

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s8cb-cn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ASR #n	arithmetic shift right <i>n</i> bits, $1 \le n \le 32$.
--------	--

LSL #*n* logical shift left *n* bits, $1 \le n \le 31$.

- LSR #*n* logical shift right *n* bits, $1 \le n \le 32$.
- ROR #*n* rotate right *n* bits, $1 \le n \le 31$.
- RRX rotate right one bit, with extend.

if omitted, no shift occurs, equivalent to LSL #0.

If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry flag when used with certain instructions. For information on the shift operations and how they affect the carry flag, see "Flexible Second Operand".

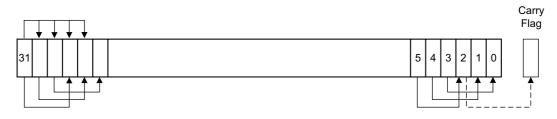
12.6.3.4 Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the *shift length*. Register shift can be performed:

- Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
- During the calculation of *Operand2* by the instructions that specify the second operand as a register with shift. See "Flexible Second Operand". The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register shift operations update the carry flag except when the specified shift length is 0. The following subsections describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n is the shift length.

ASR


Arithmetic shift right by *n* bits moves the left-hand 32-n bits of the register, Rm, to the right by *n* places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand *n* bits of the result. See Figure 12-8.

The ASR #n operation can be used to divide the value in the register Rm by 2^n , with the result being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in *Operand2* with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[*n*-1], of the register *Rm*.

- If *n* is 32 or more, then all the bits in the result are set to the value of bit[31] of *Rm*.
- If *n* is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of *Rm*.

Figure 12-8. ASR #3

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by *n* places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

• MEMFAULTPENDED: Memory Management Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

SYSTICKACT: SysTick Exception Active

Read:

0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.

- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently restores the current active status.

- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write procedure to ensure that only the required bit is changed.

• PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

• MONITORACT: Debug Monitor Active

0: Debug monitor is not active.

1: Debug monitor is active.

• SVCALLACT: SVC Call Active

0: SVC call is not active.

1: SVC call is active.

• USGFAULTACT: Usage Fault Exception Active

0: Usage fault exception is not active.

1: Usage fault exception is active.

• BUSFAULTACT: Bus Fault Exception Active

0: Bus fault exception is not active.

1: Bus fault exception is active.

• MEMFAULTACT: Memory Management Fault Exception Active

0: Memory management fault exception is not active.

1: Memory management fault exception is active.

16.6.4 RTC Calendar Register

Name:	RTC_CALR						
Address:	0x400E146C						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	-			DA	ATE		
23	22	21	20	19	18	17	16
	DAY	MONTH					
15	14	13	12	11	10	9	8
			YE	AR			
7	6	5	4	3	2	1	0
_				CENT			

• CENT: Current Century

The range that can be set is 19–20 (gregorian) or 13–14 (persian) (BCD). The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year

The range that can be set is 00–99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

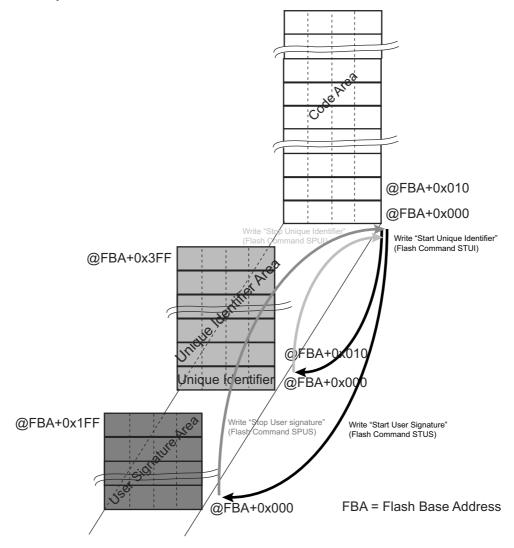
• MONTH: Current Month

The range that can be set is 01–12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day in Current Week

The range that can be set is 1–7 (BCD).


