

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4sd16bb-mn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the *Nested Vectored Interrupt Controller* (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The processor uses the Handler mode to handle all exceptions except for reset. See "Exception Entry" and "Exception Return" for more information.

The NVIC registers control interrupt handling. See "Nested Vectored Interrupt Controller (NVIC)" for more information.

12.4.1.18 Data Types

The processor supports the following data types:

- 32-bit words
- 16-bit halfwords
- 8-bit bytes
- The processor manages all data memory accesses as little-endian. Instruction memory and *Private Peripheral Bus* (PPB) accesses are always little-endian. See "Memory Regions, Types and Attributes" for more information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:

- A common way to:
 - Access peripheral registers
 - Define exception vectors
- The names of:
 - The registers of the core peripherals
 - The core exception vectors
- A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of CMSIS-compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

- Section 12.5.3 "Power Management Programming Hints"
- Section 12.6.2 "CMSIS Functions"
- Section 12.8.2.1 "NVIC Programming Hints".

12.9.1.12	System Handler C	ontrol and Stat	e Register				
Name:	SCB_SHCSR						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	—	-
23	22	21	20	19	18	17	16
—	-	-	-	-	USGFAULTENA	BUSFAULTENA	MEMFAULTENA
15	14	13	12	11	10	9	8
SVCALLPEND	DED BUSFAULTPEND ED	MEMFAULTPEND ED	USGFAULTPEND ED	SYSTICKACT	PENDSVACT	-	MONITORACT
7	6	5	4	3	2	1	0
SVCALLAC	т –	-	—	USGFAULTACT	—	BUSFAULTACT	MEMFAULTACT

The SHCSR enables the system handlers, and indicates the pending status of the bus fault, memory management fault, and SVC exceptions; it also indicates the active status of the system handlers.

• USGFAULTENA: Usage Fault Enable

- 0: Disables the exception.
- 1: Enables the exception.

• BUSFAULTENA: Bus Fault Enable

- 0: Disables the exception.
- 1: Enables the exception.

• MEMFAULTENA: Memory Management Fault Enable

- 0: Disables the exception.
- 1: Enables the exception.

• SVCALLPENDED: SVC Call Pending

Read:

- 0: The exception is not pending.
- 1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• BUSFAULTPENDED: Bus Fault Exception Pending

Read:

- 0: The exception is not pending.
- 1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• MEMFAULTPENDED: Memory Management Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

• USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

SYSTICKACT: SysTick Exception Active

Read:

0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.

- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the stacked content can cause the processor to generate a fault exception. Ensure that the software writing to this register retains and subsequently restores the current active status.

- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-modify-write procedure to ensure that only the required bit is changed.

• PENDSVACT: PendSV Exception Active

0: The exception is not active.

1: The exception is active.

• MONITORACT: Debug Monitor Active

0: Debug monitor is not active.

1: Debug monitor is active.

• SVCALLACT: SVC Call Active

0: SVC call is not active.

1: SVC call is active.

• USGFAULTACT: Usage Fault Exception Active

0: Usage fault exception is not active.

1: Usage fault exception is active.

• BUSFAULTACT: Bus Fault Exception Active

0: Bus fault exception is not active.

1: Bus fault exception is active.

• MEMFAULTACT: Memory Management Fault Exception Active

0: Memory management fault exception is not active.

1: Memory management fault exception is active.

16.6.5 RTC Time Alarm Register

Name:	RTC_TIMALR						
Address:	0x400E1470						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	_	_	-	-
23	22	21	20	19	18	17	16
HOUREN	AMPM			HO	UR		
15	14	13	12	11	10	9	8
MINEN				MIN			
7	6	5	4	3	2	1	0
SECEN				SEC			

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_WPMR).

Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and then reenable it after the change has been made. This requires up to three accesses to the RTC_TIMALR. The first access clears the enable corresponding to the field to change (SECEN, MINEN, HOUREN). If the field is already cleared, this access is not required. The second access performs the change of the value (SEC, MIN, HOUR). The third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN fields.

SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

SECEN: Second Alarm Enable

- 0: The second-matching alarm is disabled.
- 1: The second-matching alarm is enabled.

• MIN: Minute Alarm

This field is the alarm field corresponding to the BCD-coded minute counter.

• MINEN: Minute Alarm Enable

- 0: The minute-matching alarm is disabled.
- 1: The minute-matching alarm is enabled.

• HOUR: Hour Alarm

This field is the alarm field corresponding to the BCD-coded hour counter.

• AMPM: AM/PM Indicator

This field is the alarm field corresponding to the BCD-coded hour counter.

HOUREN: Hour Alarm Enable

- 0: The hour-matching alarm is disabled.
- 1: The hour-matching alarm is enabled.

18.5.7 Supply Controller Wake-up Inputs Register

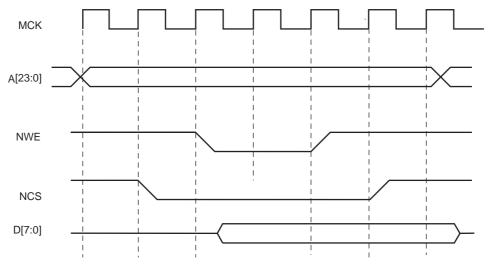
Name:	SUPC_WUIR						
Address: Access:	0x400E1420 Read/Write						
31	30	29	28	27	26	25	24
WKUPT15	WKUPT14	WKUPT13	WKUPT12	WKUPT11	WKUPT10	WKUPT9	WKUPT8
	-	-	-	-	-		
23	22	21	20	19	18	17	16
WKUPT7	WKUPT6	WKUPT5	WKUPT4	WKUPT3	WKUPT2	WKUPT1	WKUPT0
	-			-	-		-
15	14	13	12	11	10	9	8
WKUPEN15	WKUPEN14	WKUPEN13	WKUPEN12	WKUPEN11	WKUPEN10	WKUPEN9	WKUPEN8
7	6	5	4	3	2	1	0
WKUPEN7	WKUPEN6	WKUPEN5	WKUPEN4	WKUPEN3	WKUPEN2	WKUPEN1	WKUPEN0

This register is located in the VDDIO domain.

This register can only be written if the WPEN bit is cleared in the System Controller Write Protection Mode Register (SYSC_MR).

• WKUPEN0 - WKUPENx: Wake-up Input Enable 0 to x

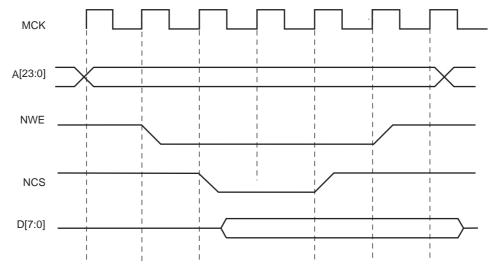
0 (DISABLE): The corresponding wake-up input has no wake-up effect.


1 (ENABLE): The corresponding wake-up input is enabled for a wake-up of the core power supply.

• WKUPT0 - WKUPTx: Wake-up Input Type 0 to x

0 (LOW): A falling edge followed by a low level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the core power supply.

1 (HIGH): A rising edge followed by a high level for a period defined by WKUPDBC on the corresponding wake-up input forces the wake-up of the core power supply.


Figure 26-11. WRITE_MODE = 1. The write operation is controlled by NWE

26.9.4.2 Write is Controlled by NCS (WRITE_MODE = 0)

Figure 26-12 shows the waveforms of a write operation with WRITE_MODE cleared. The data is put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are switched to Output mode after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NWE.

Figure 26-12. WRITE_MODE = 0. The write operation is controlled by NCS

26.9.5 Register Write Protection

To prevent any single software error that may corrupt SMC behavior, the registers listed below can be writeprotected by setting the WPEN bit in the SMC Write Protection Mode register (SMC_WPMR).

