E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4sa16ca-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits. RBIT Reverse the bit order in a 32-bit word.

cond is an optional condition code, see "Conditional Execution".

Rd is the destination register.

Rn is the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV converts either:

- 32-bit big-endian data into little-endian data
- 32-bit little-endian data into big-endian data.

REV16 converts either:

- 16-bit big-endian data into little-endian data
- 16-bit little-endian data into big-endian data.

REVSH converts either:

- 16-bit signed big-endian data into 32-bit signed little-endian data
- 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

REV R3, R7; Reverse byte order of value in R7 and write it to R3 REV16 R0, R0; Reverse byte order of each 16-bit halfword in R0 REVSH R0, R5; Reverse Signed Halfword REVHS R3, R7; Reverse with Higher or Same condition RBIT R7, R8; Reverse bit order of value in R8 and write the result to R7.

12.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data.

Mnemonic	Description
РКН	Pack Halfword
SXTAB	Extend 8 bits to 32 and add
SXTAB16	Dual extend 8 bits to 16 and add
SXTAH	Extend 16 bits to 32 and add
SXTB	Sign extend a byte
SXTB16	Dual extend 8 bits to 16 and add
SXTH	Sign extend a halfword
UXTAB	Extend 8 bits to 32 and add
UXTAB16	Dual extend 8 bits to 16 and add
UXTAH	Extend 16 bits to 32 and add
UXTB	Zero extend a byte
UXTB16	Dual zero extend 8 bits to 16 and add
UXTH	Zero extend a halfword

 Table 12-23.
 Packing and Unpacking Instructions

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTAH	R4,	R8,	R6,	ROR	#16	;	Rotates R6 right by 16 bits, obtains bottom
						;	halfword, sign extends to 32 bits, adds
						;	R8,and writes to R4
UXTAB	R3,	R4,	R10			;	Extracts bottom byte of R10 and zero extends
						;	to 32 bits, adds R4, and writes to R3.

14.5.3 Reset Controller Mode Register

Name:	RSTC_MR						
Address:	0x400E1408						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			KI	ΞY			
23	22	21	20	19	18	17	16
—	-	-	-	—	—	_	-
15	14	13	12	11	10	9	8
-	-	_	_		ER	STL	
7	6	5	4	3	2	1	0
-	-	_	URSTIEN	_	_	_	URSTEN

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

• URSTEN: User Reset Enable

0: The detection of a low level on the NRST pin does not generate a user reset.

1: The detection of a low level on the NRST pin triggers a user reset.

• URSTIEN: User Reset Interrupt Enable

0: USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.

1: USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.

• ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of $2^{(\text{ERSTL+1})}$ slow clock cycles. This allows assertion duration to be programmed between 60 µs and 2 seconds. Note that synchronization cycles must also be considered when calculating the actual reset length as previously described.

• KEY: Write Access Password

Value	Name	Description
0xA5	PASSWD	Writing any other value in this field aborts the write operation. Always reads as 0.

Table 20-2. Set of Commands (Continued)

Command	Value	Mnemonic
Get GPNVM bit	0x0D	GGPB
Start read unique identifier	0x0E	STUI
Stop read unique identifier	0x0F	SPUI
Get CALIB bit	0x10	GCALB
Erase sector	0x11	ES
Write user signature	0x12	WUS
Erase user signature	0x13	EUS
Start read user signature	0x14	STUS
Stop read user signature	0x15	SPUS

In order to execute one of these commands, select the required command using the FCMD field in the Flash Command register (EEFC_FCR). As soon as EEFC_FCR is written, the FRDY flag and the FVALUE field in the Flash Result register (EEFC_FRR) are automatically cleared. Once the current command has completed, the FRDY flag is automatically set. If an interrupt has been enabled by setting the bit EEFC_FMR.FRDY, the corresponding interrupt line of the interrupt controller is activated. (Note that this is true for all commands except for the STUI command. The FRDY flag is not set when the STUI command has completed.)

All the commands are protected by the same keyword, which must be written in the eight highest bits of EEFC_FCR.

Writing EEFC_FCR with data that does not contain the correct key and/or with an invalid command has no effect on the whole memory plane, but the FCMDE flag is set in the Flash Status register (EEFC_FSR). This flag is automatically cleared by a read access to EEFC_FSR.

