
Microchip Technology - ATSAM4S4AB-MNR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 34

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 64K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 8x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 48-VFQFN Exposed Pad

Supplier Device Package 48-QFN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4s4ab-mnr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4s4ab-mnr-4379289
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Figure 2-5. SAM4S4/S2 100-pin Version Block Diagram

SPI
PDC

AHB/APB
Bridge

PCK[2:0]

XIN
XOUT

XIN32
XOUT32

ERASE

VDDIO
VDDCORE

ADTRG

TCK/S
W

CLK

TDI
TDO

JT
AGSEL

VDDIO

VDDOUT

JTAG and Serial Wire

Flash
Unique

Identifier

Voltage
Regulator

Analog Comparator

CRCCU

NPCS[3:0]

MISO
MOSI
SPCK

TST

ADC

VDDPLL

TCLK[2:0]
TIOA[2:0]
TIOB[2:0]

TCLK[5:3]
TIOA[5:3]
TIOB[5:3]

DAC
PDC

PWMH[3:0]
PWML[3:0]
PWMFI0

ADVREF

DAC[1:0]
DATRG

High-speed
MCI

TK

TD
RD

RK

RF

SSC

PDC

USB 2.0
Full-speed

TF

D[7:0]
A[23:0]
A21/NANDALE
A22/NANDCLE

NWAIT
NCS[3:0]
NRD
NWE

NANDOE
NANDWE

In-Circuit Emulator

MPU

Cortex-M4 Processor
fMAX 120 MHz

NVIC 24-bit SysTick
CounterDSP

Tr
an

sc
ei

ve
r

MCCK
MCCDA
MCDA[3:0]

Flash
256/128 Kbytes

DDP
DDM

DAC
Temp Sensor

ADVREF

ADC

PDC

User
Signature

RTCOUT0
RTCOUT1

WKUP[15:0]

NRST

AD[14:0]

TMS/S
W

DIO

PDC

Timer Counter 0

TC[0..2]

Timer Counter 1

TC[3..5]
Temp Sensor

PWM

SRAM
64 Kbytes

ROM
16 Kbytes

Ev
en

t S
ys

te
m

I/DS

UART0URXD0
UTXD0

PDC

UART1URXD1
UTXD1

PDC

TWCK1
TWD1 TWI1 PDC

TWCK0
TWD0 TWI0 PDC

PDC

PDC

External Bus
Interface

NAND Flash
Logic

Static Memory
Controller

RXD0
TXD0
SCK0

RTS0
CTS0

USART0

PDC

USART1

PDC

RXD1
TXD1
SCK1

RTS1
CTS1

RI1
DCD1
DSR1
DTR1

PIO
PDCPIODC[7:0]

PIODCCLK
PIODCEN[2:1]

2668
bytes
FIFO

4-layer AHB Bus Matrix
fMAX 120 MHz

S

S

SS

M

SM

M

System Controller

PIOA/PIOB/PIOC

Supply
Controller

32K Cryst
Osc

256-bit
 GPBR

Real-time
Timer

Real-time
Clock

Watchdog
Timer

PLLA
Power

Management
Controller

3–20 MHz
Oscillator

RC Osc
4/8/12 MHz

PLLB

Tamper Detection

Reset
Controller

Supply
Monitor

32K typ.
RC Osc

Power-on
Reset

Backup
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

10

Figure 8-1. Global Flash Organization

Each sector is organized in pages of 512 bytes.

For sector 0:

 The smaller sector 0 has 16 pages of 512 bytes

 The smaller sector 1 has 16 pages of 512 bytes

 The larger sector has 96 pages of 512 bytes

From Sector 1 to n:

The rest of the array is composed of 64-Kbyte sectors of 128 pages, each page of 512 bytes. Refer to Figure 8-2,
"Flash Sector Organization".

Small Sector 08 Kbytes

Small Sector 18 Kbytes

Larger Sector 48 Kbytes

Sector 164 Kbytes

64 Kbytes Sector n

 Sector 0

Sector size Sector name
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

40

Figure 12-7. Exception Stack Frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the
stack frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program.
This value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start
address from the vector table. When stacking is complete, the processor starts executing the exception handler. At
the same time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival
case.

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions
to load the EXC_RETURN value into the PC:

 An LDM or POP instruction that loads the PC

 An LDR instruction with the PC as the destination.

 A BX instruction using any register.

