E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	79
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K × 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4sd16cb-an

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 12-11. Faults (Continued)

Fault		Handler	Bit Name	Fault Status Register
Bus erro	Bus error:		-	_
during	during exception stacking		STKERR	
during	g exception unstacking		UNSTKERR	
during	g instruction prefetch	Bus fault	IBUSERR	
during	during lazy floating-point state preservation		LSPERR ⁽³⁾	BFSR: Bus Fault Status Subregister
Precise data bus error		_	PRECISERR	
Imprecise data bus error			IMPRECISERR	
Attempt	to access a coprocessor		NOCP	
Undefine	ed instruction		UNDEFINSTR	
Attempt	Attempt to enter an invalid instruction set state		INVSTATE	"IIFSDI Lloogo Foult Status Subragistar"
Invalid EXC_RETURN value		Usage lault	INVPC	OFSR. Usage Fault Status Sublegister
Illegal unaligned load or store			UNALIGNED	
Divide B	Зу О		DIVBYZERO	

Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

- 2. Attempt to use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction with ICI continuation.
- 3. Only present in a Cortex-M4F device

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see "System Handler Priority Registers". The software can disable the execution of the handlers for these faults, see "System Handler Control and State Register".

Usually, the exception priority, together with the values of the exception mask registers, determines whether the processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in "Exception Model".

In some situations, a fault with configurable priority is treated as a hard fault. This is called *priority escalation*, and the fault is described as *escalated to hard fault*. Escalation to hard fault occurs when:

- A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because a fault handler cannot preempt itself; it must have the same priority as the current priority level.
- A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler for the new fault cannot preempt the currently executing fault handler.
- An exception handler causes a fault for which the priority is the same as or lower than the currently executing exception.
- A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault. This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

12.11.2.5	MPU Region Attribute and Size Register
-----------	--

Name:	MPU_RASR						
Access:	Read/Write						
31	30	29	28	27	26	25	24
—	_	_	XN	_		AP	
23	22	21	20	19	18	17	16
-	-		TEX		S	С	В
15	14	13	12	11	10	9	8
			SF	RD			
7	6	5	4	3	2	1	0
_	-			SIŽE			ENABLE

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

- 0: Instruction fetches enabled.
- 1: Instruction fetches disabled.

• AP: Access Permission

See Table 12-38.

• TEX, C, B: Memory Access Attributes

See Table 12-36.

• S: Shareable

See Table 12-36.

• SRD: Subregion Disable

For each bit in this field:

- 0: Corresponding subregion is enabled.
- 1: Corresponding subregion is disabled.

See "Subregions" for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field as 0x00.

17.5.1 Watchdog Timer Control Register

Name:	WDT_CR						
Address:	0x400E1450						
Access:	Write-only						
31	30	29	28	27	26	25	24
			KE	ΞY			
23	22	21	20	19	18	17	16
_	_	_	_	_	_	_	_
15	14	13	12	11	10	9	8
_	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
-	-	_	_	_	_	_	WDRSTT

• WDRSTT: Watchdog Restart

0: No effect.

1: Restarts the watchdog if KEY is written to 0xA5.

• KEY: Password

Value	Name	Description	
0xA5	PASSWD	Writing any other value in this field aborts the write operation.	

Table 21-4. Write Handshake (Continued)

Step	Programmer Action	Device Action	Data I/O
4	Releases MODE and DATA signals	Executes command and polls NCMD high	Input
5	Sets NCMD signal	Executes command and polls NCMD high	Input
6	Waits for RDY high	Sets RDY	Input

21.3.4.2 Read Handshaking

For details on the read handshaking sequence, refer to Figure 21-3 and Table 21-5.

Figure 21-3. Parallel Programming Timing, Read Sequence

Table 21-5. Read Handshake

Step	Programmer Action	Device Action	DATA I/O
1	Sets MODE and DATA signals	Waits for NCMD low	Input
2	Clears NCMD signal	Latch MODE and DATA	Input
3	Waits for RDY low	Clears RDY signal	Input
4	Sets DATA signal in tristate	Waits for NOE Low	Input
5	Clears NOE signal	_	Tristate
6	Waits for NVALID low	Sets DATA bus in output mode and outputs the flash contents.	Output
7	_	Clears NVALID signal	Output
8	Reads value on DATA Bus	Waits for NOE high	Output
9	Sets NOE signal		Output
10	Waits for NVALID high	Sets DATA bus in input mode	X
11	Sets DATA in output mode	Sets NVALID signal	Input
12	Sets NCMD signal	Waits for NCMD high	Input
13	Waits for RDY high	Sets RDY signal	Input