The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Day in Current Month

The range that can be set is 01–31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

• FARG: Flash Command Argument

GETD, GLB, GGPB, STUI, SPUI, GCALB, WUS, EUS, STUS, SPUS, EA	Commands requiring no argument, including Erase all command	FARG is meaningless, must be written with 0
ES	Erase sector command	FARG must be written with any page number within the sector to be erased
		FARG[1:0] defines the number of pages to be erased
	Erase pages command	The start page must be written in FARG[15:2].
		FARG[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4
		FARG[1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8, FARG[2]=0
EPA		FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16, FARG[3:2]=0
		FARG[1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32, FARG[4:2]=0
		Refer to Table 20-4 "EEFC_FCR.FARG Field for EPA Command".
WP, WPL, EWP, EWPL	Programming commands	FARG must be written with the page number to be programmed
SLB, CLB	Lock bit commands	FARG defines the page number to be locked or unlocked
SGPB, CGPB	GPNVM commands	FARG defines the GPNVM number to be programmed

• FKEY: Flash Writing Protection Key

Value	Name	Description
0x5A	PASSWD	The 0x5A value enables the command defined by the bits of the register. If the field is written with a different value, the write is not performed and no action is started.

23.7.7 CRCCU DMA Interrupt Mask Register

Name:	CRCCU_DMA_IMR								
Address:	0x4004401C	0x4004401C							
Access:	Read-only								
31	30	29	28	27	26	25	24		
-	-	_	-	-	-	-	-		
23	22	21	20	19	18	17	16		
-	-	-	-	-	-	-	-		
15	14	13	12	11	10	9	8		
-	-	-	-	-	-	-	-		
7	6	5	4	3	2	1	0		
_	-	_	-	_	-	—	DMAIMR		

• DMAIMR: Interrupt Mask

0: Buffer Transfer Completed interrupt disabled

1: Buffer Transfer Completed interrupt enabled

26.13.3 Ready Mode

In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins the access by down counting the setup and pulse counters of the read/write controlling signal. In the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.

If asserted, the SMC suspends the access as shown in Figure 26-25 and Figure 26-26. After deassertion, the access is completed: the hold step of the access is performed.

This mode must be selected when the external device uses deassertion of the NWAIT signal to indicate its ability to complete the read or write operation.

If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the pulse of the controlling read/write signal, it has no impact on the access length as shown in Figure 26-26.

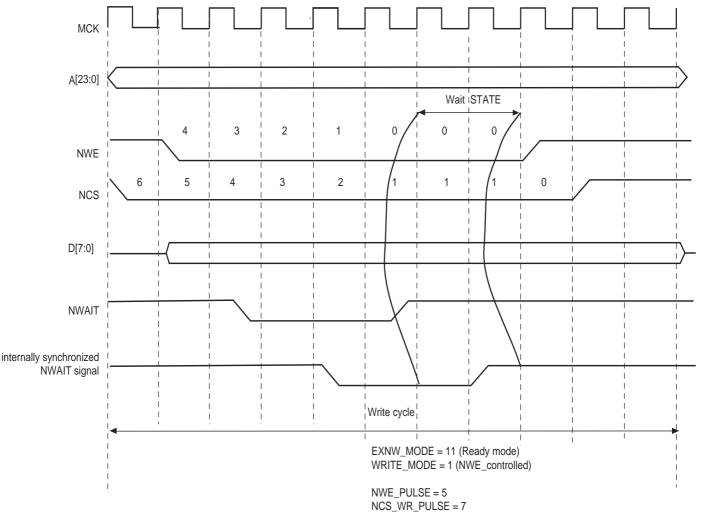


Figure 26-25. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)

27.3 Peripheral DMA Controller Connections

The Peripheral DMA Controller handles the data transfer between peripherals and memory and receives triggers from the peripherals listed in the following table.

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Channel 0 is high priority):

Instance Name	Channel T/R	Channel Number
PWM	Transmit	21
TWI1	Transmit	20
TWIO	Transmit	19
UART1	Transmit	18
UART0	Transmit	17
USART1	Transmit	16
USART0	Transmit	15
DACC	Transmit	14
SPI	Transmit	13
SSC	Transmit	12
HSMCI	Transmit	11
PIOA	Receive	10
TWI1	Receive	9
TWIO	Receive	8
UART1	Receive	7
UART0	Receive	6
USART1	Receive	5
USART0	Receive	4
ADC	Receive	3
SPI	Receive	2
SSC	Receive	1
HSMCI	Receive	0

Table 27-1.Peripheral DMA Controller

29.17.10PMC Clock Generator PLLB Register

Name:	CKGR_PLLBR							
Address:	0x400E042C							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
-	-	_	-	-		MULB		
23	22	21	20	19	18	17	16	
	MULB							
15	14	13	12	11	10	9	8	
-	-	PLLBCOUNT						
7	6	5	4	3	2	1	0	
			DI	VB				

Possible limitations on PLLB input frequencies and multiplier factors should be checked before using the PMC. This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

• DIVB: PLLB Front-End Divider

- 0: Divider output is stuck at 0 and PLLB is disabled.
- 1: Divider is bypassed (divide by 1)
- 2-255: Clock is divided by DIVB

PLLBCOUNT: PLLB Counter

Specifies the number of Slow Clock cycles before the LOCKB bit is set in PMC_SR after CKGR_PLLBR is written.