Pre-IRQ top of stack

xPSR
PC
LR
R12
R3
R2
R1
R0

{aligner}

IRQ top of stack

Decreasing
memory
address

xPSR
PC
LR
R12
R3
R2
R1
R0

S7
S6
S5
S4
S3
S2
S1
S0

S9
S8

FPSCR
S15
S14
S13
S12
S11
S10

{aligner}

IRQ top of stack

...

Exception frame with
floating-point storage

Exception frame without
floating-point storage

Pre-IRQ top of stack
...
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

82

12.6.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:

SHADD16 Signed Halving Add 16.

SHADD8 Signed Halving Add 8.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the
destination register:

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDB8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1

 ; and writes halved result to corresponding halfword in
 ; R1

SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.
127SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.6.12 SDIV and UDIV

Signed Divide and Unsigned Divide.

Syntax
SDIV{cond} {Rd,} Rn, Rm
UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1
159SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:

SSAT16 Saturates a signed halfword value to a signed range.

USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit
position in n.

Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2

; as 9-bit values, writes to corresponding halfword
 ; of R7

USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

12.6.7.3 QADD and QSUB

Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

162

12.6.10 Branch and Control Instructions

The table below shows the branch and control instructions.

Table 12-25. Branch and Control Instructions

Mnemonic Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNZ Compare and Branch if Non Zero

CBZ Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword
179SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.

label is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

Restrictions

The restrictions are:

 Rn must be in the range of R0 to R7

 The branch destination must be within 4 to 130 bytes after the instruction

 These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CBZ R5, target ; Forward branch if R5 is zero
CBNZ R0, target ; Forward branch if R0 is not zero
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

182

Exception

An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

Exception service routine
See “Interrupt handler” .

Exception vector See “Interrupt vector” .

Flat address mapping A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

Halfword A 16-bit data item.

Illegal instruction An instruction that is architecturally Undefined.

Implementation-defined The behavior is not architecturally defined, but is defined and documented by individual
implementations.

Implementation-specific The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

Index register
In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register” .

Instruction cycle count The number of cycles that an instruction occupies the Execute stage of the pipeline.

Interrupt handler A program that control of the processor is passed to when an interrupt occurs.

Interrupt vector One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

264

The glitch filters are controlled by the Input Filter Enable Register (PIO_IFER), the Input Filter Disable Register
(PIO_IFDR) and the Input Filter Status Register (PIO_IFSR). Writing PIO_IFER and PIO_IFDR respectively sets
and clears bits in PIO_IFSR. This last register enables the glitch filter on the I/O lines.

When the glitch and/or debouncing filter is enabled, it does not modify the behavior of the inputs on the
peripherals. It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The glitch and
debouncing filters require that the peripheral clock is enabled.

Figure 31-4. Input Glitch Filter Timing

Figure 31-5. Input Debouncing Filter Timing

31.5.10 Input Edge/Level Interrupt

The PIO Controller can be programmed to generate an interrupt when it detects an edge or a level on an I/O line.
The Input Edge/Level interrupt is controlled by writing the Interrupt Enable Register (PIO_IER) and the Interrupt
Disable Register (PIO_IDR), which enable and disable the input change interrupt respectively by setting and
clearing the corresponding bit in the Interrupt Mask Register (PIO_IMR). As input change detection is possible only
by comparing two successive samplings of the input of the I/O line, the peripheral clock must be enabled. The
Input Change interrupt is available regardless of the configuration of the I/O line, i.e., configured as an input only,
controlled by the PIO Controller or assigned to a peripheral function.

By default, the interrupt can be generated at any time an edge is detected on the input.

Some additional interrupt modes can be enabled/disabled by writing in the Additional Interrupt Modes Enable
Register (PIO_AIMER) and Additional Interrupt Modes Disable Register (PIO_AIMDR). The current state of this
selection can be read through the Additional Interrupt Modes Mask Register (PIO_AIMMR).

These additional modes are:

Peripheral clcok

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle 1 cycle 1 cycle

up to 1.5 cycles

2 cycles

up to 2.5 cycles

up to 2 cycles

1 cycle

1 cycle

PIO_IFCSR = 0

Divided Slow Clock
(div_slck)

Pin Level

PIO_PDSR
if PIO_IFSR = 0

PIO_PDSR
if PIO_IFSR = 1

1 cycle tdiv_slck

up to 1.5 cycles tdiv_slck

1 cycle tdiv_slck

up to 2 cycles tperipheral clock
up to 2 cycles tperipheral clock

up to 2 cycles tperipheral clockup to 2 cycles tperipheral clock

up to 1.5 cycles tdiv_slck

PIO_IFCSR = 1
575SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 34-17. TWI Read Operation with Single Data Byte without Internal Address

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit

Read ==> bit MREAD = 1

Start the transfer
TWI_CR = START | STOP

Read status register

RXRDY = 1?