When the current command writes or erases a page in a locked region, the command has no effect on the whole memory plane, but the FLOCKE flag is set in EEFC_FSR. This flag is automatically cleared by a read access to EEFC_FSR.

20.5.3 EEFC Flash Status Register

Address:	0x400E0A08 (0), 0x400E0C08 (*	1)
----------	-------------------------------	----

Access: Read-only

31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	—	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	-	-	FLERR	FLOCKE	FCMDE	FRDY

• FRDY: Flash Ready Status (cleared when Flash is busy)

- 0: The EEFC is busy.
- 1: The EEFC is ready to start a new command.

When set, this flag triggers an interrupt if the FRDY flag is set in EEFC_FMR.

This flag is automatically cleared when the EEFC is busy.

• FCMDE: Flash Command Error Status (cleared on read or by writing EEFC_FCR)

- 0: No invalid commands and no bad keywords were written in EEFC_FMR.
- 1: An invalid command and/or a bad keyword was/were written in EEFC_FMR.

• FLOCKE: Flash Lock Error Status (cleared on read)

- 0: No programming/erase of at least one locked region has happened since the last read of EEFC_FSR.
- 1: Programming/erase of at least one locked region has happened since the last read of EEFC_FSR.

This flag is automatically cleared when EEFC_FSR is read or EEFC_FCR is written.

• FLERR: Flash Error Status (cleared when a programming operation starts)

0: No Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has passed).

1: A Flash memory error occurred at the end of programming (EraseVerify or WriteVerify test has failed).

23.7.5 CRCCU DMA Interrupt Enable Register

Name:	CRCCU_DMA_I	ER					
Address:	0x40044014						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	_	-	-	-	_	-
23	22	21	20	19	18	17	16
-	-	_	-	-	-	_	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	-	-	-	_	_	_	DMAIER

• DMAIER: Interrupt Enable

0: No effect

1: Enable interrupt

29.17.15PMC Interrupt Disable Register

Name: Address:	PMC_IDR 0x400E0464						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	—	_	_	_	_	_	—
23	22	21	20	19 —	18 CFDEV	17 MOSCRCS	16 MOSCSELS
15	14	13	12	11	10	9	8
_	-	—	-	-	PCKRDY2	PCKRDY1	PCKRDY0
7	6	5	4	3	2	1	0
_	-	_	_	MCKRDY	LOCKB	LOCKA	MOSCXTS

The following configuration values are valid for all listed bit names of this register:

0: No effect.

- 1: Disables the corresponding interrupt.
- MOSCXTS: Main Crystal Oscillator Status Interrupt Disable
- LOCKA: PLLA Lock Interrupt Disable
- LOCKB: PLLB Lock Interrupt Disable
- MCKRDY: Master Clock Ready Interrupt Disable
- PCKRDYx: Programmable Clock Ready x Interrupt Disable
- MOSCSELS: Main Oscillator Selection Status Interrupt Disable
- MOSCRCS: Main On-Chip RC Status Interrupt Disable
- CFDEV: Clock Failure Detector Event Interrupt Disable

Value	Name	Description
11	-	Reserved
12	1024K	1024 Kbytes
13	-	Reserved
14	2048K	2048 Kbytes
15	-	Reserved

NVPSIZ2: Second Nonvolatile Program Memory Size

Value	Name	Description
0	NONE	None
1	8K	8 Kbytes
2	16K	16 Kbytes
3	32K	32 Kbytes
4	-	Reserved
5	64K	64 Kbytes
6	-	Reserved
7	128K	128 Kbytes
8	-	Reserved
9	256K	256 Kbytes
10	512K	512 Kbytes
11	-	Reserved
12	1024K	1024 Kbytes
13	-	Reserved
14	2048K	2048 Kbytes
15	_	Reserved

• SRAMSIZ: Internal SRAM Size

Value	Name	Description
0	48K	48 Kbytes
1	192K	192 Kbytes
2	384K	384 Kbytes
3	6K	6 Kbytes
4	24K	24 Kbytes
5	4K	4 Kbytes
6	80K	80 Kbytes
7	160K	160 Kbytes
8	8K	8 Kbytes
9	16K	16 Kbytes
10	32K	32 Kbytes
11	64K	64 Kbytes

