
Microchip Technology - ATSAM4SD16CB-CNR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4

Core Size 32-Bit Single-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB

Peripherals Brown-out Detect/Reset, DMA, POR, PWM, WDT

Number of I/O 79

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 160K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 16x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 100-TFBGA

Supplier Device Package 100-TFBGA (9x9)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4sd16cb-cnr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4sd16cb-cnr-4413325
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

12.6.7 Saturating Instructions

The table below shows the saturating instructions.

For signed n-bit saturation, this means that:

 If the value to be saturated is less than -2n-1, the result returned is -2n-1

 If the value to be saturated is greater than 2n-1-1, the result returned is 2n-1-1

 Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

 If the value to be saturated is less than 0, the result returned is 0

 If the value to be saturated is greater than 2n-1, the result returned is 2n-1

 Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the
instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the
MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

Table 12-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDSUB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADD8 Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange

UQSAX Unsigned Saturating Subtract and Add with Exchange

UQSUB16 Unsigned Saturating Subtract 16

UQSUB8 Unsigned Saturating Subtract 8
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

160

Examples
QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of

; R2, saturates to 16 bits and writes to
; corresponding halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding
 ; byte of R3

QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
 ; halfword of R2, saturates to 16 bits, writes to
 ; corresponding halfword of R4

QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
 ; in R2, saturates to 8 bits, writes to corresponding
 ; byte of R4.

12.6.7.4 QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:

op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,
where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
–215 ≤ x ≤ 215 – 1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
–215 ≤ x ≤ 215 – 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,
where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

164

12.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read/Write

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASRs.

• REGION: MPU Region Referenced by the MPU_RBAR and MPU_RASRs

Indicates the MPU region referenced by the MPU_RBAR and MPU_RASRs.

The MPU supports 8 memory regions, so the permitted values of this field are 0–7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. How-
ever, the region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base
Address Register” . This write updates the value of the REGION field.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

REGION
249SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

• FARG: Flash Command Argument

• FKEY: Flash Writing Protection Key

GETD, GLB,
GGPB, STUI,
SPUI, GCALB,
WUS, EUS, STUS,
SPUS, EA

Commands
requiring no
argument, including
Erase all command

FARG is meaningless, must be written with 0

ES
Erase sector
command

FARG must be written with any page number within the sector to be erased

EPA
Erase pages
command

FARG[1:0] defines the number of pages to be erased

The start page must be written in FARG[15:2].

FARG[1:0] = 0: Four pages to be erased. FARG[15:2] = Page_Number / 4

FARG[1:0] = 1: Eight pages to be erased. FARG[15:3] = Page_Number / 8, FARG[2]=0

FARG[1:0] = 2: Sixteen pages to be erased. FARG[15:4] = Page_Number / 16,
FARG[3:2]=0

FARG[1:0] = 3: Thirty-two pages to be erased. FARG[15:5] = Page_Number / 32,
FARG[4:2]=0

Refer to Table 20-4 “EEFC_FCR.FARG Field for EPA Command”.

WP, WPL, EWP,
EWPL

Programming
commands

FARG must be written with the page number to be programmed

SLB, CLB Lock bit commands FARG defines the page number to be locked or unlocked

SGPB, CGPB GPNVM commands FARG defines the GPNVM number to be programmed

Value Name Description

0x5A PASSWD
The 0x5A value enables the command defined by the bits of the register. If the field is written with a
different value, the write is not performed and no action is started.
373SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

21.3.5.5 Flash General-purpose NVM Commands

General-purpose NVM bits (GP NVM bits) can be set using the Set GPNVM command (SGPB). This command
also activates GP NVM bits. A bit mask is provided as argument to the command. When bit 0 of the bit mask is set,
then the first GP NVM bit is activated.

In the same way, the Clear GPNVM command (CGPB) is used to clear general-purpose NVM bits. The general-
purpose NVM bit is deactivated when the corresponding bit in the pattern value is set to 1.

General-purpose NVM bits can be read using the Get GPNVM Bit command (GGPB). The nth GP NVM bit is
active when bit n of the bit mask is set.

21.3.5.6 Flash Security Bit Command

A security bit can be set using the Set Security Bit command (SSE). Once the security bit is active, the Fast Flash
programming is disabled. No other command can be run. An event on the Erase pin can erase the security bit
once the contents of the Flash have been erased.

Once the security bit is set, it is not possible to access FFPI. The only way to erase the security bit is to erase the
Flash.

In order to erase the Flash, the user must perform the following:

1. Power-off the chip.

2. Power-on the chip with TST = 0.

3. Assert Erase during a period of more than 220 ms.

4. Power-off the chip.

Then it is possible to return to FFPI mode and check that Flash is erased.