If a write access in a write-protected register is detected, the WPVS flag in the SMC Write Protection Status register (SMC_WPSR) is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is automatically cleared after reading the SSMC_WPSR.

The following registers can be write-protected:

- "SMC Setup Register"
- "SMC Pulse Register"

Atmel

26.16.7 SMC OCMS Key2 Register Name: SMC_KEY2 Address: 0x400E0088 Access: Write Once KEY2 KEY2 KEY2 KEY2

• KEY2: Off Chip Memory Scrambling (OCMS) Key Part 2

When off-chip memory scrambling is enabled, setting the SMC_OCMS and SMC_TIMINGS registers in accordance, the data scrambling depends on KEY2 and KEY1 values.

29.17.15PMC Interrupt Disable Register

Name: Address:	PMC_IDR 0x400E0464						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	—	_	_	_	_	_	—
23	22	21	20	19 —	18 CFDEV	17 MOSCRCS	16 MOSCSELS
15	14	13	12	11	10	9	8
_	-	—	-	-	PCKRDY2	PCKRDY1	PCKRDY0
7	6	5	4	3	2	1	0
_	-	_	_	MCKRDY	LOCKB	LOCKA	MOSCXTS

The following configuration values are valid for all listed bit names of this register:

0: No effect.

- 1: Disables the corresponding interrupt.
- MOSCXTS: Main Crystal Oscillator Status Interrupt Disable
- LOCKA: PLLA Lock Interrupt Disable
- LOCKB: PLLB Lock Interrupt Disable
- MCKRDY: Master Clock Ready Interrupt Disable
- PCKRDYx: Programmable Clock Ready x Interrupt Disable
- MOSCSELS: Main Oscillator Selection Status Interrupt Disable
- MOSCRCS: Main On-Chip RC Status Interrupt Disable
- CFDEV: Clock Failure Detector Event Interrupt Disable

Table 31-5. Register Mapping (Continued)

Offset	Register	Name	Access	Reset
0x0070	Peripheral Select Register 1	PIO_ABCDSR1	Read/Write	0x00000000
0x0074	Peripheral Select Register 2	PIO_ABCDSR2	Read/Write	0x00000000
0x0078–0x007C	Reserved	_	_	_
0x0080	Input Filter Slow Clock Disable Register	PIO_IFSCDR	Write-only	_
0x0084	Input Filter Slow Clock Enable Register	PIO_IFSCER	Write-only	_
0x0088	Input Filter Slow Clock Status Register	PIO_IFSCSR	Read-only	0x00000000
0x008C	Slow Clock Divider Debouncing Register	PIO_SCDR	Read/Write	0x00000000
0x0090	Pad Pull-down Disable Register	PIO_PPDDR	Write-only	_
0x0094	Pad Pull-down Enable Register	PIO_PPDER	Write-only	_
0x0098	Pad Pull-down Status Register	PIO_PPDSR	Read-only	(1)
0x009C	Reserved	_	_	_
0x00A0	Output Write Enable	PIO_OWER	Write-only	_
0x00A4	Output Write Disable	PIO_OWDR	Write-only	_
0x00A8	Output Write Status Register	PIO_OWSR	Read-only	0x00000000
0x00AC	Reserved	-	_	_
0x00B0	Additional Interrupt Modes Enable Register	PIO_AIMER	Write-only	_
0x00B4	Additional Interrupt Modes Disable Register	PIO_AIMDR	Write-only	_
0x00B8	Additional Interrupt Modes Mask Register	PIO_AIMMR	Read-only	0x00000000
0x00BC	Reserved	-	_	_
0x00C0	Edge Select Register	PIO_ESR	Write-only	_
0x00C4	Level Select Register	PIO_LSR	Write-only	_
0x00C8	Edge/Level Status Register	PIO_ELSR	Read-only	0x00000000
0x00CC	Reserved	-	_	_
0x00D0	Falling Edge/Low-Level Select Register	PIO_FELLSR	Write-only	_
0x00D4	Rising Edge/High-Level Select Register	PIO_REHLSR	Write-only	_
0x00D8	Fall/Rise - Low/High Status Register	PIO_FRLHSR	Read-only	0x00000000
0x00DC	Reserved	_	_	_
0x00E0	Lock Status	PIO_LOCKSR	Read-only	0x00000000
0x00E4	Write Protection Mode Register	PIO_WPMR	Read/Write	0x00000000
0x00E8	Write Protection Status Register	PIO_WPSR	Read-only	0x00000000
0x00EC-0x00FC	Reserved	-	_	_
0x0100	Schmitt Trigger Register	PIO_SCHMITT	Read/Write	0x00000000
0x0104–0x010C	Reserved	-	_	_
0x0110	Reserved	-	-	-
0x0114–0x011C	Reserved	-	_	_
0x0120–0x014C	Reserved	-	-	-
0x0150	Parallel Capture Mode Register	PIO_PCMR	Read/Write	0x00000000