• MULB: PLLB Multiplier

0: The PLLB is deactivated (PLLB also disabled if DIVB = 0).

7 up to 62: The PLLB Clock frequency is the PLLB input frequency multiplied by MULB + 1.

Unlisted values are forbidden.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC transmitter I/O lines to the SSC peripheral mode.

Instance	Signal	I/O Line	Peripheral
SSC	RD	PA18	А
SSC	RF	PA20	А
SSC	RK	PA19	А
SSC	TD	PA17	А
SSC	TF	PA15	А
SSC	тк	PA16	А

Table 32-2. I/O Lines

32.7.2 Power Management

The SSC is not continuously clocked. The SSC interface may be clocked through the Power Management Controller (PMC), therefore the programmer must first configure the PMC to enable the SSC clock.

32.7.3 Interrupt

The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt Mask Register. Each pending and

Table 32-3. Peripheral IDs

Instance	ID
SSC	22

unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt service routine can get the interrupt origin by reading the SSC Interrupt Status Register.

32.9.17 SSC Write Protection Mode Register

Name: Address:	SSC_WPMR 0x400040E4						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			WP	KEY			
23	22	21	20	19	18	17	16
			WP	KEY			
15	14	13	12	11	10	9	8
			WP	KEY			
7	6	5	4	3	2	1	0
-	-	—	_	_	_	_	WPEN

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x535343 ("SSC" in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x535343 ("SSC" in ASCII).

See Section 32.8.10 "Register Write Protection" for the list of registers that can be protected.

• WPKEY: Write Protection Key

Value	Name	Description			
0x535343	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.			
0,000040	FAGGVID	Always reads as 0.			

33. Serial Peripheral Interface (SPI)

33.1 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with external devices in Master or Slave mode. It also enables communication between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a Shift register that serially transmits data bits to other SPIs. During a data transfer, one SPI system acts as the "master" which controls the data flow, while the other devices act as "slaves" which have data shifted into and out by the master. Different CPUs can take turn being masters (multiple master protocol, contrary to single master protocol where one CPU is always the master while all of the others are always slaves). One master can simultaneously shift data into multiple slaves. However, only one slave can drive its output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

- Master Out Slave In (MOSI)—This data line supplies the output data from the master shifted into the input(s) of the slave(s).
- Master In Slave Out (MISO)—This data line supplies the output data from a slave to the input of the master. There may be no more than one slave transmitting data during any particular transfer.
- Serial Clock (SPCK)—This control line is driven by the master and regulates the flow of the data bits. The master can transmit data at a variety of baud rates; there is one SPCK pulse for each bit that is transmitted.
- Slave Select (NSS)—This control line allows slaves to be turned on and off by hardware.

33.2 Embedded Characteristics

- Master or Slave Serial Peripheral Bus Interface
 - 8-bit to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delay between consecutive transfers and delay before SPI clock per chip select
 - Programmable delay between chip selects
 - Selectable mode fault detection
- Master Mode can drive SPCK up to Peripheral Clock
- Master Mode Bit Rate can be Independent of the Processor/Peripheral Clock
- Slave mode operates on SPCK, asynchronously with core and bus clock
- Four chip selects with external decoder support allow communication with up to 15 peripherals
- Communication with Serial External Devices Supported
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD controllers, CAN controllers and sensors
 - External coprocessors
- Connection to PDC Channel Capabilities, Optimizing Data Transfers
 - One channel for the receiver
 - One channel for the transmitter
- Register Write Protection

37.7.3 TC Channel Mode Register: Waveform Mode

Name: TC_CMRx [x=0..2] (WAVEFORM_MODE)

Address: 0x40010004 (0)[0], 0x40010044 (0)[1], 0x40010084 (0)[2], 0x40014004 (1)[0], 0x40014044 (1)[1], 0x40014084 (1)[2]

Access:	Read/Write						
31	30	29	28	27	26	25	24
BS	BSWTRG BEEVT		EVT	BCPC		BC	PB
23	22	21	20	19	18	17	16
AS	ASWTRG AEEVT		EVT	AC	PC	ACPA	
15	14	13	12	11	10	9	8
WAVE	WAV	WAVSEL ENETRG		EEVT		EEVTEDG	
7	6	5	4	3	2	1	0
CPCDIS	CPCSTOP	BL	JRST	CLKI	TCCLKS		

