
Microchip Technology - ATSAM4S8BA-AN Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 47

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 11x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 64-LQFP

Supplier Device Package 64-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4s8ba-an

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4s8ba-an-4391779
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored
Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software
control. The processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry”
and “Exception Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more
information.

12.4.1.18 Data Types

The processor supports the following data types:

 32-bit words

 16-bit halfwords

 8-bit bytes

 The processor manages all data memory accesses as little-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for
more information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

 A common way to:

̶ Access peripheral registers

̶ Define exception vectors

 The names of:

̶ The registers of the core peripherals

̶ The core exception vectors

 A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand the
CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS
functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural
short names that might be used in other documents.

The following sections give more information about the CMSIS:

 Section 12.5.3 ”Power Management Programming Hints”

 Section 12.6.2 ”CMSIS Functions”

 Section 12.8.2.1 ”NVIC Programming Hints”.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

68

Examples
LDR R8, [R10] ; Loads R8 from the address in R10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word

; 960 bytes above the address in R5, and
; increments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression evaluating
; to a constant in the range 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into address in
; R4, then increment R4 by 4

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above the
; address in R3, and load R9 from a word 36
; bytes above the address in R3

STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store R1 to
; a word 4 bytes above the address in R8,
; and then decrement R8 by 16.

12.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

where:

op is one of:

LDR Load Register.

STR Store Register.

type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.

LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the
register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either
be signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:

 Rn must not be PC
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

106

12.6.4.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{cond} reglist
POP{cond} reglist

where:

cond is an optional condition code, see “Conditional Execution” .

reglist is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based
on SP, and with the final address for the access written back to the SP. PUSH and POP are the preferred
mnemonics in these cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered
register using the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register
using the lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.

Restrictions

In these instructions:

 reglist must not contain SP

 For the PUSH instruction, reglist must not contain PC

 For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

 Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-
aligned address

 If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples
PUSH {R0,R4-R7}
PUSH {R2,LR}
POP {R0,R10,PC}
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

112

12.7 Cortex-M4 Core Peripherals

12.7.1 Peripherals

 Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low
latency interrupt processing. See Section 12.8 ”Nested Vectored Interrupt Controller (NVIC)”.

 System Control Block (SCB)
The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 12.9 ”System Control Block (SCB)”.

 System Timer (SysTick)
The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter. See Section 12.10 ”System Timer (SysTick)”.

 Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region.
See Section 12.11 ”Memory Protection Unit (MPU)”.

12.7.2 Address Map

The address map of the Private peripheral bus (PPB) is given in the following table.

In register descriptions:

 The required privilege gives the privilege level required to access the register, as follows:

̶ Privileged: Only privileged software can access the register.

̶ Unprivileged: Both unprivileged and privileged software can access the register.

Table 12-28. Core Peripheral Register Regions

Address Core Peripheral

0xE000E008–0xE000E00F System Control Block

0xE000E010–0xE000E01F System Timer

0xE000E100–0xE000E4EF Nested Vectored Interrupt Controller

0xE000ED00–0xE000ED3F System control block

0xE000ED90–0xE000EDB8 Memory Protection Unit

0xE000EF00–0xE000EF03 Nested Vectored Interrupt Controller
195SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

12.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read/Write

The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. To write to this register, write 0x5FA to the VECTKEY field, otherwise the processor ignores the
write.

• VECTKEYSTAT: Register Key (Read)

Reads as 0xFA05.

• VECTKEY: Register Key (Write)

Writes 0x5FA to VECTKEY, otherwise the write is ignored.

• ENDIANNESS: Data Endianness

0: Little-endian.

1: Big-endian.

• PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n
fields in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the
PRIGROUP value controls this split.

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

Determining preemption of an exception uses only the group priority field.

