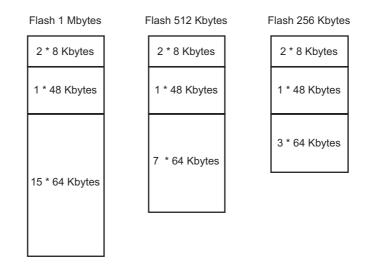


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TFBGA
Supplier Device Package	100-TFBGA (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4s8cb-cnr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 8-3. Flash Size

The following erase commands can be used depending on the sector size:

- 8 Kbyte small sector
 - Erase and write page (EWP)
 - Erase and write page and lock (EWPL)
 - Erase sector (ES) with FARG set to a page number in the sector to erase
 - Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.
 FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.
- 48 Kbyte and 64 Kbyte sectors
 - One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1
 - One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2
 - One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3
 - One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase
- Entire memory plane
 - The entire Flash, with the command Erase all (EA)

The Write commands of the Flash cannot be used under 330 kHz.

8.1.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.

It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

8.1.3.3 Flash Speed

The user must set the number of wait states depending on the frequency used.

For more details, refer to Section 44.12 "AC Characteristics".

12.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax	
op{	<pre>type}T{cond} Rt, [Rn {, #offset}] ; immediate offset</pre>
where:	
ор	is one of:
LDR	Load Register.
STR	Store Register.
type is one	of:
В	unsigned byte, zero extend to 32 bits on loads.
SB	signed byte, sign extend to 32 bits (LDR only).
Н	unsigned halfword, zero extend to 32 bits on loads.
SH	signed halfword, sign extend to 32 bits (LDR only).
-	omit, for word.
cond	is an optional condition code, see "Conditional Execution".
Rt	is the register to load or store.
Rn	is the register on which the memory address is based.
offset	is an offset from <i>Rn</i> and can be 0 to 255.
	If offset is omitted, the address is the value in Rn.
Operation	

Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset, see "LDR and STR, Immediate Offset". The difference is that these instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access instructions with immediate offset.

Restrictions

In these instructions:

- *Rn* must not be PC
- *Rt* must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples

STRBTEQ	R4,	[R7]	; Conditionally store least significant byte in
			; R4 to an address in R7, with unprivileged access
LDRHT	R2,	[R2, #8]	; Load halfword value from an address equal to
			; sum of R2 and 8 into R2, with unprivileged access

Atmel

12.8.3.1	Interrupt Set-enable Registers									
Name:	NVIC_ISERx [x=	NVIC_ISERx [x=07]								
Access:	Read/Write									
Reset:	0x000000000									
31	30	29	28	27	26	25	24			
	SETENA									
23	22	21	20	19	18	17	16			
			SET	ENA						
15	14	13	12	11	10	9	8			
SETENA										
7	6	5	4	3	2	1	0			
			SET	ENA						

These registers enable interrupts and show which interrupts are enabled.

• SETENA: Interrupt Set-enable

Write:

0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

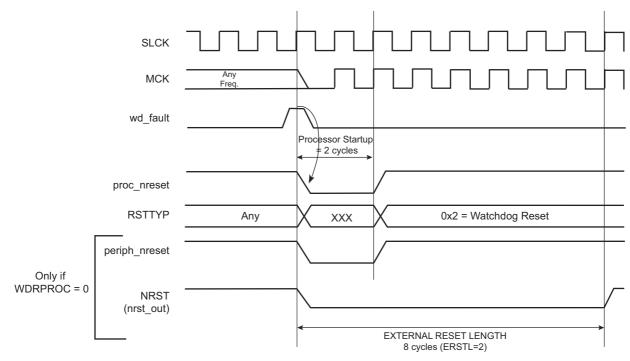
- Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.
 - 2. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never activates the interrupt, regardless of its priority.

Atmel

Field RSTC_SR.RSTTYP is updated to report a backup reset.

14.4.3.3 Watchdog Reset

The watchdog reset is entered when a watchdog fault occurs. This reset lasts three slow clock cycles.


When in watchdog reset, assertion of the reset signals depends on the WDRPROC bit in the WDT_MR:

- If WDRPROC = 0, the processor reset and the peripheral reset are asserted. The NRST line is also
 asserted, depending on how field RSTC_MR.ERSTL is programmed. However, the resulting low level on
 NRST does not result in a user reset state.
- If WDRPROC = 1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if WDRSTEN in the WDT_MR is set, the Watchdog Timer is always reset after a watchdog reset, and the Watchdog is enabled by default and with a period set to a maximum.

