

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s4ab-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.6.4.2 LDR and STR, Immediate Offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Current							
<pre>op{type}{cond} Rt, [Rn, #offset]! op{type}{cond} Rt, [Rn], #offset opD{cond} Rt, Rt2, [Rn {, #offset}] opD{cond} Rt, Rt2, [Rn, #offset]!</pre>	<pre>; immediate offset ; pre-indexed ; post-indexed ; immediate offset, two words ; pre-indexed, two words ; post-indexed, two words</pre>						
where:							
op is one of:							
LDR Load Register.							
STR Store Register.							
type is one of:							
B unsigned byte, zero extend to 32 bits on loads.							
SB signed byte, sign extend to 32 bits (LDR only).							
H unsigned halfword, zero extend to 32 bits on loads	S.						
SH signed halfword, sign extend to 32 bits (LDR only)).						
- omit, for word.							
cond is an optional condition code, see "Conditional Ex	ecution".						
Rt is the register to load or store.							
Rn is the register on which the memory address is ba	is the register on which the memory address is based.						
offset is an offset from <i>Rn</i> . If <i>offset</i> is omitted, the addres	is an offset from Rn. If offset is omitted, the address is the contents of Rn.						
Rt2 is the additional register to load or store for two-we	2 is the additional register to load or store for two-word operations.						
Operation							
LDR instructions load one or two registers with a value from mer	mory.						

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset Addressing

The offset value is added to or subtracted from the address obtained from the register *Rn*. The result is used as the address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

Atmel

Examples

SHASX	R7, R4, R2	; Adds top halfword of R4 to bottom halfword of R2
		; and writes halved result to top halfword of R7
		; Subtracts top halfword of R2 from bottom halfword of
		; R4 and writes halved result to bottom halfword of R7
SHSAX	R0, R3, R5	; Subtracts bottom halfword of R5 from top halfword
		; of R3 and writes halved result to top halfword of R0
		; Adds top halfword of R5 to bottom halfword of R3 and
		; writes halved result to bottom halfword of R0.

- All conditional instructions except B*cond* must be inside an IT block. B*cond* can be either outside or inside an IT block but has a larger branch range if it is inside one
- Each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse as for the other instructions in the block.

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler directives within them.

Condition Flags

This instruction does not change the flags.

Example

ADDSNE	R2, R2,	#1	; ;	Next 3 instructions are conditional ANDNE does not update condition flags ADDSNE updates condition flags Conditional move
CMP	R0, #9 GT		;	Convert R0 hex value (0 to 15) into ASCII ('0'-'9', 'A'-'F') Next 2 instructions are conditional
	-	#55		Convert 0xA -> 'A'
				Convert 0x0 -> '0'
				IT block with only one conditional instruction Increment R1 conditionally
ITTEE	EQ		;	Next 4 instructions are conditional
MOVEQ	R0, R1		;	Conditional move
ADDEQ	R2, R2,	#10	;	Conditional add
				Conditional AND
BNE.W	dloop			Branch instruction can only be used in the last
IT ADD			;	instruction of an IT block Next instruction is conditional Syntax error: no condition code used in IT block

12.6.10.4 TBB and TBH

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [*Rn*, *Rm*] TBH [*Rn*, *Rm*, LSL #1]

where:

Rn	is the register containing the address of the table of branch lengths.
	If <i>Rn</i> is PC, then the address of the table is the address of the byte immediately following the TBB or TBH instruction.
Rm	is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the value in <i>Rm</i> to form the right offset into the table.

12.11.2.1	MPU Type Register								
Name:	MPU_TYPE								
Access:	Read/Write								
31	30	29	28	27	26	25	24		
-	-	_	-	-	-	-	-		
23	22	21	20	19	18	17	16		
			IREC	GION					
15	14	13	12	11	10	9	8		
			DRE	GION					
7	6	5	4	3	2	1	0		
-	-	_	_	_	_	_	SEPARATE		

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

• IREGION: Instruction Region

Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

• DREGION: Data Region

Indicates the number of supported MPU data regions: 0x08 = Eight MPU regions.