31 30 29 28 27 26 25 24

VECTKEYSTAT/VECTKEY

23 22 21 20 19 18 17 16

VECTKEYSTAT/VECTKEY

15 14 13 12 11 10 9 8

ENDIANNESS – – – – PRIGROUP

7 6 5 4 3 2 1 0

– – – – – SYSRESETREQ VECTCLRACTIVE VECTRESET

PRIGROUP

Interrupt Priority Level Value, PRI_N[7:0] Number of

Binary Point (1) Group Priority Bits Subpriority Bits Group Priorities Subpriorities

0b000 bxxxxxxx.y [7:1] None 128 2

0b001 bxxxxxx.yy [7:2] [4:0] 64 4

0b010 bxxxxx.yyy [7:3] [4:0] 32 8

0b011 bxxxx.yyyy [7:4] [4:0] 16 16

0b100 bxxx.yyyyy [7:5] [4:0] 8 32

0b101 bxx.yyyyyy [7:6] [5:0] 4 64

0b110 bx.yyyyyyy [7] [6:0] 2 128

0b111 b.yyyyyyy None [7:0] 1 256
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

214

STM R0, {R1-R2} ; Region base address, region number and VALID bit,
; and Region Attribute, Size and Enable

12.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD
field of the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register” . The least
significant bit of SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling
a subregion means another region overlapping the disabled range matches instead. If no other enabled region
overlaps the disabled subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be
set to 0x00, otherwise the MPU behavior is unpredictable.

12.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the
attributes from region 1 apply to the first 128 KB region, set the SRD field for region 2 to b00000011 to disable the
first two subregions, as in Figure 12-13 below:

Figure 12-13. SRD Use

12.11.1.7 MPU Design Hints And Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt
handlers might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:

 Except for the MPU_RASR, it must use aligned word accesses

 For the MPU_RASR, it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent
any previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU
as follows:

Region 1

Disabled subregion
Disabled subregion

Region 2, with
subregions

Base address of both regions

Offset from
base address

0
64KB

128KB
192KB
256KB
320KB
384KB
448KB
512KB

Table 12-39. Memory Region Attributes for a Microcontroller

Memory Region TEX C B S Memory Type and Attributes

Flash memory b000 1 0 0 Normal memory, non-shareable, write-through

Internal SRAM b000 1 0 1 Normal memory, shareable, write-through

External SRAM b000 1 1 1 Normal memory, shareable, write-back, write-allocate

Peripherals b000 0 1 1 Device memory, shareable
243SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

3. To stop reading the unique identifier area, execute the ‘Stop Read Unique Identifier’ command by writing
EEFC_FCR.FCMD with the SPUI command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled
by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash.

20.4.3.9 User Signature Area

Each product contains a user signature area of 512-bytes. It can be used for storage. Read, write and erase of this
area is allowed.

See Figure 20-1 "Flash Memory Areas".

The sequence to read the user signature area is the following:

1. Execute the ‘Start Read User Signature’ command by writing EEFC_FCR.FCMD with the STUS com-
mand. Field EEFC_FCR.FARG is meaningless.

2. Wait until the bit EEFC_FSR.FRDY falls to read the user signature area. The user signature area is located
in the first 512 bytes of the Flash memory mapping. The ‘Start Read User Signature’ command reuses some
addresses of the memory plane but the user signature area is physically different from the memory plane

3. To stop reading the user signature area, execute the ‘Stop Read User Signature’ command by writing
EEFC_FCR.FCMD with the SPUS command. Field EEFC_FCR.FARG is meaningless.

4. When the SPUI command has been executed, the bit EEFC_FSR.FRDY rises. If an interrupt was enabled
by setting the bit EEFC_FMR.FRDY, the interrupt line of the interrupt controller is activated.

Note that during the sequence, the software cannot be fetched from the Flash or from the second plane in case of
dual plane.

One error can be detected in EEFC_FSR after this sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

The sequence to write the user signature area is the following:

1. Write the full page, at any page address, within the internal memory area address space.

2. Execute the ‘Write User Signature’ command by writing EEFC_FCR.FCMD with the WUS command. Field
EEFC_FCR.FARG is meaningless.

3. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by
setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the WriteVerify test of the Flash memory has failed.

The sequence to erase the user signature area is the following:

1. Execute the ‘Erase User Signature’ command by writing EEFC_FCR.FCMD with the EUS command.
Field EEFC_FCR.FARG is meaningless.

2. When programming is completed, the bit EEFC_FSR.FRDY rises. If an interrupt has been enabled by
setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated.

Two errors can be detected in EEFC_FSR after this sequence:

 Command Error: A bad keyword has been written in EEFC_FCR.