31.6.44 PIO Fall/Rise - Low/High Status Register

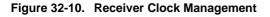
Name: PIO_FRLHSR

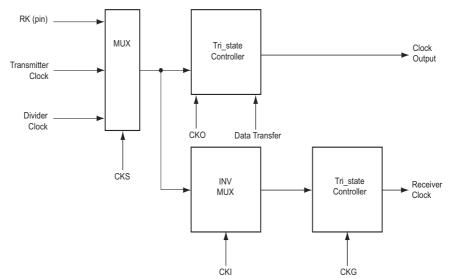
Address: 0x400E0ED8 (PIOA), 0x400E10D8 (PIOB), 0x400E12D8 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	<u>م</u>
P15	P14	P13	P12	P11	P10	P9	° P8
115	1 14	115	112	I II	110	19	FO
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Edge/Level Interrupt Source Selection


0: The interrupt source is a falling edge detection (if PIO_ELSR = 0) or low-level detection event (if PIO_ELSR = 1).


1: The interrupt source is a rising edge detection (if PIO_ELSR = 0) or high-level detection event (if PIO_ELSR = 1).

32.8.1.3 Receiver Clock Management

The receiver clock is generated from the transmitter clock or the divider clock or an external clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in SSC_RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by the CKI bits in SSC_RCMR.

The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer. The clock output is configured by the SSC_RCMR. The Receive Clock Inversion (CKI) bits have no effect on the clock outputs. Programming the SSC_RCMR to select RK pin (CKS field) and at the same time Continuous Receive Clock (CKO field) can lead to unpredictable results.

32.8.1.4 Serial Clock Ratio Considerations

The Transmitter and the Receiver can be programmed to operate with the clock signals provided on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. In this case, the maximum clock speed allowed on the RK pin is:

- Peripheral clock divided by 2 if Receiver Frame Synchro is input
- Peripheral clock divided by 3 if Receiver Frame Synchro is output

In addition, the maximum clock speed allowed on the TK pin is:

- Peripheral clock divided by 6 if Transmit Frame Synchro is input
- Peripheral clock divided by 2 if Transmit Frame Synchro is output

32.8.2 Transmitter Operations

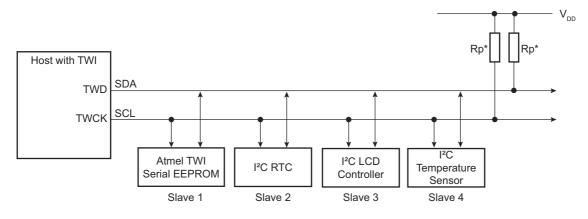
A transmitted frame is triggered by a start event and can be followed by synchronization data before data transmission.

The start event is configured by setting the SSC_TCMR. See Section 32.8.4 "Start" on page 652.

The frame synchronization is configured setting the Transmit Frame Mode Register (SSC_TFMR). See Section 32.8.5 "Frame Sync" on page 654.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and the start mode selected in the SSC_TCMR. Data is written by the application to the SSC_THR then transferred to the shift register according to the data format selected.

Atmel


34.7.3 Master Mode

34.7.3.1 Definition

The master is the device that starts a transfer, generates a clock and stops it.

34.7.3.2 Application Block Diagram

Figure 34-4. Master Mode Typical Application Block Diagram

* Rp: Pull-up value as given by the I²C Standard

34.7.3.3 Programming Master Mode

The following fields must be programmed before entering Master mode:

- 1. TWI_MMR.DADR (+ IADRSZ + IADR if a 10-bit device is addressed): The device address is used to access slave devices in Read or Write mode.
- 2. TWI_CWGR.CKDIV + CHDIV + CLDIV: Clock waveform.
- 3. TWI_CR.SVDIS: Disables the Slave mode
- 4. TWI_CR.MSEN: Enables the Master mode
- Note: If the TWI is already in Master mode, the device address (DADR) can be configured without disabling the Master mode.