When bit WDT_MR.WDRSTEN is reset, the watchdog fault has no impact on the Reset Controller.

Figure 14-4. Watchdog Reset

14.4.3.4 Software Reset

The Reset Controller offers commands to assert the different reset signals. These commands are performed by writing the Control Register (RSTC_CR) with the following bits at 1:

- RSTC_CR.PROCRST: Writing a 1 to PROCRST resets the processor and the watchdog timer.
- RSTC_CR.PERRST: Writing a 1 to PERRST resets all the embedded peripherals including the memory system, and, in particular, the Remap Command. The Peripheral Reset is generally used for debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and PROCRST set both at 1 simultaneously).

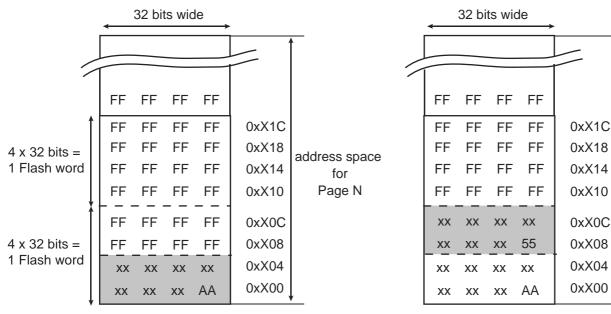
• RSTC_CR.EXTRST: Writing a 1 to EXTRST asserts low the NRST pin during a time defined by the field RSTC_MR.ERSTL.

17.5.3 Watchdog Timer Status Register

Name: Address:	WDT_SR 0x400E1458						
Access	Read-only						
31	30	29	28	27	26	25	24
—	-	_	_	_	_	_	—
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	-	_	-	_	-	WDERR	WDUNF

• WDUNF: Watchdog Underflow (cleared on read)

0: No watchdog underflow occurred since the last read of WDT_SR.


1: At least one watchdog underflow occurred since the last read of WDT_SR.

• WDERR: Watchdog Error (cleared on read)

0: No watchdog error occurred since the last read of WDT_SR.

1: At least one watchdog error occurred since the last read of WDT_SR.

Atmel

Step 1: Flash array after programming first byte (0xAA) 64-bit used at address 0xX00 (write latch buffer + WP) Step 2: Flash array after programming second byte (0x55) 64-bit used at address 0xX08 (write latch buffer + WP)

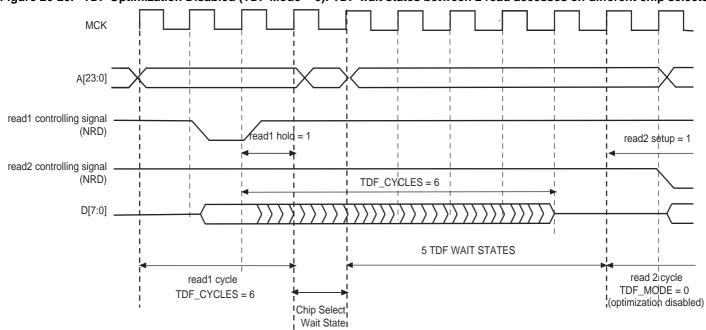
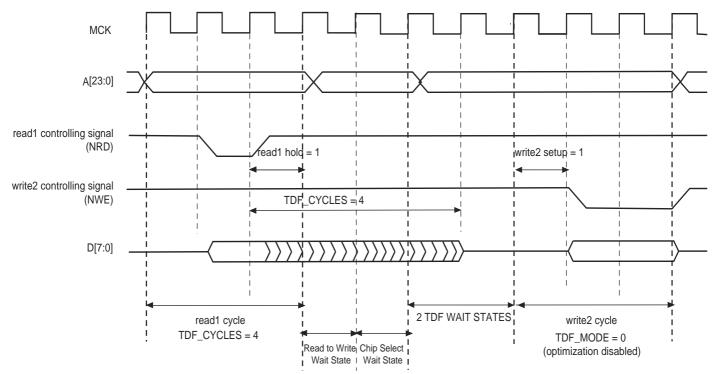
Note: The byte location shown here is for example only, it can be any byte location within a 64-bit word.