Read Status register

TXCOMP = 1?

END

BEGIN

Yes

Yes

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Read Receive Holding Register

No

No
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

732

Figure 35-2. Baud Rate Generator

35.5.2 Receiver

35.5.2.1 Receiver Reset, Enable and Disable

After device reset, the UART receiver is disabled and must be enabled before being used. The receiver can be
enabled by writing the Control Register (UART_CR) with the bit RXEN at 1. At this command, the receiver starts
looking for a start bit.

The programmer can disable the receiver by writing UART_CR with the bit RXDIS at 1. If the receiver is waiting for
a start bit, it is immediately stopped. However, if the receiver has already detected a start bit and is receiving the
data, it waits for the stop bit before actually stopping its operation.

The receiver can be put in reset state by writing UART_CR with the bit RSTRX at 1. In this case, the receiver
immediately stops its current operations and is disabled, whatever its current state. If RSTRX is applied when data
is being processed, this data is lost.

35.5.2.2 Start Detection and Data Sampling

The UART only supports asynchronous operations, and this affects only its receiver. The UART receiver detects
the start of a received character by sampling the URXD signal until it detects a valid start bit. A low level (space) on
URXD is interpreted as a valid start bit if it is detected for more than seven cycles of the sampling clock, which is
16 times the baud rate. Hence, a space that is longer than 7/16 of the bit period is detected as a valid start bit. A
space which is 7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.

When a valid start bit has been detected, the receiver samples the URXD at the theoretical midpoint of each bit. It
is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point is eight cycles
(0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles (1.5-bit periods) after
detecting the falling edge of the start bit.

Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.

Figure 35-3. Start Bit Detection

peripheral clock 16-bit Counter

0

Baud Rate
Clock

CD

CD

OUT

Divide
by 16

0

1

>1

Receiver
Sampling Clock

D0 D1 D2 D3 D4 D5 D6 D7 PS S D0 D1 D2 D3 D4 D5 D6 D7 PURXD

RSTSTA

RXRDY

OVRE

stop stop
763SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The Local loopback mode allows the transmitted characters to be received. UTXD and URXD pins are not used
and the output of the transmitter is internally connected to the input of the receiver. The URXD pin level has no
effect and the UTXD line is held high, as in idle state.

The Remote loopback mode directly connects the URXD pin to the UTXD line. The transmitter and the receiver are
disabled and have no effect. This mode allows a bit-by-bit retransmission.

Figure 35-11. Test Modes

Receiver

Transmitter
Disabled

RXD

TXD

Receiver

Transmitter
Disabled

RXD

TXD

VDD

Disabled

Receiver

Transmitter
Disabled

RXD

TXD

Disabled

Automatic Echo

Local Loopback

Remote Loopback VDD
767SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

36.7.9 USART Interrupt Mask Register

Name: US_IMR

Address: 0x40024010 (0), 0x40028010 (1)

Access: Read-only

For SPI specific configuration, see Section 36.7.10 ”USART Interrupt Mask Register (SPI_MODE)”.

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is not enabled.

1: The corresponding interrupt is enabled.

• RXRDY: RXRDY Interrupt Mask

• TXRDY: TXRDY Interrupt Mask

• RXBRK: Receiver Break Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask (available in all USART modes of operation)

• ENDTX: End of Transmit Buffer Interrupt Mask (available in all USART modes of operation)

• OVRE: Overrun Error Interrupt Mask

• FRAME: Framing Error Interrupt Mask

• PARE: Parity Error Interrupt Mask

• TIMEOUT: Time-out Interrupt Mask

• TXEMPTY: TXEMPTY Interrupt Mask

• ITER: Max Number of Repetitions Reached Interrupt Mask

• TXBUFE: Transmit Buffer Empty Interrupt Mask (available in all USART modes of operation)

• RXBUFF: Receive Buffer Full Interrupt Mask (available in all USART modes of operation)

• NACK: Non Acknowledge Interrupt Mask

• RIIC: Ring Indicator Input Change Mask

31 30 29 28 27 26 25 24

– – – – – – – MANE

23 22 21 20 19 18 17 16

– – – – CTSIC DCDIC DSRIC RIIC

15 14 13 12 11 10 9 8

– – NACK RXBUFF TXBUFE ITER TXEMPTY TIMEOUT

7 6 5 4 3 2 1 0

PARE FRAME OVRE ENDTX ENDRX RXBRK TXRDY RXRDY
831SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

37.4 Pin List

37.5 Product Dependencies

37.5.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines. The programmer
must first program the PIO controllers to assign the TC pins to their peripheral functions.