34.7.3.4 Master Transmitter Mode

After the master initiates a START condition when writing into the Transmit Holding register (TWI_THR), it sends a 7-bit slave address, configured in the Master Mode register (DADR in TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer direction—0 in this case (MREAD = 0 in TWI_MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it down in order to generate the acknowledge. If the slave does not acknowledge the byte, then the Not Acknowledge flag (NACK) is set in the TWI Status Register (TWI_SR) of the master and a STOP condition is sent. The NACK flag must be cleared by reading the TWI Status Register (TWI_SR) before the next write into the TWI Transmit Holding Register(TWI_THR). As with the other status bits, an interrupt can be generated if enabled in the Interrupt Enable register (TWI_IER). If the slave acknowledges the byte, the data written in the TWI_THR is then shifted in the internal shifter and transferred. When an acknowledge is detected, the TXRDY bit is set until a new write in the TWI_THR.

TXRDY is used as Transmit Ready for the PDC transmit channel.

While no new data is written in the TWI_THR, the serial clock line (SCL) is tied low. When new data is written in the TWI_THR, the TWCK/SCL is released and the data is sent. Setting the STOP bit in TWI_CR generates a STOP condition.

34.8.7 TWI Interrupt Enable Register

Name:	TWI_IER						
Address:	0x40018024 (0),	, 0x4001C024 (1)				
Access:	Write-only						
31	30	29	28	27	26	25	24
—	-	-	-	-	-	-	—
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
	-	-	-	-	-	-	
15	14	13	12	11	10	9	8
TXBUFE	RXBUFF	ENDTX	ENDRX	EOSACC	SCL_WS	ARBLST	NACK
7	6	5	4	3	2	1	0
_	OVRE	GACC	SVACC	_	TXRDY	RXRDY	TXCOMP

The following configuration values are valid for all listed bit names of this register:

0: No effect.

- 1: Enables the corresponding interrupt.
- TXCOMP: Transmission Completed Interrupt Enable
- RXRDY: Receive Holding Register Ready Interrupt Enable
- TXRDY: Transmit Holding Register Ready Interrupt Enable
- SVACC: Slave Access Interrupt Enable
- GACC: General Call Access Interrupt Enable
- OVRE: Overrun Error Interrupt Enable
- NACK: Not Acknowledge Interrupt Enable
- ARBLST: Arbitration Lost Interrupt Enable
- SCL_WS: Clock Wait State Interrupt Enable
- EOSACC: End Of Slave Access Interrupt Enable
- ENDRX: End of Receive Buffer Interrupt Enable
- ENDTX: End of Transmit Buffer Interrupt Enable
- RXBUFF: Receive Buffer Full Interrupt Enable
- TXBUFE: Transmit Buffer Empty Interrupt Enable

35.6.7 UART Receiver Holding Register

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Name:	UART_RHR						
31 30 29 28 27 26 25 24 - <td< th=""><th>Address:</th><th>0x400E0618 (0)</th><th>, 0x400E0818</th><th>(1)</th><th></th><th></th><th></th><th></th></td<>	Address:	0x400E0618 (0)	, 0x400E0818	(1)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Access:	Read-only						
23 22 21 20 19 18 17 16 - - - - - - - -	31	30	29	28	27	26	25	24
	_	_	-	_	_	-	_	-
	23	22	21	20	19	18	17	16
	-		-	-	-	-	_	-
<u>15 14 13 12 11 10 9 8</u>	15	14	13	12	11	10	9	8
	_	-	-	-	-	-	-	-
7 6 5 4 3 2 1 0	7	6	5	4	3	2	1	0
RXCHR				RX	CHR			

• RXCHR: Received Character

Last received character if RXRDY is set.

• LDBDIS: Counter Clock Disable with RB Loading

0: Counter clock is not disabled when RB loading occurs.

1: Counter clock is disabled when RB loading occurs.

• ETRGEDG: External Trigger Edge Selection

Value	Name	Description
0	NONE	The clock is not gated by an external signal.
1	RISING	Rising edge
2	FALLING	Falling edge
3	EDGE	Each edge

ABETRG: TIOA or TIOB External Trigger Selection

0: TIOB is used as an external trigger.

1: TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0: RC Compare has no effect on the counter and its clock.