20.4.3.3 Erase Commands

Erase commands are allowed only on unlocked regions. Depending on the Flash memory, several commands can be used to erase the Flash:

- Erase All Memory (EA): All memory is erased. The processor must not fetch code from the Flash memory.
- Erase Pages (EPA): 8 or 16 pages are erased in the Flash sector selected. The first page to be erased is specified in the FARG[15:2] field of the EEFC_FCR. The first page number must be a multiple of 8, 16 or 32 depending on the number of pages to erase at the same time.
- Erase Sector (ES): A full memory sector is erased. Sector size depends on the Flash memory. EEFC_FCR.FARG must be set with a page number that is in the sector to be erased.

If the processor is fetching code from the Flash memory while the EPA or ES command is being executed, the processor accesses are stalled until the EPA command is completed. To avoid stalling the processor, the code can be run out of internal SRAM.

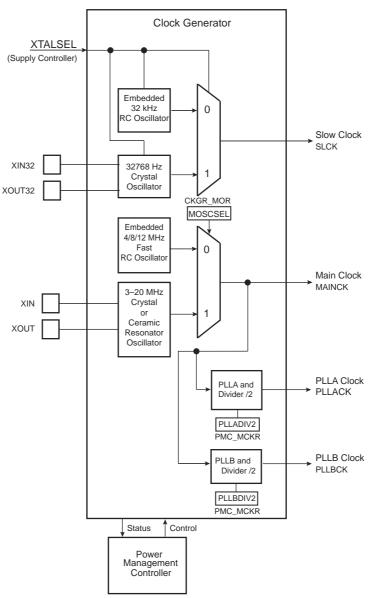

Figure 26-20. TDF Optimization Disabled (TDF Mode = 0): TDF wait states between 2 read accesses on different chip selects

Figure 26-21. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects

28.3 Block Diagram

Atmel

31.4 **Product Dependencies**

31.4.1 Pin Multiplexing

Each pin is configurable, depending on the product, as either a general-purpose I/O line only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hardware defined and thus product-dependent, the hardware designer and programmer must carefully determine the configuration of the PIO Controllers required by their application. When an I/O line is general-purpose only, i.e., not multiplexed with any peripheral I/O, programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Controller can control how the pin is driven by the product.

31.4.2 Power Management

The Power Management Controller controls the peripheral clock in order to save power. Writing any of the registers of the user interface does not require the peripheral clock to be enabled. This means that the configuration of the I/O lines does not require the peripheral clock to be enabled.

However, when the clock is disabled, not all of the features of the PIO Controller are available, including glitch filtering. Note that the input change interrupt, the interrupt modes on a programmable event and the read of the pin level require the clock to be validated.

After a hardware reset, the peripheral clock is disabled by default.

The user must configure the Power Management Controller before any access to the input line information.

31.4.3 Interrupt Sources

For interrupt handling, the PIO Controllers are considered as user peripherals. This means that the PIO Controller interrupt lines are connected among the interrupt sources. Refer to the PIO Controller peripheral identifier in the Peripheral Identifiers table to identify the interrupt sources dedicated to the PIO Controllers. Using the PIO Controller requires the Interrupt Controller to be programmed first.

The PIO Controller interrupt can be generated only if the peripheral clock is enabled.

Table 31-2. Peripheral IDS					
Instance	ID				
PIOA	11				
PIOB	12				
PIOC	13				

Table 31-2.	Perip	heral IDs
Instanc	е	ID

31.6.18 PIO Multi-driver Enable Register

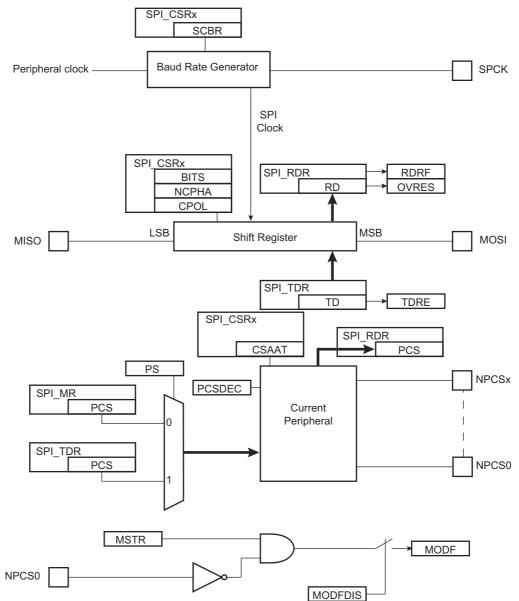
Name: PIO_MDER

Address: 0x400E0E50 (PIOA), 0x400E1050 (PIOB), 0x400E1250 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.