31.6.4 PIO Output Enable Register

Address: 0x400E0E10 (PIOA), 0x400E1010 (PIOB), 0x400E1210 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0-P31: Output Enable

0: No effect.

1: Enables the output on the I/O line.

31.6.13 PIO Pin Data Status Register

Name: PIO_PDSR

Address: 0x400E0E3C (PIOA), 0x400E103C (PIOB), 0x400E123C (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Output Data Status

0: The I/O line is at level 0.

1: The I/O line is at level 1.

31.6.20 PIO Multi-driver Status Register

Name: PIO_MDSR

Address: 0x400E0E58 (PIOA), 0x400E1058 (PIOB), 0x400E1258 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Multi-drive Status

0: The multi-drive is disabled on the I/O line. The pin is driven at high- and low-level.

1: The multi-drive is enabled on the I/O line. The pin is driven at low-level only.

31.6.26 PIO Input Filter Slow Clock Disable Register

Name: Address:	PIO_IFSCDR 0x400E0E80 (PI	OA), 0x400E10	080 (PIOB), 0x4	100E1280 (PIOC	C)		
Access:	Write-only						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Peripheral Clock Glitch Filtering Select

0: No effect.

1: The glitch filter is able to filter glitches with a duration < $t_{peripheral clock}/2$.

- DSRIC: Data Set Ready Input Change Enable
- DCDIC: Data Carrier Detect Input Change Interrupt Enable
- CTSIC: Clear to Send Input Change Interrupt Enable
- MANE: Manchester Error Interrupt Enable

37.7 Timer Counter (TC) User Interface

Table 37-6.Register Mapping

Offset ⁽¹⁾	Register	Name	Access	Reset
0x00 + channel * 0x40 + 0x00	Channel Control Register	TC_CCR	Write-only	-
0x00 + channel * 0x40 + 0x04	Channel Mode Register	TC_CMR	Read/Write	0
0x00 + channel * 0x40 + 0x08	Stepper Motor Mode Register	TC_SMMR	Read/Write	0
0x00 + channel * 0x40 + 0x0C	Reserved	-	_	_
0x00 + channel * 0x40 + 0x10	Counter Value	TC_CV	Read-only	0
0x00 + channel * 0x40 + 0x14	Register A	TC_RA	Read/Write ⁽²⁾	0
0x00 + channel * 0x40 + 0x18	Register B	TC_RB	Read/Write ⁽²⁾	0
0x00 + channel * 0x40 + 0x1C	Register C	TC_RC	Read/Write	0
0x00 + channel * 0x40 + 0x20	Status Register	TC_SR	Read-only	0
0x00 + channel * 0x40 + 0x24	Interrupt Enable Register	TC_IER	Write-only	-
0x00 + channel * 0x40 + 0x28	Interrupt Disable Register	TC_IDR	Write-only	_
0x00 + channel * 0x40 + 0x2C	Interrupt Mask Register	TC_IMR	Read-only	0
0xC0	Block Control Register	TC_BCR	Write-only	_
0xC4	Block Mode Register	TC_BMR	Read/Write	0
0xC8	QDEC Interrupt Enable Register	TC_QIER	Write-only	_
0xCC	QDEC Interrupt Disable Register	TC_QIDR	Write-only	_
0xD0	QDEC Interrupt Mask Register	TC_QIMR	Read-only	0
0xD4	QDEC Interrupt Status Register	TC_QISR	Read-only	0
0xD8	Fault Mode Register	TC_FMR	Read/Write	0
0xE4	Write Protection Mode Register	TC_WPMR	Read/Write	0
0xE8–0xFC	Reserved	_	_	_