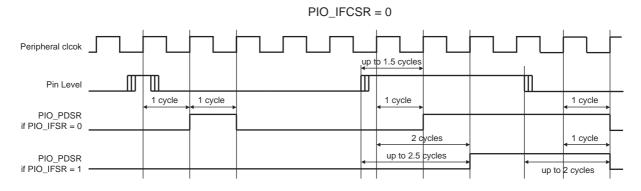
• SEPARATE: Separate Instruction

Indicates support for unified or separate instruction and date memory maps:

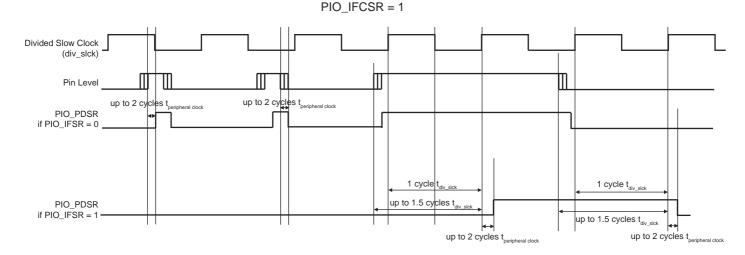
0: Unified.

14.5 Reset Controller (RSTC) User Interface

	· · · · · · · · · · · · · · · · · · ·			
Offset	Register	Name	Access	Reset
0x00	Control Register	RSTC_CR	Write-only	_
0x04	Status Register	RSTC_SR	Read-only	0x0000_0000 ⁽¹⁾
0x08	Mode Register	RSTC_MR	Read/Write	0x0000 0001


Table 14-1. Register Mapping

Note: 1. This value assumes that a general reset has been performed, subject to change if other types of reset are generated.


The glitch filters are controlled by the Input Filter Enable Register (PIO_IFER), the Input Filter Disable Register (PIO_IFDR) and the Input Filter Status Register (PIO_IFSR). Writing PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs on the peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch and debouncing filters require that the peripheral clock is enabled.

31.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a level on an I/O line. The Input Edge/Level interrupt is controlled by writing the Interrupt Enable Register (PIO_IER) and the Interrupt Disable Register (PIO_IDR), which enable and disable the input change interrupt respectively by setting and clearing the corresponding bit in the Interrupt Mask Register (PIO_IMR). As input change detection is possible only by comparing two successive samplings of the input of the I/O line, the peripheral clock must be enabled. The Input Change interrupt is available regardless of the configuration of the I/O line, i.e., configured as an input only, controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional interrupt modes can be enabled/disabled by writing in the Additional Interrupt Modes Enable Register (PIO_AIMER) and Additional Interrupt Modes Disable Register (PIO_AIMDR). The current state of this selection can be read through the Additional Interrupt Modes Mask Register (PIO_AIMMR).

These additional modes are:

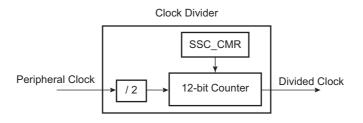
Atmel

32.8.1 Clock Management

The transmitter clock can be generated by:

- an external clock received on the TK I/O pad
- the receiver clock
- the internal clock divider

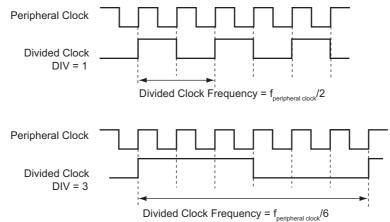
The receiver clock can be generated by:


- an external clock received on the RK I/O pad
- the transmitter clock
- the internal clock divider

Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the receiver block can generate an external clock on the RK I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

32.8.1.1 Clock Divider


Figure 32-7. Divided Clock Block Diagram

The peripheral clock divider is determined by the 12-bit field DIV counter and comparator (so its maximal value is 4095) in the Clock Mode Register (SSC_CMR), allowing a peripheral clock division by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of peripheral clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the peripheral clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of whether the DIV value is even or odd.