• P0-P31: Multi-drive Enable

0: No effect.

1: Enables multi-drive on the I/O line.

33.7.3.1 Master Mode Block Diagram

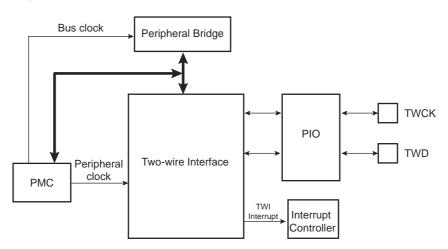

34.3 List of Abbreviations

Table 34-2. Abbreviations	
Abbreviation	Description
TWI	Two-wire Interface
A	Acknowledge
NA	Non Acknowledge
Р	Stop
S	Start
Sr	Repeated Start
SADR	Slave Address
ADR	Any address except SADR
R	Read
W	Write

Table 34-2.Abbreviations

34.4 Block Diagram

Figure 34-1. Block Diagram

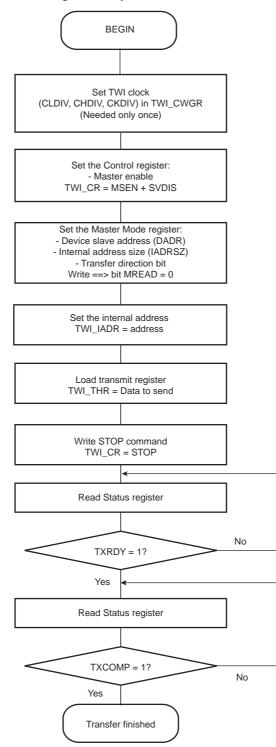

34.5 I/O Lines Description

Table 34-3. I/O Lines Description

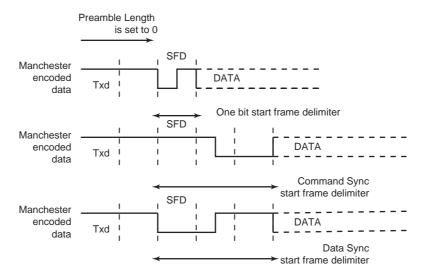
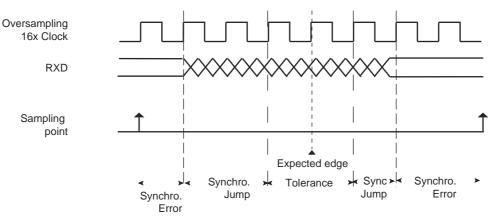

Name	Description	Туре
TWD	Two-wire Serial Data (drives external serial data line – SDA)	Input/Output
TWCK	Two-wire Serial Clock (drives external serial clock line – SCL)	Input/Output

Figure 34-15. TWI Write Operation with Single Data Byte and Internal Address



Drift Compensation

Drift compensation is available only in 16X oversampling mode. An hardware recovery system allows a larger clock drift. To enable the hardware system, the bit in the USART_MAN register must be set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as normal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles before the expected edge, then the current period is shortened by one clock cycle. If the RXD event is between 2 and 3 clock cycles after the expected edge, then the current period is lengthened by one clock cycle. These intervals are considered to be drift and so corrective actions are automatically taken.

36.6.3.3 Asynchronous Receiver

If the USART is programmed in Asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD input line. The oversampling is either 16 or 8 times the baud rate clock, depending on the OVER bit in the US_MR.

The receiver samples the RXD line. If the line is sampled during one half of a bit time to 0, a start bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16 (OVER = 0), a start is detected at the eighth sample to 0. Data bits, parity bit and stop bit are assumed to have a duration corresponding to 16 oversampling clock cycles. If the oversampling is 8 (OVER = 1), a start bit is detected at the fourth sample to 0. Data bits, parity bit and stop bit are assumed to have a duration corresponding to 8 oversampling clock cycles.

Atmel

• FCS: Force SPI Chip Select

Applicable if USART operates in SPI master mode (USART_MODE = 0xE):

0: No effect.