Notes: 1. Channel index ranges from 0 to 2.

2. Read-only if TC_CMRx.WAVE = 0

43.7.3 DACC Channel Enable Register

Name:	DACC_CHER						
Address:	0x4003C010						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
—	-	—	—	—	—	—	—
15	14	13	12	11	10	9	8
—	-	—	—	—	—	—	—
7	6	5	4	3	2	1	0
_	-	-	-	-	-	CH1	CH0

This register can only be written if the WPEN bit is cleared in the DACC Write Protection Mode Register.

• CHx: Channel x Enable

0: No effect

1: Enables the corresponding channel

44.5 Oscillator Characteristics

44.5.1 32 kHz RC Oscillator Characteristics

Table 44-26. 32 kHz RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OSC}	RC Oscillator Frequency		20	32	44	kHz
	Frequency Supply Dependency		-3	-	3	%/V
	Frequency Temperature Dependency	Over temperature range (-40 to 105 °C) versus T _A 25°C	-7	_	7	%
Duty	Duty Cycle		45	50	55	%
t _{START}	Startup Time		-	-	100	μs
		After startup time				
I _{DDON}	Current Consumption	Temp. range = -40 to 125 °C	-	540	860	nA
		Typical consumption at 2.2V supply and $\rm T_A$ 25°C				

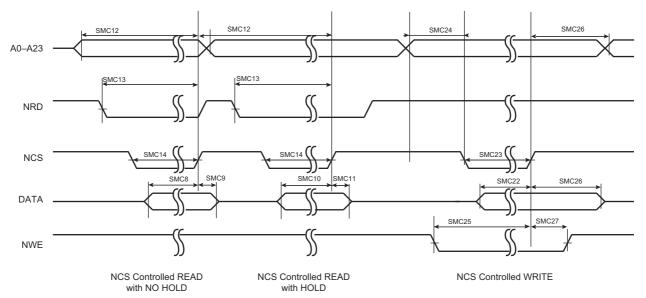
44.5.2 4/8/12 MHz RC Oscillators Characteristics

Table 44-27. 4/8/12 MHz RC Oscillators Characteristics

Symbol	Parameter	Conditions	Min	Typ Max		Unit	
f _{OSC}	RC Oscillator Frequency Range	(1)	4		12	MHz	
ACC ₄	4 MHz Total Accuracy	-40°C < Temp < +105°C 4 MHz output selected ⁽¹⁾⁽²⁾	-	-	±30	%	
ACC ₈	8 MHz Total Accuracy	-40°C < Temp < +105°C 8 MHz output selected ⁽¹⁾⁽³⁾	-	-	±5	%	
ACC ₁₂	12 MHz Total Accuracy	-40° C < Temp < +105°C 12 MHz output selected ⁽¹⁾⁽³⁾	-	-	±5	%	
	Frequency Deviction versus Trimming Code	8 MHz		47	_	kHz/trimming and	
	Frequency Deviation versus Trimming Code	12 MHz	_	64	-	kHz/trimming code	
Duty	Duty Cycle		45	50	55	%	
t _{START}	Startup Time		-	_	10	μs	
		4 MHz		50	75		
I _{DDON}	Active Current Consumption ⁽²⁾	8 MHz	-	65	95	μA	
		12 MHz		82	118		

Notes: 1. Frequency range can be configured in the Supply Controller registers

2. Not trimmed from factory


3. After trimming from factory

The 4/8/12 MHz Fast RC oscillator is calibrated in production. This calibration can be read through the Get CALIB bit command (refer to the EEFC section) and the frequency can be trimmed by software through the PMC.