 Flash Error: At the end of the programming, the EraseVerify test of the Flash memory has failed.
369SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23.7.10 CRCCU Mode Register

Name: CRCCU_MR

Address: 0x40044038

Access: Read/Write

• ENABLE: CRC Enable

Always write a 1 to this bit.

• COMPARE: CRC Compare

If set to one, this bit indicates that the CRCCU DMA will compare the CRC computed on the data stream with the value
stored in the TR_CRC reference register. If a mismatch occurs, the ERRISR bit in the CRCCU_ISR is set.

• PTYPE: Primitive Polynomial

• DIVIDER: Request Divider

CRCCU DMA performs successive transfers. It is possible to reduce the bandwidth drained by the CRCCU DMA by pro-
gramming the DIVIDER field. The transfer request frequency is divided by 2^(DIVIDER+1).

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

DIVIDER PTYPE COMPARE ENABLE

Value Name Description

0 CCITT8023 Polynom 0x04C11DB7

1 CASTAGNOLI Polynom 0x1EDC6F41

2 CCITT16 Polynom 0x1021
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

418

29.15.2 Clock Switching Waveforms

Figure 29-6. Switch Master Clock from Slow Clock to PLLx Clock

Figure 29-7. Switch Master Clock from Main Clock to Slow Clock

Slow Clock

LOCK

MCKRDY

Master Clock

Write PMC_MCKR

PLLx Clock

Slow Clock

Main Clock

MCKRDY

Master Clock

Write PMC_MCKR
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

526

Figure 31-7. Input Change Interrupt Timings When No Additional Interrupt Modes

31.5.11 I/O Lines Lock

When an I/O line is controlled by a peripheral (particularly the Pulse Width Modulation Controller PWM), it can
become locked by the action of this peripheral via an input of the PIO Controller. When an I/O line is locked, the
write of the corresponding bit in PIO_PER, PIO_PDR, PIO_MDER, PIO_MDDR, PIO_PUDR, PIO_PUER,
PIO_ABCDSR1 and PIO_ABCDSR2 is discarded in order to lock its configuration. The user can know at anytime
which I/O line is locked by reading the PIO Lock Status Register (PIO_LOCKSR). Once an I/O line is locked, the
only way to unlock it is to apply a hardware reset to the PIO Controller.

31.5.12 Programmable Schmitt Trigger

It is possible to configure each input for the Schmitt trigger. By default the Schmitt trigger is active. Disabling the
Schmitt trigger is requested when using the QTouch® Library.

31.5.13 Parallel Capture Mode

31.5.13.1 Overview

The PIO Controller integrates an interface able to read data from a CMOS digital image sensor, a high-speed
parallel ADC, a DSP synchronous port in synchronous mode, etc. For better understanding and to ease reading,
the following description uses an example with a CMOS digital image sensor.

31.5.13.2 Functional Description

The CMOS digital image sensor provides a sensor clock, an 8-bit data synchronous with the sensor clock and two
data enables which are also synchronous with the sensor clock.

Peripheral clock

Pin Level

Read PIO_ISR APB Access

PIO_ISR

APB Access

Figure 31-8. PIO Controller Connection with CMOS Digital Image Sensor

PIO Controller
Parallel Capture

Mode CMOS Digital
Image Sensor

PDC

Data

Status

PIODCCLK

PIODC[7:0]

PIODCEN1

PIODCEN2

PCLK

DATA[7:0]

VSYNC

HSYNC

Events
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

578

31.6.11 PIO Clear Output Data Register

Name: PIO_CODR

Address: 0x400E0E34 (PIOA), 0x400E1034 (PIOB), 0x400E1234 (PIOC)

Access: Write-only

• P0–P31: Clear Output Data

0: No effect.

1: Clears the data to be driven on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

598

31.6.46 PIO Write Protection Mode Register

Name: PIO_WPMR

Address: 0x400E0EE4 (PIOA), 0x400E10E4 (PIOB), 0x400E12E4 (PIOC)

Access: Read/Write

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x50494F (“PIO” in ASCII).

See Section 31.5.15 “Register Write Protection” for the list of registers that can be protected.