1: Forces the Slave Select Line NSS (RTS pin) to 0, even if USART is not transmitting, in order to address SPI slave devices supporting the CSAAT mode (Chip Select Active After Transfer).

• RCS: Release SPI Chip Select

Applicable if USART operates in SPI master mode (USART_MODE = 0xE):

- 0: No effect.
- 1: Releases the Slave Select Line NSS (RTS pin).

39.7.6 PWM Interrupt Disable Register 1

Name:	PWM_IDR1						
Address:	0x40020014						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19 FCHID3	18 FCHID2	17 FCHID1	
-	-	_	-	FCHID3	FCHIDZ	FCHIDT	FCHID0
15	14	13	12	11	10	9	8
_	-	_	—	-	-	-	-
7	6	5	4	3	2	1	0
-	-	_	-	CHID3	CHID2	CHID1	CHID0

CHIDx: Counter Event on Channel x Interrupt Disable

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Disable

39.7.35 PWM Comparison x Mode Update Register

Name: PWM_CMPMUPDx

Address: 0x4002013C [0], 0x4002014C [1], 0x4002015C [2], 0x4002016C [3], 0x4002017C [4], 0x4002018C [5], 0x4002019C [6], 0x400201AC [7]

Access:	Write-only							
31	30	29	28	27	26	25	24	
_	_	—	—	—	—	—	—	
23	22	21	20	19	18	17	16	
_	-	_	_		CUPF	RUPD		
15	14	13	12	11	10	9	8	
—	-	_	-	CPRUPD				
7	6	5	4	3	2	1	0	
	CTR	UPD		-	-	-	CENUPD	

This register acts as a double buffer for the CEN, CTR, CPR and CUPR values. This prevents an unexpected comparison x match.

• CENUPD: Comparison x Enable Update

0: The comparison x is disabled and can not match.

1: The comparison x is enabled and can match.

• CTRUPD: Comparison x Trigger Update

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined by CTR.

• CPRUPD: Comparison x Period Update

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed periodically once every CPR+1 periods of the channel 0 counter.

• CUPRUPD: Comparison x Update Period Update

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to CUPR+1 periods of the channel 0 counter.

- WAKEUP: Disable USB Bus Interrupt
- 0: No effect
- 1: Disables USB Bus Wakeup Interrupt

42.7.7 ADC Channel Status Register

Name:	ADC_CHSR						
Address:	0x40038018						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
—	—	—	-	—	—	—	-
15	14	13	12	11	10	9	8
CH15	CH14	CH13	CH12	CH11	CH10	CH9	CH8
7	6	5	4	3	2	1	0
CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0

• CHx: Channel x Status

0: The corresponding channel is disabled.

1: The corresponding channel is enabled.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
R _{PULLDOWN}	Pull-down Resistor	PA0-PA31, PB0-PB14, PC0-PC31, NRST	70	100	130	kΩ	
R _{ODT}	On-die Series Termination Resistor	PA4-PA31, PB0-PB9, PB12-PB14, PC0-PC31	_	36	_	Ω	
		PA0-PA3	_	18	_		
I _{CC}	Flash Active Current on VDDCORE	Random 144-bit Read @ 25°C: Maximum read frequency at VDDCORE = 1.2V, VDDIO = 3.3V	_	16	25		
		Random 72-bit Read @ 25°C: Maximum read frequency at VDDCORE = 1.2V, VDDIO = 3.3V	_	10	18	mA	
		Program ⁽³⁾ onto VDDCORE = 1.2V, VDDIO = 3.3V @ 25°C	_	3	5		
I _{CC33}	Flash Active Current on VDDIO	Random 144-bit read: Maximum read frequency at VDDCORE = 1.2V, VDDIO = 3.3V @ 25°C	_	3	16	mA	
		Random 72-bit read: Maximum read frequency at VDDCORE = 1.2V, VDDIO = $3.3V @ 25^{\circ}C$	_	3	5		
		Program ⁽³⁾ onto VDDCORE = 1.2V, VDDIO = 3.3V @ 25°C	_	10	15		

Table 44-3. DC Characteristics (Continued)

Note: 1. PA[4–11], PA[15–25], PB[0–9], PB[12–14], PC[0–31]

2. Refer to Section 5.2.2 "VDDIO Versus VDDIN"

3. The Flash programming characteristics are applicable at operating temperature range: $T_A = -40$ to 85 °C.