23.7.12 CRCCU Interrupt Enable Register

Name:	CRCCU_IER						
Address:	0x40044040						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	_	-	-
7	6	5	4	3	2	1	0
_	-	-	_	_	_	_	ERRIER

• ERRIER: CRC Error Interrupt Enable

0: No effect

1: Enable interrupt

Figure 26-11. WRITE_MODE = 1. The write operation is controlled by NWE

26.9.4.2 Write is Controlled by NCS (WRITE_MODE = 0)

Figure 26-12 shows the waveforms of a write operation with WRITE_MODE cleared. The data is put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are switched to Output mode after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of the programmed waveform on NWE.

Figure 26-12. WRITE_MODE = 0. The write operation is controlled by NCS

26.9.5 Register Write Protection

To prevent any single software error that may corrupt SMC behavior, the registers listed below can be writeprotected by setting the WPEN bit in the SMC Write Protection Mode register (SMC_WPMR).

If a write access in a write-protected register is detected, the WPVS flag in the SMC Write Protection Status register (SMC_WPSR) is set and the field WPVSRC indicates in which register the write access has been attempted.

The WPVS flag is automatically cleared after reading the SSMC_WPSR.

The following registers can be write-protected:

- "SMC Setup Register"
- "SMC Pulse Register"

Atmel

Figure 26-13. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2

26.11.2 Early Read Wait State

In some cases, the SMC inserts a wait state cycle between a write access and a read access to allow time for the write cycle to end before the subsequent read cycle begins. This wait state is not generated in addition to a chip select wait state. The early read cycle thus only occurs between a write and read access to the same memory device (same chip select).

An early read wait state is automatically inserted if at least one of the following conditions is valid:

- if the write controlling signal has no hold time and the read controlling signal has no setup time (Figure 26-14).
- in NCS Write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS signal and the NCS_RD_SETUP parameter is set to 0, regardless of the Read mode (Figure 26-15). The write operation must end with a NCS rising edge. Without an Early Read Wait State, the write operation could not complete properly.
- in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD = 0), the feedback
 of the write control signal is used to control address, data, and chip select lines. If the external write control
 signal is not inactivated as expected due to load capacitances, an Early Read Wait State is inserted and
 address, data and control signals are maintained one more cycle. See Figure 26-16.

Atmel

Atmel

31.6.33 PIO Output Write Enable Register

Name: PIO_OWER

Address: 0x400E0EA0 (PIOA), 0x400E10A0 (PIOB), 0x400E12A0 (PIOC)

Access: Write-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	- 13	12	- 11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Output Write Enable

0: No effect.

1: Enables writing PIO_ODSR for the I/O line.

31.6.46 PIO Write Protection Mode Register

Name: PIO_WPMR

Address: 0x400E0EE4 (PIOA), 0x400E10E4 (PIOB), 0x400E12E4 (PIOC)

Access: Read/Write

31	30	29	28	27	26	25	24
			WP	KEY			
23	22	21	20	19	18	17	16
	WPKEY						
15	14	13	12	11	10	9	8
	WPKEY						
7	6	5	4	3	2	1	0
_	—	—	-	_	—	—	WPEN

• WPEN: Write Protection Enable

0: Disables the write protection if WPKEY corresponds to 0x50494F ("PIO" in ASCII).

1: Enables the write protection if WPKEY corresponds to 0x50494F ("PIO" in ASCII).

See Section 31.5.15 "Register Write Protection" for the list of registers that can be protected.

• WPKEY: Write Protection Key

Value	Name	Description
0x50494F	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit. Always reads as 0.

32.9.9 SSC	Receive Synchr	onization Hold	ing Register				
Name:	SSC_RSHR						
Address:	0x40004030						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
_	-	-	-	-	-	_	-
15	14	13	12	11	10	9	8
			RS	DAT			
7	6	5	4	3	2	1	0
			RS	DAT			

• RSDAT: Receive Synchronization Data

Figure 35-9. Character Transmission

35.5.3.3 Transmitter Control

When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in UART_SR. The transmission starts when the programmer writes in the UART_THR, and after the written character is transferred from UART_THR to the internal shift register. The TXRDY bit remains high until a second character is written in UART_THR. As soon as the first character is completed, the last character written in UART_THR is transferred into the internal shift register and TXRDY rises again, showing that the holding register is empty.