• WPKEY: Write Protection Key

31 30 29 28 27 26 25 24

WPKEY

23 22 21 20 19 18 17 16

WPKEY

15 14 13 12 11 10 9 8

WPKEY

7 6 5 4 3 2 1 0

– – – – – – – WPEN

Value Name Description

0x50494F PASSWD
Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as
0.
633SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.48 PIO Schmitt Trigger Register

Name: PIO_SCHMITT

Address: 0x400E0F00 (PIOA), 0x400E1100 (PIOB), 0x400E1300 (PIOC)

Access: Read/Write

• SCHMITTx [x=0..31]: Schmitt Trigger Control

0: Schmitt trigger is enabled.

1: Schmitt trigger is disabled.

31 30 29 28 27 26 25 24

SCHMITT31 SCHMITT30 SCHMITT29 SCHMITT28 SCHMITT27 SCHMITT26 SCHMITT25 SCHMITT24

23 22 21 20 19 18 17 16

SCHMITT23 SCHMITT22 SCHMITT21 SCHMITT20 SCHMITT19 SCHMITT18 SCHMITT17 SCHMITT16

15 14 13 12 11 10 9 8

SCHMITT15 SCHMITT14 SCHMITT13 SCHMITT12 SCHMITT11 SCHMITT10 SCHMITT9 SCHMITT8

7 6 5 4 3 2 1 0

SCHMITT7 SCHMITT6 SCHMITT5 SCHMITT4 SCHMITT3 SCHMITT2 SCHMITT1 SCHMITT0
635SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

• RXBUFF: Receive Buffer Full Interrupt Enable

0: No effect.

1: Enables the Receive Buffer Full Interrupt.

• CP0: Compare 0 Interrupt Enable

0: No effect.

1: Enables the Compare 0 Interrupt.

• CP1: Compare 1 Interrupt Enable

0: No effect.

1: Enables the Compare 1 Interrupt.

• TXSYN: Tx Sync Interrupt Enable

0: No effect.

1: Enables the Tx Sync Interrupt.

• RXSYN: Rx Sync Interrupt Enable

0: No effect.

1: Enables the Rx Sync Interrupt.
679SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Reversal After a Repeated Start

Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 34-29 describes the repeated start + reversal from Read to Write mode.

Figure 34-29. Repeated Start + Reversal from Read to Write Mode

Note: 1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

Reversal of Write to Read

The master initiates the communication by a write command and finishes it by a read command.

Figure 34-30 describes the repeated start + reversal from Write to Read mode.

Figure 34-30. Repeated Start + Reversal from Write to Read Mode

Notes: 1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically stretched before
the ACK.

2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

34.7.5.6 Using the Peripheral DMA Controller (PDC) in Slave Mode

The use of the PDC significantly reduces the CPU load.

Data Transmit with the PDC in Slave Mode

The following procedure shows an example of data transmission with PDC.

S SADR R ADATA0A DATA1 SADRSrNA W A DATA2 A DATA3 A P

Cleared after read

DATA0 DATA1

DATA2 DATA3

SVACC

SVREAD

TWD

TWI_THR

TWI_RHR

EOSACC

TXRDY

RXRDY

TXCOMP As soon as a START is detected

S SADR W ADATA0A DATA1 SADRSrA R A DATA2 A DATA3 NA P

Cleared after read

DATA0

DATA2 DATA3

DATA1

TXCOMP

TXRDY

RXRDY

As soon as a START is detected

Read TWI_RHR

SVACC

SVREAD

TWD

TWI_RHR

TWI_THR

EOSACC
743SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

 Offers Buffer Transfer without Processor Intervention

 Register Write Protection
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

780

Figure 37-16. Input Stage

Input filtering can efficiently remove spurious pulses that might be generated by the presence of particulate
contamination on the optical or magnetic disk of the rotary sensor.

Spurious pulses can also occur in environments with high levels of electro-magnetic interference. Or, simply if
vibration occurs even when rotation is fully stopped and the shaft of the motor is in such a position that the
beginning of one of the reflective or magnetic bars on the rotary sensor disk is aligned with the light or magnetic
(Hall) receiver cell of the rotary sensor. Any vibration can make the PHA, PHB signals toggle for a short duration.