21.3.5.7 Memory Write Command

This command is used to perform a write access to any memory location.

Table 21-11. Set/Clear GP NVM Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SGPB or CGPB

2 Write handshaking DATA GP NVM bit pattern value

Table 21-12. Get GP NVM Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE GGPB

2 Read handshaking DATA

GP NVM Bit Mask Status

0 = GP NVM bit is cleared

1 = GP NVM bit is set

Table 21-13. Set Security Bit Command

Step Handshake Sequence MODE[3:0] DATA[15:0]

1 Write handshaking CMDE SSE

2 Write handshaking DATA 0
383SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

23. Cyclic Redundancy Check Calculation Unit (CRCCU)

23.1 Description

The Cyclic Redundancy Check Calculation Unit (CRCCU) has its own DMA which functions as a Master with the
Bus Matrix. Three different polynomials are available: CCITT802.3, CASTAGNOLI and CCITT16.

The CRCCU is designed to perform data integrity checks of off-/on-chip memories as a background task without
CPU intervention.

23.2 Embedded Characteristics
 Data Integrity Check of Off-/On-Chip Memories

 Background Task Without CPU Intervention

 Performs Cyclic Redundancy Check (CRC) Operation on Programmable Memory Area

 Programmable Bus Burden

Note: The CRCCU is designed to verify data integrity of off-/on-chip memories, thus the CRC must be generated and verified
by the CRCCU. The CRCCU performs the CRC from LSB to MSB. If the CRC has been performed with the same
polynomial by another device, a bit-reverse must be done on each byte before using the CRCCU.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

400

23.6.2 Transfer Control Register

Name: TR_CTRL

Access: Read/Write

• BTSIZE: Buffer Transfer Size

• TRWIDTH: Transfer Width Register

• IEN: Context Done Interrupt Enable (Active Low)

0: Bit DMAISR of CRCCU_DMA_ISR is set at the end of the current descriptor transfer.

1: Bit DMAISR of CRCCU_DMA_ISR remains cleared.

31 30 29 28 27 26 25 24

– – – – IEN – TRWIDTH

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

BTSIZE

7 6 5 4 3 2 1 0

BTSIZE

Value Name Description

0 BYTE The data size is 8-bit

1 HALFWORD The data size is 16-bit

2 WORD The data size is 32-bit
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

406

26.11.3.2 Slow Clock Mode Transition

A Reload Configuration Wait State is also inserted when the Slow Clock mode is entered or exited, after the end of
the current transfer (see Section 26.14 ”Slow Clock Mode”).

26.11.4 Read to Write Wait State

Due to an internal mechanism, a wait cycle is always inserted between consecutive read and write SMC accesses.

This wait cycle is referred to as a read to write wait state in this document.

This wait cycle is applied in addition to chip select and reload user configuration wait states when they are to be
inserted. See Figure 26-13 on page 460.
463SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

27.6.8 Transmit Next Counter Register

Name: PERIPH_TNCR

Access: Read/Write

• TXNCTR: Transmit Counter Next

TXNCTR contains the next transmit buffer size.

When a half-duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
TXNCTR

7 6 5 4 3 2 1 0

TXNCTR
503SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.5 Functional Description

The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O
is represented in Figure 31-2. In this description each signal shown represents one of up to 32 possible indexes.

Figure 31-2. I/O Line Control Logic

31.5.1 Pull-up and Pull-down Resistor Control

Each I/O line is designed with an embedded pull-up resistor and an embedded pull-down resistor. The pull-up
resistor can be enabled or disabled by writing to the Pull-up Enable Register (PIO_PUER) or Pull-up Disable
Register (PIO_PUDR), respectively. Writing to these registers results in setting or clearing the corresponding bit in
the Pull-up Status Register (PIO_PUSR). Reading a one in PIO_PUSR means the pull-up is disabled and reading
a zero means the pull-up is enabled. The pull-down resistor can be enabled or disabled by writing the Pull-down
Enable Register (PIO_PPDER) or the Pull-down Disable Register (PIO_PPDDR), respectively. Writing in these

1

0

1

0

1

0

1

0
D Q D Q

DFF

1

0

1

0

11

00
01
10

Programmable
Glitch

or
Debouncing

Filter

PIO_PDSR[0]
PIO_ISR[0]

PIO_IDR[0]

PIO_IMR[0]

PIO_IER[0]

PIO Interrupt

(Up to 32 possible inputs)

PIO_ISR[31]

PIO_IDR[31]

PIO_IMR[31]

PIO_IER[31]

Pad

PIO_PUDR[0]

PIO_PUSR[0]