32.9 Synchronous Serial Controller (SSC) User Interface

Offset	Register	Name	Access	Reset
0x0	Control Register	SSC_CR	Write-only	-
0x4	Clock Mode Register	SSC_CMR	Read/Write	0x0
0x8–0xC	Reserved	-	_	_
0x10	Receive Clock Mode Register	SSC_RCMR	Read/Write	0x0
0x14	Receive Frame Mode Register	SSC_RFMR	Read/Write	0x0
0x18	Transmit Clock Mode Register	SSC_TCMR	Read/Write	0x0
0x1C	Transmit Frame Mode Register	SSC_TFMR	Read/Write	0x0
0x20	Receive Holding Register	SSC_RHR	Read-only	0x0
0x24	Transmit Holding Register	SSC_THR	Write-only	_
0x28-0x2C	Reserved	-	_	_
0x30	Receive Sync. Holding Register	SSC_RSHR	Read-only	0x0
0x34	Transmit Sync. Holding Register	SSC_TSHR	Read/Write	0x0
0x38	Receive Compare 0 Register	SSC_RC0R	Read/Write	0x0
0x3C	Receive Compare 1 Register	SSC_RC1R	Read/Write	0x0
0x40	Status Register	SSC_SR	Read-only	0x000000CC
0x44	Interrupt Enable Register	SSC_IER	Write-only	_
0x48	Interrupt Disable Register	SSC_IDR	Write-only	_
0x4C	Interrupt Mask Register	SSC_IMR	Read-only	0x0
0x50-0xE0	Reserved	-	_	_
0xE4	Write Protection Mode Register	SSC_WPMR	Read/Write	0x0
0xE8	Write Protection Status Register	SSC_WPSR	Read-only	0x0
0xEC-0xFC	Reserved	_	_	_
0x100–0x128	Reserved for PDC registers	-	-	_

Table 32-5. Register Mapping

32.9.9 SSC Receive Synchronization Holding Register										
Name:	SSC_RSHR									
Address:	0x40004030									
Access:	Read-only									
31	30	29	28	27	26	25	24			
-	-	-	-	-	-	-	-			
23	22	21	20	19	18	17	16			
-	-	-	-	-	-	-	-			
15	14	13	12	11	10	9	8			
	RSDAT									
7	6	5	4	3	2	1	0			
			RSI	DAT						

• RSDAT: Receive Synchronization Data

33.7.3 Master Mode Operations

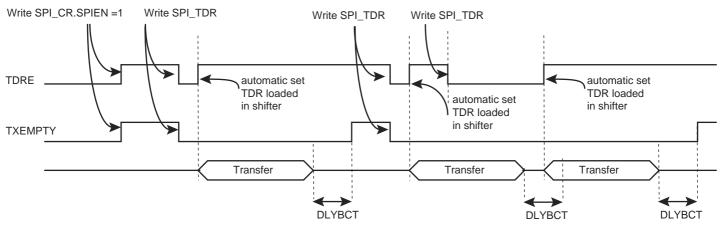
When configured in Master mode, the SPI operates on the clock generated by the internal programmable baud rate generator. It fully controls the data transfers to and from the slave(s) connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register (SPI_TDR) and the Receive Data Register (SPI_RDR), and a single shift register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer starts when the processor writes to the SPI_TDR. The written data is immediately transferred in the Shift register and the transfer on the SPI bus starts. While the data in the Shift register is shifted on the MOSI line, the MISO line is sampled and shifted in the Shift register. Data cannot be loaded in the SPI_RDR without transmitting data. If there is no data to transmit, dummy data can be used (SPI_TDR filled with ones). When the SPI_MR.WDRBT bit is set, new data cannot be transmitted if the SPI_RDR has not been read. If Receiving mode is not required, for example when communicating with a slave receiver only (such as an LCD), the receive status flags in the SPI Status register (SPI_SR) can be discarded.

Before writing the SPI_TDR, the PCS field in the SPI_MR must be set in order to select a slave.

If new data is written in the SPI_TDR during the transfer, it is kept in the SPI_TDR until the current transfer is completed. Then, the received data is transferred from the Shift register to the SPI_RDR, the data in the SPI_TDR is loaded in the Shift register and a new transfer starts.


As soon as the SPI_TDR is written, the Transmit Data Register Empty (TDRE) flag in the SPI_SR is cleared. When the data written in the SPI_TDR is loaded into the Shift register, the TDRE flag in the SPI_SR is set. The TDRE bit is used to trigger the Transmit PDC channel.