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• TCCLKS: Clock Selection

Value	Name	Description
0	TIMER_CLOCK1	Clock selected: internal MCK/2 clock signal (from PMC)
1	TIMER_CLOCK2	Clock selected: internal MCK/8 clock signal (from PMC)
2	TIMER_CLOCK3	Clock selected: internal MCK/32 clock signal (from PMC)
3	TIMER_CLOCK4	Clock selected: internal MCK/128 clock signal (from PMC)
4	TIMER_CLOCK5	Clock selected: internal SLCK clock signal (from PMC)
5	XC0	Clock selected: XC0
6	XC1	Clock selected: XC1
7	XC2	Clock selected: XC2

• CLKI: Clock Invert

0: Counter is incremented on rising edge of the clock.

1: Counter is incremented on falling edge of the clock.

BURST: Burst Signal Selection

Value	Name	Description
0	NONE	The clock is not gated by an external signal.
1	XC0	XC0 is ANDed with the selected clock.
2	XC1	XC1 is ANDed with the selected clock.
3	XC2	XC2 is ANDed with the selected clock.

• CPCSTOP: Counter Clock Stopped with RC Compare

0: Counter clock is not stopped when counter reaches RC.

1: Counter clock is stopped when counter reaches RC.

41.7.5 ACC Interrupt Mask Register

Name: Address:	ACC_IMR 0x4004002C						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	-	_	-	-	-	-
23	22	21	20	19	18	17	16
_	-	-	-	-	-	_	-
15	14	13	12	11	10	9	8
-	-	-	_	-	-	-	-
7	6	5	4	3	2	1	0
_	-	_	_	_	_	_	CE

• CE: Comparison Edge

0: The interrupt is disabled.

1: The interrupt is enabled.

42.7.6 ADC Channel Disable Register

Name:	ADC_CHDR						
Address:	0x40038014						
Access:	Write-only						
31	30	29	28	27	26	25	24
—	-	_	-	-	_	_	—
23	22	21	20	19	18	17	16
—	-	_	-	-	_	—	—
15	14	13	12	11	10	9	8
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
7	6	5	4	3	2	1	0
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

This register can only be written if the WPEN bit is cleared in the ADC Write Protection Mode Register.

• CHx: Channel x Disable

0: No effect.

1: Disables the corresponding channel.

Warning: If the corresponding channel is disabled during a conversion or if it is disabled and then reenabled during a conversion, its associated data and corresponding EOCx and GOVRE flags in ADC_ISR and OVREx flags in ADC_OVER are unpredictable.

42.7.9 ADC Interrupt Enable Register

Name:	ADC_IER						
Address:	0x40038024						
Access:	Write-only						
31	30	29	28	27	26	25	24
—	-	-	RXBUFF	ENDRX	COMPE	GOVRE	DRDY
23	22	21	20	19	18	17	16
EOCAL	_	_	—	—	—	—	—
15	14	13	12	11	10	9	8
EOC15	EOC14	EOC13	EOC12	EOC11	EOC10	EOC9	EOC8
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0

The following configuration values are valid for all listed bit names of this register:

- 0: No effect.
- 1: Enables the corresponding interrupt.
- EOCx: End of Conversion Interrupt Enable x
- EOCAL: End of Calibration Sequence
- DRDY: Data Ready Interrupt Enable
- GOVRE: General Overrun Error Interrupt Enable
- COMPE: Comparison Event Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- RXBUFF: Receive Buffer Full Interrupt Enable

42.7.12 ADC Interrupt Status Register

Name:	ADC_ISR						
Address:	0x40038030						
Access:	Read-only						
31	30	29	28	27	26	25	24
—	-	-	RXBUFF	ENDRX	COMPE	GOVRE	DRDY
23	22	21	20	19	18	17	16
EOCAL	-	—	—	—	—	—	—
15	14	13	12	11	10	9	8
EOC15	EOC14	EOC13	EOC12	EOC11	EOC10	EOC9	EOC8
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0

• EOCx: End of Conversion x (automatically set / cleared)

0: The corresponding analog channel is disabled, or the conversion is not finished. This flag is cleared when reading the corresponding ADC_CDRx registers.

1: The corresponding analog channel is enabled and conversion is complete.

• EOCAL: End of Calibration Sequence

- 0: Calibration sequence is ongoing, or no calibration sequence has been requested.
- 1: Calibration sequence is complete.

• DRDY: Data Ready (automatically set / cleared)

- 0: No data has been converted since the last read of ADC_LCDR.
- 1: At least one data has been converted and is available in ADC_LCDR.