		N	lin	M		
Symbol	Parameter	1.8V Domain	3.3V Domain	1.8V Domain	3.3V Domain	Unit
SMC ₂₂	Data Out Valid before NCS High	NCS_WR_PULSE × t _{CPMCK} - 6.3	NCS_WR_PULSE × t _{CPMCK} - 6.2	-	_	ns
SMC ₂₃	NCS Pulse Width	NCS_WR_PULSE × t _{CPMCK} - 7.7	NCS_WR_PULSE × t _{CPMCK} - 6.7	_	_	ns
SMC ₂₄	A0–A22 Valid before NCS Low	NCS_WR_SETUP × t _{CPMCK} - 6.5	NCS_WR_SETUP × t _{CPMCK} - 6.3	_	_	ns
SMC ₂₅	NWE Low before NCS High	$\begin{array}{c} (\text{NCS}_{\text{WR}} \text{SETUP} - \\ \text{NWE}_{\text{SETUP}} + \text{NCS pulse}) \\ \times t_{\text{CPMCK}} - 5.1 \end{array}$	$\begin{array}{c} (\text{NCS}_\text{WR}_\text{SETUP} - \\ \text{NWE}_\text{SETUP} + \text{NCS pulse}) \\ \times t_{\text{CPMCK}} - 4.9 \end{array}$	_	_	ns
SMC ₂₆	NCS High to Data Out, A0–A25, Change	NCS_WR_HOLD × t _{CPMCK} - 10.2	NCS_WR_HOLD × t _{CPMCK} - 8.4	_	_	ns
SMC ₂₇	NCS High to NWE Inactive	(NCS_WR_HOLD - NWE_HOLD) × t _{CPMCK} - 2.1	(NCS_WR_HOLD - NWE_HOLD) × t _{CPMCK} - 1.6	-	_	ns

Table 44-70. SMC Write Signals - NCS Controlled (WRITE_MODE = 0)

48.3.3 Brownout Detector

Issue: Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

In active mode or in wait mode, if the Brownout Detector is disabled (SUPC_MR.BODDIS = 1) and power is lost on VDDCORE while VDDIO is powered, the device might not be properly reset and may behave unpredictably.

Workaround: When the Brownout Detector is disabled in active or in wait mode, VDDCORE always needs to be powered.

48.3.4 Low-power Mode

Issue: Unpredictable Behavior When Entering Sleep Mode

When entering Sleep mode, if an interrupt occurs during WFI or WFE (PMC_FSMR.LPM = 0) instruction processing, the ARM core may read an incorrect data, thus leading to unpredictable behavior of the software. This issue is not present in Wait mode.

Workaround: The following conditions must be met:

- 1. The interrupt vector table must be located in Flash.
- The Matrix slave interface for the Flash must be set to 'No default master'. This is done by setting the field DEFMSTR_TYPE to 0 in the register MATRIX_SCFG. The code example below can be used to program the NO_DEFAULT_MASTER state:

 $MATRIX_SCFG[2] = MATRIX_SCFG_SLOT_CYCLE(0xFF) | MATRIX_SCFG_DEFMSTR_TYPE(0x0);$ This must be done once in the software before entering Sleep mode.

48.3.5 PIO

Issue: PB4 Input Low-level Voltage Range

The undershoot is limited to -0.1V.