See Figure 33-5.

The end of transfer is indicated by the TXEMPTY flag in the SPI_SR. If a transfer delay (DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of this delay. The peripheral clock can be switched off at this time.

Note: When the SPI is enabled, the TDRE and TXEMPTY flags are set.

The transfer of received data from the Shift register to the SPI_RDR is indicated by the Receive Data Register Full (RDRF) bit in the SPI_SR. When the received data is read, the RDRF bit is cleared.

If the SPI_RDR has not been read before new data is received, the Overrun Error (OVRES) bit in the SPI_SR is set. As long as this flag is set, data is loaded in the SPI_RDR. The user has to read the SPI_SR to clear the OVRES bit.

Figure 33-6, shows a block diagram of the SPI when operating in Master mode. Figure 33-7 on page 695 shows a flow chart describing how transfers are handled.

Atmel

33.8.3 SPI Receive Data Register

Name:	SPI_RDR						
Address:	0x40008008						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	_	-	_	-	-	-
23	22	21	20	19	18	17	16
_	-	_	-		PC	S	
15	14	13	12	11	10	9	8
			R	D			
7	6	5	4	3	2	1	0
			R	D			

• RD: Receive Data

Data received by the SPI Interface is stored in this register in a right-justified format. Unused bits are read as zero.

• PCS: Peripheral Chip Select

In Master mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits are read as zero.

Note: When using Variable peripheral select mode (PS = 1 in SPI_MR), it is mandatory to set the SPI_MR.WDRBT bit to 1 if the PCS field must be processed in SPI_RDR.

The BITS field determines the number of data bits transferred. Reserved values should not be used.

Value	Name	Description
0	8_BIT	8 bits for transfer
1	9_BIT	9 bits for transfer
2	10_BIT	10 bits for transfer
3	11_BIT	11 bits for transfer
4	12_BIT	12 bits for transfer
5	13_BIT	13 bits for transfer
6	14_BIT	14 bits for transfer
7	15_BIT	15 bits for transfer
8	16_BIT	16 bits for transfer
9	-	Reserved
10	-	Reserved
11	-	Reserved
12	-	Reserved
13	-	Reserved
14	-	Reserved
15	-	Reserved

• SCBR: Serial Clock Bit Rate

In Master mode, the SPI Interface uses a modulus counter to derive the SPCK bit rate from the peripheral clock. The bit rate is selected by writing a value from1 to 255 in the SCBR field. The following equation determines the SPCK bit rate:

SCBR = f_{peripheral clock} / SPCK Bit Rate

Programming the SCBR field to 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.

If BRSRCCLK = 1 in SPI_MR, SCBR must be programmed with a value greater than 1.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

Note: If one of the SCBR fields in SPI_CSRx is set to 1, the other SCBR fields in SPI_CSRx must be set to 1 as well, if they are used to process transfers. If they are not used to transfer data, they can be set at any value.

• DLYBS: Delay Before SPCK

This field defines the delay from NPCS falling edge (activation) to the first valid SPCK transition.

When DLYBS = 0, the delay is half the SPCK clock period.

Otherwise, the following equation determines the delay:

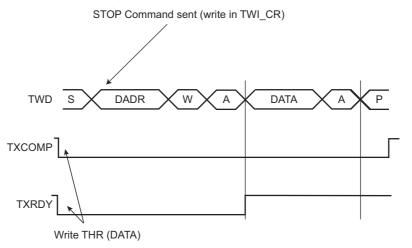
DLYBS = Delay Before SPCK × f_{peripheral clock}

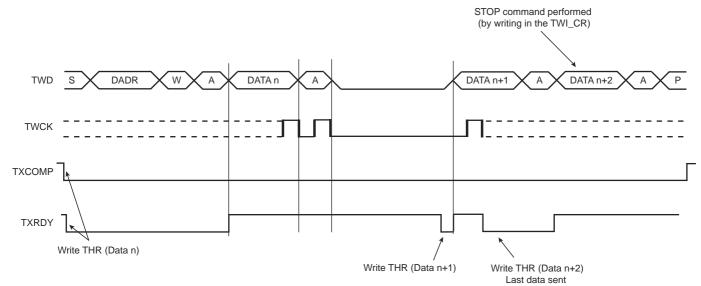
DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select. The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT = 0, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the character transfers.