• GOVRE: General Overrun Error (cleared on read)

- 0: No general overrun error occurred since the last read of ADC_ISR.
- 1: At least one general overrun error has occurred since the last read of ADC_ISR.

• COMPE: Comparison Event (cleared on read)

- 0: No comparison event since the last read of ADC_ISR.
- 1: At least one comparison event (defined in the ADC_EMR and ADC_CWR) has occurred since the last read of ADC_ISR.

• ENDRX: End of Receive Transfer (cleared by writing ADC_RCR or ADC_RNCR)

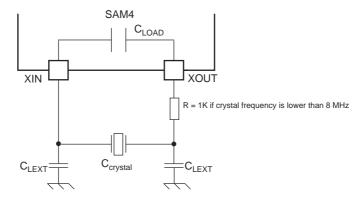
- 0: The Receive Counter Register has not reached 0 since the last write in ADC_RCR or ADC_RNCR⁽¹⁾.
- 1: The Receive Counter Register has reached 0 since the last write in ADC_RCR or ADC_RNCR⁽¹⁾.

• RXBUFF: Receive Buffer Full (cleared by writing ADC_RCR or ADC_RNCR)

- 0: ADC_RCR or ADC_RNCR⁽¹⁾ has a value other than 0.
- 1: Both ADC_RCR and ADC_RNCR⁽¹⁾ have a value of 0.
- Note: 1. ADC_RCR and ADC_RNCR are PDC registers

Table 44-24.	SAM4SD32/SA16/SD16 Typical Active Power Consumption with VDDCORE@ 1.2V running from Flash Memory
(AMP2) or SRAM

	CoreMark					
	Cache Enable (CE)		Cache Dis			
Core Clock (MHz)	128-bit Flash access ⁽¹⁾	64-bit Flash access ⁽¹⁾	128-bit Flash access ⁽¹⁾	64-bit Flash access ⁽¹⁾	SRAM	Uni
120	23.2	23.2	27.8	20.9	22.1	
100	19.6	19.6	25.3	19.0	18.5	
84	16.6	16.5	21.6	16.2	15.7	
64	12.8	12.8	18.0	13.7	12.1	
48	9.7	9.7	14.9	11.9	9.2	
32	6.7	6.7	11.2	9.5	6.3	
24	5.2	5.2	9.5	8.4	4.9	m/
12	2.5	2.5	5.4	4.6	2.4	
8	1.8	1.8	4.5	3.9	1.7	
4	1.1	1.1	2.8	2.8	1.0	
2	0.7	0.7	2.0	2.0	0.7	
1	0.5	0.5	1.2	1.2	0.5	
0.5	0.4	0.4	0.8	0.8	0.4	


Note: 1. Flash Wait State (FWS) in EEFC_FMR adjusted versus core frequency

44.5.6 3 to 20 MHz Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC}	Operating Frequency	Normal mode with crystal	3	16	20	MHz
	Duty Cycle		40	50	60	%
		3 MHz, C _{SHUNT} = 3 pF			14.5	
		8 MHz, C _{SHUNT} = 7 pF			4	
t _{START}	Startup Time	16 MHz, C_{SHUNT} = 7 pF with C_m = 8 fF	-	-	1.4	ms
		16 MHz, C_{SHUNT} = 7 pF with C_m = 1.6 fF			2.5	
		20 MHz, C _{SHUNT} = 7 pF			1	
		3 MHz		230	350	
		8 MHz		300	400	μΑ
IDDON	Current Consumption (on VDDIO)	16 MHz	_	390	470	
		20 MHz		450	560	
		3 MHz			15	
P _{ON}	Drive Level	8 MHz	_	_	30	μW
		16 MHz, 20 MHz			50	
R _f	Internal Resistor	Between XIN and XOUT	_	0.5	_	MΩ
C _{LEXT}	Maximum External Capacitor on XIN and XOUT		_	_	17	pF
C _{crystal}	Allowed Crystal Capacitance Load	From crystal specification	12.5	_	17.5	pF
C_{LOAD}	Internal Equivalent Load Capacitance	Integrated load capacitance (XIN and XOUT in series)	7.5	9.5	10.5	pF

Table 44-31.	3 to 20 MHz Crystal Oscillator Characteristics
--------------	--

Figure 44-15. 3 to 20 MHz Crystal Oscillator Schematic

 $\label{eq:clear} C_{\text{LEXT}} = 2 \times (C_{\text{crystal}} - C_{\text{LOAD}} - C_{\text{PCB}}).$

Where C_{PCB} is the capacitance of the printed circuit board (PCB) track layout from the crystal to the SAM4 pin.