1

1

1

MAXFILT

PHA

PHB

IDX

TIOA0

TIOB0

TIOB1

INVA

1

INVB

1

INVIDX

SWAP

1

IDXPHB

Filter

Filter

Filter
1

Direction
and
Edge
Detection

IDX

PHedge

DIR

Input Pre-Processing

MAXFILT > 0
869SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

Figure 38-10. Multiple Write Functional Flow Diagram

Note: 1. It is assumed that this command has been correctly sent (see Figure 38-7).

38.9 SD/SDIO Card Operation

The High Speed MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card) and
SDIO (SD Input Output) Card commands.

SD/SDIO cards are based on the MultiMedia Card (MMC) format, but are physically slightly thicker and feature
higher data transfer rates, a lock switch on the side to prevent accidental overwriting and security features. The

Send SELECT/DESELECT_CARD
command(1) to select the card

Send SET_BLOCKLEN command(1)

Set the PDCMODE bit
HSMCI_MR |= PDCMODE
Set the block length
HSMCI_BLKR |= (BlockLength << 16)

Configure the PDC channel
HSMCI_TPR = Data Buffer Address
HSMCI_TCR = BlockLength/4

Send WRITE_MULTIPLE_BLOCK
command(1)

Read status register HSMCI_SR

Poll the bit
BLKE = 0?

Yes

No

HSMCI_PTCR = TXTEN

Poll the bit
NOTBUSY = 0?

Yes

RETURN

No

Send STOP_TRANSMISSION
command(1)
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

918

42.7.14 ADC Extended Mode Register

Name: ADC_EMR

Address: 0x40038040

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the ADC Write Protection Mode Register.

• CMPMODE: Comparison Mode

• CMPSEL: Comparison Selected Channel

If CMPALL = 0: CMPSEL indicates which channel has to be compared.

If CMPALL = 1: No effect.

• CMPALL: Compare All Channels

0: Only channel indicated in CMPSEL field is compared.

1: All channels are compared.

• TAG: Tag of the ADC_LCDR

0: Sets CHNB field to zero in ADC_LCDR.

1: Appends the channel number to the conversion result in ADC_LCDR.

31 30 29 28 27 26 25 24

– – – – – – – TAG

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – CMPALL –

7 6 5 4 3 2 1 0

CMPSEL – – CMPMODE

Value Name Description

0 LOW Generates an event when the converted data is lower than the low threshold of the window.

1 HIGH Generates an event when the converted data is higher than the high threshold of the window.

2 IN Generates an event when the converted data is in the comparison window.

3 OUT Generates an event when the converted data is out of the comparison window.
1113SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

48.3.3 Brownout Detector

Issue: Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

In active mode or in wait mode, if the Brownout Detector is disabled (SUPC_MR.BODDIS = 1) and power is lost on
VDDCORE while VDDIO is powered, the device might not be properly reset and may behave unpredictably.

Workaround: When the Brownout Detector is disabled in active or in wait mode, VDDCORE always needs to be
powered.

48.3.4 Low-power Mode

Issue: Unpredictable Behavior When Entering Sleep Mode

When entering Sleep mode, if an interrupt occurs during WFI or WFE (PMC_FSMR.LPM = 0) instruction
processing, the ARM core may read an incorrect data, thus leading to unpredictable behavior of the software. This
issue is not present in Wait mode.

Workaround: The following conditions must be met:

1. The interrupt vector table must be located in Flash.

2. The Matrix slave interface for the Flash must be set to ‘No default master’. This is done by setting the field
DEFMSTR_TYPE to 0 in the register MATRIX_SCFG. The code example below can be used to program the
NO_DEFAULT_MASTER state:

MATRIX_SCFG[2] = MATRIX_SCFG_SLOT_CYCLE(0xFF) | MATRIX_SCFG_DEFMSTR_TYPE(0x0);

This must be done once in the software before entering Sleep mode.

48.3.5 PIO

Issue: PB4 Input Low-level Voltage Range

The undershoot is limited to -0.1V.

In normal operating conditions, the VIL minimum value on PB4 is limited to 0V.

Workaround: The voltage on PB4 with respect to ground must be in the range
-0.1V to + VDDIO + 0.4V instead of -0.3V to + VDDIO + 0.4V for all other input pins, as shown in
Table 44.1 “Absolute Maximum Ratings”.

The minimum VIL on PB4 must be 0V instead of -0.3V for all other input pins, as shown in Table
44.3 “DC Characteristics”.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1230