Otherwise, the following equation determines the delay:


DLYBCT = Delay Between Consecutive Transfers × f_{peripheral clock} / 32


After a master write transfer, the SCL is stretched (tied low) as long as no new data is written in the TWI_THR or until a STOP command is performed.

See Figure 34-5, Figure 34-6, and Figure 34-7.

Figure 34-5. Master Write with One Data Byte

• ETRGS: External Trigger Status (cleared on read)

0: External trigger has not occurred since the last read of the Status Register.

1: External trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status

0: Clock is disabled.

1: Clock is enabled.

• MTIOA: TIOA Mirror

0: TIOA is low. If TC_CMRx.WAVE = 0, this means that TIOA pin is low. If TC_CMRx.WAVE = 1, this means that TIOA is driven low.

1: TIOA is high. If TC_CMRx.WAVE = 0, this means that TIOA pin is high. If TC_CMRx.WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror

0: TIOB is low. If TC_CMRx.WAVE = 0, this means that TIOB pin is low. If TC_CMRx.WAVE = 1, this means that TIOB is driven low.

1: TIOB is high. If TC_CMRx.WAVE = 0, this means that TIOB pin is high. If TC_CMRx.WAVE = 1, this means that TIOB is driven high.

37.7.15 TC QDEC Interrupt Enable Register

Name:	TC_QIER								
Address:	0x400100C8 (0), 0x400140C8 (1)								
Access:	Write-only								
31	30	29	28	27	26	25	24		
_	-	_	-	-	_	_	—		
23	22	21	20	19	18	17	16		
-	-	-	-	-	-	-	-		
15	14	13	12	11	10	9	8		
-	—	-	-	-	-	-	-		
7	6	5	4	3	2	1	0		
-	-	_	-	_	QERR	DIRCHG	IDX		

• IDX: Index

0: No effect.

1: Enables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change

0: No effect.

1: Enables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error

0: No effect.

1: Enables the interrupt when a quadrature error occurs on PHA, PHB.

39.7.2 PWM Enable Register

Name: Address:	PWM_ENA 0x40020004						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	-	_	_	_	_	—
23	22	21	20	19	18	17	16
_	-	-	_	_	_	_	_
15	14	13	12	11	10	9	8
-	-	_	_	_	_	_	-
7	6	5	4	3	2	1	0
-	-	-	_	CHID3	CHID2	CHID1	CHID0

• CHIDx: Channel ID

0: No effect.

1: Enable PWM output for channel x.

40.7.12 UDP FIFO Data Register

Name:	UDP_FDRx [x = 07]							
Address:	0x40034050							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
-	-	_	-	-	-	-	-	
23	22	21	20	19	18	17	16	
—	-	-	-	-	-	-	-	
15	14	13	12	11	10	9	8	
-	-	_	-	_	_	_	_	
7	6	5	4	3	2	1	0	
			FIFO_	_DATA				

• FIFO_DATA[7:0]: FIFO Data Value

The microcontroller can push or pop values in the FIFO through this register.

RXBYTECNT in the corresponding UDP_CSRx is the number of bytes to be read from the FIFO (sent by the host).

The maximum number of bytes to write is fixed by the Max Packet Size in the Standard Endpoint Descriptor. It can not be more than the physical memory size associated to the endpoint. Refer to the *Universal Serial Bus Specification, Rev. 2.0* for more information.

41.7.7 ACC Analog Control Register

Name:	ACC_ACR						
Address:	0x40040094						
Access:	Read/Write						
31	30	29	28	27	26	25	24
—	-	-	-	-	-	—	-
23	22	21	20	19	18	17	16
-	-	—	-	-	-	-	-
15	14	13	12	11	10	9	8
_	-	—	—	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	-	HY	′SΤ	ISEL

This register can only be written if the WPEN bit is cleared in ACC Write Protection Mode Register.

• ISEL: Current Selection

Refer to the section on ACC electrical characteristics in the datasheet.

0 (LOPW): Low-power option.

1 (HISP): High-speed option.

• HYST: Hysteresis Selection

0 to 3: Refer to the section on ACC electrical characteristics in the datasheet.