In normal operating conditions, the V_{II} minimum value on PB4 is limited to 0V.

Workaround: The voltage on PB4 with respect to ground must be in the range -0.1V to + VDDIO + 0.4V instead of -0.3V to + VDDIO + 0.4V for all other input pins, as shown in Table 44.1 "Absolute Maximum Ratings".

The minimum V_{IL} on PB4 must be 0V instead of -0.3V for all other input pins, as shown in Table 44.3 "DC Characteristics".

Atmel

Table 49-3. SAM4S Datasheet Rev. 11100I Revision History

Doc. Date	Changes					
	Introduction of four new devices: ATSAM4SD32BA-UUR, ATSAM4SD32BB-UUR, ATSAM4SD16BA-UUR and ATSAM4SD16BB-UUR					
	Modified "Description", Section 2. "Block Diagram", and Section 6.5, "ERASE Pin"					
	Updated Table 9-1 "Real-time Event Mapping List" Added footnotes in Table 11-2 "Multiplexing on PIO Controller A (PIOA)", Table 11-3 "Multiplexing on PIO Controller B (PIOB)" and Table 11-4 "Multiplexing on PIO Controller C (PIOC)"					
	Deleted reset value from individual register description sections (reset values are found in "register mapping" sections)					
	Section 12., "ARM Cortex-M4 Processor"					
	Figure 12-1 "Typical Cortex-M4 Implementation"; replaced "Cortex-M4" with "Cortex-M4F"					
	Table 12-11 "Faults": note 1 now applied to IACCVIOL.					
	Section 12.9.1.13 "Configurable Fault Status Register": removed 'MLSPERR' bit					
	Table 12-34 "System Timer (SYST) Register Mapping": corrected SYST_CSR reset value					
	Section 13., "Debug and Test Features"					
	Modified Section 13.5.2 "Debug Architecture"					
	Section 14., "Reset Controller (RSTC)"					
	Figure 14-3 "General Reset State": corrected signal name to vddio_nreset					
	Section 14.4, "Functional Description": deleted subsection "Brownout Manager" and redundant subsection "Reset Controller Status Register" (register is described in Section 14.5.2, "Reset Controller Status Register")					
	Updated Section 14.4.1, "Reset Controller Overview"					
03-Apr-15	Section 14.4.3, "Reset States": organized subsections in order of reset state priority					
	Section 14.4.4, "Reset State Priorities": reworded first paragraph					
	Section 14.5.2, "Reset Controller Status Register": updated bit and field descriptions					
	Section 15., "Real-time Timer (RTT)"					
	Updated Figure 15-2 "RTT Counting" and Section 15.4 "Functional Description"					
	Section 15.5.1 "Real-time Timer Mode Register": updated RTPRES field description					
	Modified ALMV description in Section 15.5.2 "Real-time Timer Alarm Register"					
	Section 15.5.2 "Real-time Timer Alarm Register": added "(cleared on read)" to each bit description					
	Added notes in Section 15.5.3 "Real-time Timer Value Register"					
	Section 16., "Real-time Clock (RTC)"					
	Replaced "APB" with "System Bus" in Section 16.3, "Block Diagram"					
	Updated "Section 16.1, "Description" and Section 16.5, "Functional Description" (removed references to the 20th century)					
	Section 16.5.5, "RTC Internal Free Running Counter Error Checking": replaced "RTC status clear control register" with "Status Clear Command Register"					
	Updated Section 16.5.7, "RTC Accurate Clock Calibration" (added figures and descriptions)					
	Updated Section 16.6.2, "RTC Mode Register" and Section 16.6.11, "RTC Interrupt Mask Register"					
	Section 17., "Watchdog Timer (WDT)"					
	In Figure 17-2 "Watchdog Behavior", "WDT_CR = WDRSTT" replaced with "WDT_CR.WDRSTT=1"					
	Updated Section 17.5.3 "Watchdog Timer Status Register"					

Atmel