When both the internal shift register and UART_THR are empty, i.e., all the characters written in UART_THR have been processed, the TXEMPTY bit rises after the last stop bit has been completed.

Figure 35-10. Transmitter Control

35.5.4 Peripheral DMA Controller (PDC)

Both the receiver and the transmitter of the UART are connected to a PDC.

The PDC channels are programmed via registers that are mapped within the UART user interface from the offset 0x100. The status bits are reported in UART_SR and generate an interrupt.

The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of the data in UART_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmitter. This results in a write of data in UART_THR.

35.5.5 Test Modes

The UART supports three test modes. These modes of operation are programmed by using the CHMODE field in UART_MR.

The Automatic echo mode allows a bit-by-bit retransmission. When a bit is received on the URXD line, it is sent to the UTXD line. The transmitter operates normally, but has no effect on the UTXD line.

Drift Compensation

Drift compensation is available only in 16X oversampling mode. An hardware recovery system allows a larger clock drift. To enable the hardware system, the bit in the USART_MAN register must be set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as normal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles before the expected edge, then the current period is shortened by one clock cycle. If the RXD event is between 2 and 3 clock cycles after the expected edge, then the current period is lengthened by one clock cycle. These intervals are considered to be drift and so corrective actions are automatically taken.

36.6.3.3 Asynchronous Receiver

If the USART is programmed in Asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD input line. The oversampling is either 16 or 8 times the baud rate clock, depending on the OVER bit in the US_MR.

The receiver samples the RXD line. If the line is sampled during one half of a bit time to 0, a start bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16 (OVER = 0), a start is detected at the eighth sample to 0. Data bits, parity bit and stop bit are assumed to have a duration corresponding to 16 oversampling clock cycles. If the oversampling is 8 (OVER = 1), a start bit is detected at the fourth sample to 0. Data bits, parity bit and stop bit are assumed to have a duration corresponding to 8 oversampling clock cycles.

Atmel

36.7.8 USART Interrupt Disable Register (SPI_MODE)

Name:	US_IDR (SPI_MODE)
-------	-------------------

Address: 0x4002400C (0), 0x4002800C (1)

Access: Write-only

31	30	29	28	27	26	25	24
_	-	—	-	-	—	—	—
23	22	21	20	19	18	17	16
-	_	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	RXBUFF	TXBUFE	UNRE	TXEMPTY	-
7	6	5	4	3	2	1	0
_	_	OVRE	ENDTX	ENDRX	_	TXRDY	RXRDY

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

The following configuration values are valid for all listed bit names of this register:

0: No effect

- 1: Disables the corresponding interrupt.
- RXRDY: RXRDY Interrupt Disable
- TXRDY: TXRDY Interrupt Disable
- ENDRX: End of Receive Buffer Transfer Interrupt Disable
- ENDTX: End of Transmit Buffer Interrupt Disable
- OVRE: Overrun Error Interrupt Disable
- TXEMPTY: TXEMPTY Interrupt Disable
- UNRE: SPI Underrun Error Interrupt Disable
- TXBUFE: Transmit Buffer Empty Interrupt Disable
- RXBUFF: Receive Buffer Full Interrupt Disable

36.7.18 USART FI DI RATIO Register

Name:	US_FIDI							
Address:	0x40024040 (0), 0x40028040 (1)							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
_	-	—	—	—	—	—	-	
23	22	21	20	19	18	17	16	
_	—	—	—	—	—	_	-	
15	14	13	12	11	10	9	8	
-	-	-	-	-	FI_DI_RATIO			
7	6	5	4	3	2	1	0	
			FI_DI_	RATIO				

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• FI_DI_RATIO: FI Over DI Ratio Value

0: If ISO7816 mode is selected, the baud rate generator generates no signal.

1-2: Do not use.

3–2047: If ISO7816 mode is selected, the baud rate is the clock provided on SCK divided by FI_DI_RATIO.

38.14.9 HSMCI Response Register

Name:	HSMCI_RSPR						
Address:	0x40000020						
Access:	Read-only						
31	30	29	28	27	26	25	24
			RS	SP			
23	22	21	20	19	18	17	16
			RS	\$P			
15	14	13	12	11	10	9	8
			RS	SP			
7	6	5	4	3	2	1	0
			RS	SP			

• RSP: Response

Note: 1. The response register can be read by N accesses at the same HSMCI_RSPR or at consecutive addresses (0x20 to 0x2C). N depends on the size of the response.