1: RC Compare resets the counter and starts the counter clock.

• WAVE: Waveform Mode

0: Capture mode is enabled.

1: Capture mode is disabled (Waveform mode is enabled).

• LDRA: RA Loading Edge Selection

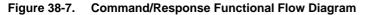
Value	Name	Description
0	NONE	None
1	RISING	Rising edge of TIOA
2	FALLING	Falling edge of TIOA
3	EDGE	Each edge of TIOA

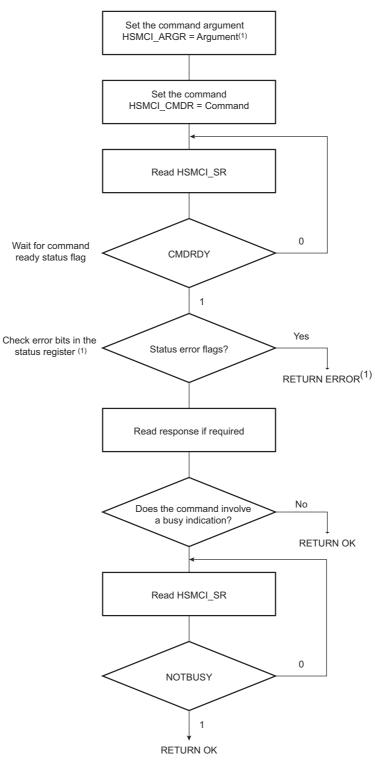
LDRB: RB Loading Edge Selection

Value	Name	Description
0	NONE	None
1	RISING	Rising edge of TIOA
2	FALLING	Falling edge of TIOA
3	EDGE	Each edge of TIOA

37.7.19 TC Fault Mode Register

Name:	TC_FMR						
Address:	0x400100D8 (0)	, 0x400140D8 ((1)				
Access:	Read/Write						
31	30	29	28	27	26	25	24
—	-	_	_	_	—	_	—
23	22	21	20	19	18	17	16
_	-	-	-	-	-	-	—
	-	-		-	-	-	-
15	14	13	12	11	10	9	8
_	_	-	-	-	-	-	-
7	6	5	4	3	2	1	0
_	-	_	_	_	_	ENCF1	ENCF0


This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

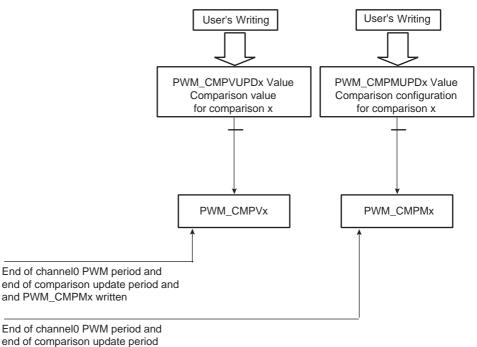

• ENCF0: Enable Compare Fault Channel 0

- 0: Disables the FAULT output source (CPCS flag) from channel 0.
- 1: Enables the FAULT output source (CPCS flag) from channel 0.

• ENCF1: Enable Compare Fault Channel 1

- 0: Disables the FAULT output source (CPCS flag) from channel 1.
- 1: Enables the FAULT output source (CPCS flag) from channel 1.

Note: If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the High Speed MultiMedia Card specification).


38.14.5 HSMCI Argument Register

Name:	HSMCI_ARGR						
Address:	0x40000010						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			AF	RG			
23	22	21	20	19	18	17	16
			AF	RG			
15	14	13	12	11	10	9	8
			AF	RG			
7	6	5	4	3	2	1	0
			AF	RG			

• ARG: Command Argument

39.6.5.6 Interrupts

Depending on the interrupt mask in the PWM_IMR1 and PWM_IMR2, an interrupt can be generated at the end of the corresponding channel period (CHIDx in the PWM Interrupt Status Register 1 (PWM_ISR1)), after a fault event (FCHIDx in the PWM_ISR1), after a comparison match (CMPMx in the PWM_ISR2), after a comparison update (CMPUx in the PWM_ISR2) or according to the Transfer mode of the synchronous channels (WRDY, ENDTX, TXBUFE and UNRE in the PWM_ISR2).