Table 37-2. Signal Description

Block/Channel Signal Name Description

Channel Signal

XC0, XC1, XC2 External Clock Inputs

TIOA
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output

TIOB
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output

INT Interrupt Signal Output (internal signal)

SYNC Synchronization Input Signal (from configuration register)

Table 37-3. Pin List

Pin Name Description Type

TCLK0–TCLK2 External Clock Input Input

TIOA0–TIOA2 I/O Line A I/O

TIOB0–TIOB2 I/O Line B I/O

Table 37-4. I/O Lines

Instance Signal I/O Line Peripheral

TC0 TCLK0 PA4 B

TC0 TCLK1 PA28 B

TC0 TCLK2 PA29 B

TC0 TIOA0 PA0 B

TC0 TIOA1 PA15 B

TC0 TIOA2 PA26 B

TC0 TIOB0 PA1 B

TC0 TIOB1 PA16 B

TC0 TIOB2 PA27 B

TC1 TCLK3 PC25 B

TC1 TCLK4 PC28 B

TC1 TCLK5 PC31 B

TC1 TIOA3 PC23 B

TC1 TIOA4 PC26 B

TC1 TIOA5 PC29 B
853SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

The command ALL_SEND_CID and the fields and values for the HSMCI_CMDR are described in Table 38-6 and
Table 38-7.

Note: 1. bcr means broadcast command with response.

The HSMCI_ARGR contains the argument field of the command.

To send a command, the user must perform the following steps:

 Fill the argument register (HSMCI_ARGR) with the command argument.

 Set the command register (HSMCI_CMDR) (see Table 38-7).

The command is sent immediately after writing the command register.

While the card maintains a busy indication (at the end of a STOP_TRANSMISSION command CMD12, for
example), a new command shall not be sent. The NOTBUSY flag in the Status Register (HSMCI_SR) is asserted
when the card releases the busy indication.

If the command requires a response, it can be read in the HSMCI Response Register (HSMCI_RSPR). The
response size can be from 48 bits up to 136 bits depending on the command. The HSMCI embeds an error
detection to prevent any corrupted data during the transfer.

The following flowchart shows how to send a command to the card and read the response if needed. In this
example, the status register bits are polled but setting the appropriate bits in the HSMCI Interrupt Enable Register
(HSMCI_IER) allows using an interrupt method.

Table 38-6. ALL_SEND_CID Command Description

CMD Index Type Argument Response Abbreviation Command Description

CMD2 bcr(1) [31:0] stuff bits R2 ALL_SEND_CID
Asks all cards to send
their CID numbers on the
CMD line

Table 38-7. Fields and Values for HSMCI_CMDR

Field Value

CMDNB (command number) 2 (CMD2)

RSPTYP (response type) 2 (R2: 136 bits response)

SPCMD (special command) 0 (not a special command)

OPCMD (open drain command) 1

MAXLAT (max latency for command to response) 0 (NID cycles ==> 5 cycles)

TRCMD (transfer command) 0 (No transfer)

TRDIR (transfer direction) X (available only in transfer command)

TRTYP (transfer type) X (available only in transfer command)

IOSPCMD (SDIO special command) 0 (not a special command)
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

912

10. The update of these registers will occur at the next PWM period of the synchronous channels when the
Update Period is elapsed. Go to Step 8. for new values.

Figure 39-11. Method 2 (UPDM = 1)

Method 3: Automatic write of duty-cycle values and automatic trigger of the update

In this mode, the update of the duty cycle values is made automatically by the Peripheral DMA Controller. The
update of the period value, the dead-time values and the update period value must be done by writing in their
respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_DTUPDx and
PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK which
allows to update synchronously (at the same PWM period) the synchronous channels:

 If the bit UPDULOCK is set to ‘1’, the update is done at the next PWM period of the synchronous channels.

 If the UPDULOCK bit is not set to ‘1’, the update is locked and cannot be performed.