- RTOE: Response Time-out Error Interrupt Enable
- DCRCE: Data CRC Error Interrupt Enable
- DTOE: Data Time-out Error Interrupt Enable
- CSTOE: Completion Signal Timeout Error Interrupt Enable
- FIFOEMPTY: FIFO empty Interrupt enable
- XFRDONE: Transfer Done Interrupt enable
- ACKRCV: Boot Acknowledge Interrupt Enable
- ACKRCVE: Boot Acknowledge Error Interrupt Enable
- OVRE: Overrun Interrupt Enable
- UNRE: Underrun Interrupt Enable

39.7.31 PWM Write Protection Status Register

Name:	PWM_WPSR						
Address:	0x400200E8						
Access:	Read-only						
31	30	29	28	27	26	25	24
			WPV	/SRC			
23	22	21	20	19	18	17	16
			WPV	/SRC			
15	14	13	12	11	10	9	8
_	-	WPHWS5	WPHWS4	WPHWS3	WPHWS2	WPHWS1	WPHWS0
7	6	5	4	3	2	1	0
WPVS	_	WPSWS5	WPSWS4	WPSWS3	WPSWS2	WPSWS1	WPSWS0

• WPSWSx: Write Protect SW Status

0: The SW write protection x of the register group x is disabled.

1: The SW write protection x of the register group x is enabled.

• WPHWSx: Write Protect HW Status

0: The HW write protection x of the register group x is disabled.

1: The HW write protection x of the register group x is enabled.

• WPVS: Write Protect Violation Status

0: No write protection violation has occurred since the last read of the PWM_WPSR.

1: At least one write protection violation has occurred since the last read of the PWM_WPSR. If this violation is an unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

WPVSRC: Write Protect Violation Source

When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

42.7.11 ADC Interrupt Mask Register

Name:	ADC_IMR						
Address:	0x4003802C						
Access:	Read-only						
31	30	29	28	27	26	25	24
—	-	-	RXBUFF	ENDRX	COMPE	GOVRE	DRDY
23	22	21	20	19	18	17	16
EOCAL	_	-	_	_	_	_	_
15	14	13	12	11	10	9	8
EOC15	EOC14	EOC13	EOC12	EOC11	EOC10	EOC9	EOC8
7	6	5	4	3	2	1	0
EOC7	EOC6	EOC5	EOC4	EOC3	EOC2	EOC1	EOC0

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

- EOCx: End of Conversion Interrupt Mask x
- EOCAL: End of Calibration Sequence
- DRDY: Data Ready Interrupt Mask
- GOVRE: General Overrun Error Interrupt Mask
- COMPE: Comparison Event Interrupt Mask
- ENDRX: End of Receive Buffer Interrupt Mask
- RXBUFF: Receive Buffer Full Interrupt Mask

Table 49-5. SAM4S Datasheet Rev. 11100G Revision History

Doc. Date	Changes						
	Table 3-1 "Signal Description List": WKUP[15:0] voltage reference type added.						
	In Figure 5-4 "Backup Battery", modified ADC, DAC, Analog Comparator Supply from 2.0V to 2.4V						
	Modified Section 6.5 "ERASE Pin".						
	Modified bullet list on use of erase commands depending on sector size in Section 8.1.3.1 "Flash Overview"						
	Modified Section 8.1.3.5 "Security Bit", Section 8.1.3.11 "GPNVM Bits" and Section 8.1.4 "Boot Strategies".						
	Section 24. "Boot Program"						
	Section 24.5.4 "In Application Programming (IAP) Feature": 5th sentence: added "the EFC number"						
27-May-14	Section 29. "Power Management Controller (PMC)"						
	Section 29.17.9 "PMC Clock Generator PLLA Register": Min value for bit MULA corrected to 4 from 7.						
	Section 29.17.10 "PMC Clock Generator PLLB Register": Min value for bit MULB corrected to 4 from 1.						
	Section 44. "Electrical Characteristics"						
	Added Table 44-24 "Typical Power Consumption on VDDCORE (VDDIO = 3.3V, TA = 25°C)".						
	Table 44-73 "AC Flash Characteristics": Added parameter Erase Pin Assertion Time.						
	Section 48. "Errata"						
	Added Section Issue: and Section Issue: "Incorrect Flash Read May Occur Depending on VDDIO Voltage and Flash Wait State".						