	@ 2	25°C	@ 85°C	@ 105°C	
Conditions	(AMP1) Configuration A	(AMP1) Configuration B	(AMP1) Configuration A	(AMP1) Configuration A	Unit
VDDIO = 3.6V	1.9	1.8	6.8	14.6	
VDDIO = 3.3V	1.7	1.6	6.2	13.4	
VDDIO = 3.0V	1.5	1.4	5.7	12.5	μA
VDDIO = 2.5V	1.3	1.2	5.1	11.3	
VDDIO = 1.8V	0.9	0.8	4.4	9.9	

Table 44-9. Typical Power Consumption for Backup Mode (SAM4S4/S2 rev A)

Table 44-10. Typical Power Consumption for Backup Mode (SAM4SD32/SD16/SA16 rev A)

	@:	25°C	@ 85°C	@ 105°C	
Conditions	(AMP1) Configuration A	(AMP1) Configuration B	(AMP1) Configuration A	(AMP1) Configuration A	Unit
VDDIO = 3.6V	2.1	2.0	13.9	22.5	
VDDIO = 3.3V	1.8	1.8	-	_	
VDDIO = 3.0V	1.7	1.6	-	_	μA
VDDIO = 2.5V	1.3	1.3	-	_	
VDDIO = 1.8V	0.9	0.9	_	_	

Table 44-11. Typical Power Consumption for Backup Mode (SAM4S16/S8 rev A)

	@ 25°C		@ 85°C	@ 105°C	
Conditions	(AMP1) Configuration A	(AMP1) Configuration B	(AMP1) Configuration A	(AMP1) Configuration A	Unit
VDDIO = 3.6V	2.7	2.5	12.1	20.1	
VDDIO = 3.3V	2.0	1.8	_	_	
VDDIO = 3.0V	1.8	1.7	_	_	μA
VDDIO = 2.5V	1.5	1.4	-	_	
VDDIO = 1.8V	1	0.9	_	_	

44.5.7 3 to 20 MHz Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR		Fundamental @ 3 MHz			200	
		Fundamental @ 8 MHz			100	
	Equivalent Series Resistor (Rs)	Fundamental @ 12 MHz		80	Ω	
		Fundamental @ 16 MHz			80	
		Fundamental @ 20 MHz			50	
C _m	Motional Capacitance		_	_	8	fF
C _{SHUNT}	Shunt Capacitance		-	_	7	pF

Table 44-32. 3 to 20 MHz Crystal Characteristics

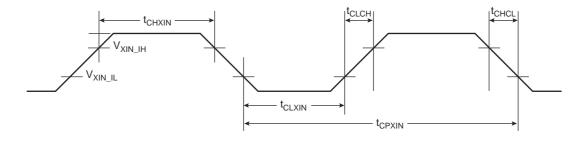

44.5.8 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode

Table 44-33. XIN Clock Electrical Characteristics (In Bypass Mode)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
1/(t _{CPXIN})	XIN Clock Frequency	(1)	_	_	50	MHz
t _{CPXIN}	XIN Clock Period	(1)	20	_	_	ns
t _{CHXIN}	XIN Clock High Half-period	(1)	8	_	_	ns
t _{CLXIN}	XIN Clock Low Half-period	(1)	8	_	_	ns
t _{CLCH}	Rise Time	(1)	2.2	_	_	ns
t _{CHCL}	Fall Time	(1)	2.2	_	_	ns
$V_{XIN_{IL}}$	V _{XIN} Input Low-level Voltage	(1)	-0.3	_	$[0.8\text{V:}0.3\times\text{V}_{\text{DDIO}}]$	V
V _{XIN_IH}	V _{XIN} Input High-level Voltage	(1)	$[2.0V:0.7\times V_{DDIO}]$	_	V _{DDIO} + 0.3V	V
C _{para(standby)}	Internal Parasitic Capacitance During Standby	(1)	_	5.5	6.3	pF
R _{para(standby)}	Internal Parasitic Resistance During Standby	(1)	_	300	_	Ω

Note: 1. These characteristics apply only when the 3–20 MHz crystal oscillator is in Bypass mode.

Figure 44-16. XIN Clock Timing