After writing the UPDULOCK bit to ‘1’, it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period value is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the Update Period by the field UPR in the
PWM_SCUP register. The PWM controller waits UPR+1 periods of synchronous channels before updating
automatically the duty values and the update period value.

Using the Peripheral DMA Controller removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which improves microcontroller
performance.

The Peripheral DMA Controller must write the duty-cycle values in the synchronous channels index order. For
example if the channels 0, 1 and 3 are synchronous channels, the Peripheral DMA Controller must write the duty-
cycle of the channel 0 first, then the duty-cycle of the channel 1, and finally the duty-cycle of the channel 3.

The status of the Peripheral DMA Controller transfer is reported in the PWM_ISR2 by the following flags:

 WRDY: this flag is set to ‘1’ when the PWM Controller is ready to receive new duty-cycle values and a new
update period value. It is reset to ‘0’ when the PWM_ISR2 is read. The user can choose to synchronize the
WRDY flag and the Peripheral DMA Controller transfer request with a comparison match (see Section
39.6.3 “PWM Comparison Units”), by the fields PTRM and PTRCS in the PWM_SCM register.

 ENDTX : this flag is set to ‘1’ when a PDC transfer is completed

 TXBUFE : this flag is set to ‘1’ when the PDC buffer is empty (no pending PDC transfers)

CCNT0

CDTYUPD 0x20 0x40 0x60

UPRCNT 0x0 0x1 0x0 0x1 0x0 0x1

CDTY 0x20 0x40

UPRUPD 0x1 0x3

WRDY

0x60

0x0 0x1 0x2 0x3 0x0 0x1 0x2

UPR 0x1 0x3
969SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

40.6.1.3 USB Transfer Event Definitions

As indicated below, transfers are sequential events carried out on the USB bus.

Notes: 1. Control transfer must use endpoints with no ping-pong attributes.

2. Isochronous transfers must use endpoints with ping-pong attributes.

3. Control transfers can be aborted using a stall handshake.

A status transaction is a special type of host-to-device transaction used only in a control transfer. The control
transfer must be performed using endpoints with no ping-pong attributes. According to the control sequence (read
or write), the USB device sends or receives a status transaction.

Figure 40-4. Control Read and Write Sequences

Notes: 1. During the Status IN stage, the host waits for a zero length packet (Data IN transaction with no data) from the
device using DATA1 PID. Refer to Chapter 8 of the Universal Serial Bus Specification, Rev. 2.0, for more
information on the protocol layer.

Table 40-5. USB Transfer Events

Transfer

TransactionDirection Type

CONTROL (bidirectional) Control(1)(3)

Setup transaction → Data IN transactions → Status OUT transaction

Setup transaction → Data OUT transactions → Status IN transaction

Setup transaction → Status IN transaction

IN (device toward host)

Interrupt IN

Data IN transaction → Data IN transactionIsochronous IN(2)

Bulk IN

OUT (host toward device)

Interrupt OUT

Data OUT transaction → Data OUT transactionIsochronous OUT(2)

Bulk OUT

Control Read Setup TX Data OUT TX Data OUT TX

Data Stage

Control Write

Setup Stage

Setup Stage

Setup TX

Setup TX
No Data Control

Data IN TX Data IN TX

Status Stage

Status Stage

Status IN TX

Status OUT TX

Status IN TX

Data Stage

Setup Stage Status Stage
1033SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

41.7.6 ACC Interrupt Status Register

Name: ACC_ISR

Address: 0x40040030

Access: Read-only

• CE: Comparison Edge (cleared on read)

0: No edge occurred (defined by EDGETYP) on analog comparator output since the last read of ACC_ISR.

1: A selected edge (defined by EDGETYP) on analog comparator output occurred since the last read of ACC_ISR.

• SCO: Synchronized Comparator Output

Returns an image of the analog comparator output after being pre-processed (refer to Figure 41-1 on page 1069).

If INV = 0

SCO = 0 if inn > inp

SCO = 1 if inp > inn

If INV = 1

SCO = 1 if inn > inp

SCO = 0 if inp > inn

• MASK: Flag Mask

0: The CE flag and SCO value are valid.

1: The CE flag and SCO value are invalid.

31 30 29 28 27 26 25 24

MASK – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – SCO CE
1079SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

45.6 64-ball WLCSP Mechanical Characteristics

This package respects the recommendations of the NEMI User Group.

Figure 45-6. 64-ball WLCSP Package Mechanical Drawing (SAM4SD32/SAM4SD16)
1211SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

