata

48.1 Errata SAM4SD32/SD16/SA16/S16/S8 Rev. A Parts

The errata are applicable to the devices in Table 48-1.

48.1.1 Flash Controller (EEFC)

Issue: Flash Buffer Not Cleared

The Write Buffer in the embedded Flash is not cleared after trying to write to a locked region. Therefore, the data
that was previously loaded into the Write Buffer would remain in the buffer while the next page write command
(e.g., WP) is being executed.

Workaround: Do not do partial programming (Fill completely the Write Buffer). Note that this problem occurs
only if the software tries to write into a locked region.

Issue: Code Loop Optimization Cannot Be Disabled

The EFC does not work after the buffer for loop optimization is disabled; in Flash Mode Register (EEFC_FMR),
CLOE = 0.

Workaround: The CLOE bit must be kept at 1.

Issue: Erase Sector Command Cannot Be Performed If a Subsector Is Locked (ONLY in Flash
Sector0)

If one of subsector (Small Sector 0, Small Sector1 and Larger Sector) is locked, the Erase Sector Command (ES)
is not possible on non-locked subsectors.

Workaround: All the lock bits of the sector0 must be cleared prior to issuing the ES command. After the ES
command has been issued, the first sector lock bits must be reverted to the state before clearing
them.

Table 48-1. Device List for Errata Described in Section 48.1

Device Name Revision Chip ID

SAM4SD32C A 0x29A7_0EE0

SAM4SD32B A 0x2997_0EE0

SAM4SD16C A 0x29A7_0CE0

SAM4SD16B A 0x2997_0CE0

SAM4SA16C A 0x28A7_0CE0

SAM4SA16B A 0x2897_0CE0

SAM4S16C A 0x28AC_0CE0

SAM4S16B A 0x289C_0CE0

SAM4S8C A 0x28AC_0AE0

SAM4S8B A 0x289C_0AE0
1223SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

TWI

NVIC and AIC changed to Interrupt Controller. Section 33.10.4.5 “PDC” removed. “This bit is only used in
Master mode” removed from bitfields ENDRX, ENDTX, RXBUFF, and TXBUFE in Section 34.11.6 “TWI Status
Register”.

Figure 34-23 updated: SVREAD = 1 and first occurrence of RXRDY = 1.

Removed “20” at the end of the 1st paragraph in Section 34.1 “Description”.

Table 34-7 ”Register Mapping”, replaced “0x100 - 0x124” with “0x100 - 0x128” and “Reserved for the PDC” with
“Reserved for PDC registers” in the PDC line.

Section 34.10.6 “Using the Peripheral DMA Controller (PDC) in Slave Mode” reworked.

7844

7884

7921

7973

rfo

UART

Table 35-3 ”Register Mapping”, PDC registers info for register mapping updated. 7967

USART

Section 36.7.1 “Baud Rate Generator”, replaced “or 6” with “or 6 times lower” in the last phrase. rfo

HSMCI

Phrase “not only for Write operations now” removed from NOTBUSY bitfield descriptionI in Section 38.14.12
“HSMCI Status Register”.

replaced BCNT bitfield table with the corresponding description and updated Warning note in BCNT bitfield
description in Section 38.14.7 “HSMCI Block Register”.

In Section 38.6.3 “Interrupt”, replaced references to NVIC/AIC with “interrupt controller”.

8394

8431

rfo

PWM

Typo corrected in line Timer0 in Table 39-4 ”Fault Inputs”.

Replaced ‘Main OSC’ with ‘Main OSC (PMC)’ in Table 39-4 ”Fault Inputs”.

8438

rfo

UDP

Pull-up’ and ‘pull-down’ spelling harmonized in the whole chapter.

Added UDP_CSRx (ISOENDPT) alternate register in Section 40.7.11 “UDP Endpoint Control and Status
Register (ISOCHRONOUS)”.

7867

8414

ADC

Removed “...and EOC bit corresponding to the last converted channel” from the last phrase of the third
paragraph in Section 42.6.4 “Conversion Results”.

TRANSFER value set to 2 in TRANSFER bitfield description in Section 42.7.2 “ADC Mode Register”.

Text amended in Section 42.1 “Description”.

SLEEP and FWUP bitfield description texts in tables updated in Section 42.7.2 “ADC Mode Register”.

8357

8462

rfo

Electrical Characteristics

Whole chapter reworked to add SAM4SD32/SD16/SA16 data, various values added or updated.

Clext values changed in Table 44-30.

Configurations A and B updated in Section 44.4.1 “Backup Mode Current Consumption”.

rfo, 8435

8391

8422

Mechanical Characteristics

QFN64 package drawing and table updated in Figure 45-5. 8529

Table 49-9. SAM4S Datasheet Rev. 11100C 09-Jan-13 Revision History (Continued)

Doc. Rev.
11100C Comments

Change
Request
Ref.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1256