If the interrupt is generated by the flags CHIDx or FCHIDx, the interrupt remains active until a read operation in the PWM_ISR1 occurs.

If the interrupt is generated by the flags WRDY or UNRE or CMPMx or CMPUx, the interrupt remains active until a read operation in the PWM_ISR2 occurs.

A channel interrupt is enabled by setting the corresponding bit in PWM_IER1 and PWM_IER2. A channel interrupt is disabled by setting the corresponding bit in PWM_IDR1 and PWM_IDR2.

Table 39-6. Register Mapping (Continued)

Offset	Register	Name	Access	Reset
0xC0–0xE0	Reserved	-	-	_
0xE4	PWM Write Protection Control Register	PWM_WPCR	Write-only	-
0xE8	PWM Write Protection Status Register	PWM_WPSR	Read-only	0x0
0xEC-0xFC	Reserved	_	_	_
0x100–0x128	Reserved for PDC registers	_	-	_
0x12C	Reserved	_	_	_
0x130	PWM Comparison 0 Value Register	PWM_CMPV0	Read/Write	0x0
0x134	PWM Comparison 0 Value Update Register	PWM_CMPVUPD0	Write-only	_
0x138	PWM Comparison 0 Mode Register	PWM_CMPM0	Read/Write	0x0
0x13C	PWM Comparison 0 Mode Update Register	PWM_CMPMUPD0	Write-only	_
0x140	PWM Comparison 1 Value Register	PWM_CMPV1	Read/Write	0x0
0x144	PWM Comparison 1 Value Update Register	PWM_CMPVUPD1	Write-only	_
0x148	PWM Comparison 1 Mode Register	PWM_CMPM1	Read/Write	0x0
0x14C	PWM Comparison 1 Mode Update Register	PWM_CMPMUPD1	Write-only	_
0x150	PWM Comparison 2 Value Register	PWM_CMPV2	Read/Write	0x0
0x154	PWM Comparison 2 Value Update Register	PWM_CMPVUPD2	Write-only	_
0x158	PWM Comparison 2 Mode Register	PWM_CMPM2	Read/Write	0x0
0x15C	PWM Comparison 2 Mode Update Register	PWM_CMPMUPD2	Write-only	_
0x160	PWM Comparison 3 Value Register	PWM_CMPV3	Read/Write	0x0
0x164	PWM Comparison 3 Value Update Register	PWM_CMPVUPD3	Write-only	_
0x168	PWM Comparison 3 Mode Register	PWM_CMPM3	Read/Write	0x0
0x16C	PWM Comparison 3 Mode Update Register	PWM_CMPMUPD3	Write-only	_
0x170	PWM Comparison 4 Value Register	PWM_CMPV4	Read/Write	0x0
0x174	PWM Comparison 4 Value Update Register	PWM_CMPVUPD4	Write-only	_
0x178	PWM Comparison 4 Mode Register	PWM_CMPM4	Read/Write	0x0
0x17C	PWM Comparison 4 Mode Update Register	PWM_CMPMUPD4	Write-only	_
0x180	PWM Comparison 5 Value Register	PWM_CMPV5	Read/Write	0x0
0x184	PWM Comparison 5 Value Update Register	PWM_CMPVUPD5	Write-only	_
0x188	PWM Comparison 5 Mode Register	PWM_CMPM5	Read/Write	0x0
0x18C	PWM Comparison 5 Mode Update Register	PWM_CMPMUPD5	Write-only	_
0x190	PWM Comparison 6 Value Register	PWM_CMPV6	Read/Write	0x0
0x194	PWM Comparison 6 Value Update Register	PWM_CMPVUPD6	Write-only	_
0x198	PWM Comparison 6 Mode Register	PWM_CMPM6	Read/Write	0x0
0x19C	PWM Comparison 6 Mode Update Register	PWM_CMPMUPD6	Write-only	_
0x1A0	PWM Comparison 7 Value Register	PWM_CMPV7	Read/Write	0x0
0x1A4	PWM Comparison 7 Value Update Register	PWM_CMPVUPD7	Write-only	_
0x1A8	PWM Comparison 7 Mode Register	PWM_CMPM7	Read/Write	0x0

Atmel