PIO_PUER[0]

PIO_MDDR[0]

PIO_MDSR[0]

PIO_MDER[0]

PIO_CODR[0]

PIO_ODSR[0]

PIO_SODR[0]

PIO_PDR[0]

PIO_PSR[0]

PIO_PER[0]
PIO_ABCDSR1[0]

PIO_ODR[0]

PIO_OSR[0]

PIO_OER[0]

Peripheral Clock
Resynchronization

Stage

Peripheral A Input

Peripheral D Output Enable

Peripheral A Output Enable

EVENT
DETECTORDFF

PIO_IFDR[0]

PIO_IFSR[0]

PIO_IFER[0]

Peripheral Clock

Clock
Divider

PIO_IFSCSR[0]

PIO_IFSCER[0]

PIO_IFSCDR[0]

PIO_SCDR

Slow Clock

Peripheral B Output Enable

Peripheral C Output Enable

11

00
01
10

Peripheral D Output

Peripheral A Output

Peripheral B Output

Peripheral C Output

PIO_ABCDSR2[0]

Peripheral B Input
Peripheral C Input
Peripheral D Input

PIO_PPDDR[0]

PIO_PPDSR[0]

PIO_PPDER[0]

VDD

GND

Integrated
Pull-Down
Resistor

Integrated
Pull-Up
Resistor

div_slck
571SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

31.6.5 PIO Output Disable Register

Name: PIO_ODR

Address: 0x400E0E14 (PIOA), 0x400E1014 (PIOB), 0x400E1214 (PIOC)

Access: Write-only

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Output Disable

0: No effect.

1: Disables the output on the I/O line.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

592

31.6.27 PIO Input Filter Slow Clock Enable Register

Name: PIO_IFSCER

Address: 0x400E0E84 (PIOA), 0x400E1084 (PIOB), 0x400E1284 (PIOC)

Access: Write-only

• P0–P31: Slow Clock Debouncing Filtering Select

0: No effect.

1: The debouncing filter is able to filter pulses with a duration < tdiv_slck/2.

31 30 29 28 27 26 25 24

P31 P30 P29 P28 P27 P26 P25 P24

23 22 21 20 19 18 17 16

P23 P22 P21 P20 P19 P18 P17 P16

15 14 13 12 11 10 9 8

P15 P14 P13 P12 P11 P10 P9 P8

7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

614

33. Serial Peripheral Interface (SPI)

33.1 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with
external devices in Master or Slave mode. It also enables communication between processors if an external
processor is connected to the system.

The Serial Peripheral Interface is essentially a Shift register that serially transmits data bits to other SPIs. During a
data transfer, one SPI system acts as the “master”' which controls the data flow, while the other devices act as
“slaves'' which have data shifted into and out by the master. Different CPUs can take turn being masters (multiple
master protocol, contrary to single master protocol where one CPU is always the master while all of the others are
always slaves). One master can simultaneously shift data into multiple slaves. However, only one slave can drive
its output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices exist, the master
generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:

 Master Out Slave In (MOSI)—This data line supplies the output data from the master shifted into the input(s)
of the slave(s).

 Master In Slave Out (MISO)—This data line supplies the output data from a slave to the input of the master.
There may be no more than one slave transmitting data during any particular transfer.

 Serial Clock (SPCK)—This control line is driven by the master and regulates the flow of the data bits. The
master can transmit data at a variety of baud rates; there is one SPCK pulse for each bit that is transmitted.

 Slave Select (NSS)—This control line allows slaves to be turned on and off by hardware.
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

686

33.7.3.1 Master Mode Block Diagram

Figure 33-6. Master Mode Block Diagram

Shift Register

SPCK

MOSI
LSB MSB

MISO

SPI_RDR
RD

SPI
Clock

TDRE
SPI_TDR

TD

RDRF
OVRES

SPI_CSRx

CPOL
NCPHA

BITS

Peripheral clock Baud Rate Generator

SPI_CSRx
SCBR

NPCSx

NPCS0

NPCS0

0

1

PS

SPI_MR
PCS

SPI_TDR
PCS

MODF

Current
Peripheral

SPI_RDR
PCS

SPI_CSRx

CSAAT

PCSDEC

MODFDIS

MSTR
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

694

• ARBLST: Arbitration Lost (cleared on read)

This bit is only used in Master mode.

0: Arbitration won.

1: Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.

• SCLWS: Clock Wait State

This bit is only used in Slave mode.

0: The clock is not stretched.

1: The clock is stretched. TWI_THR / TWI_RHR buffer is not filled / emptied before transmission / reception of a new
character.

SCLWS behavior can be seen in Figure 34-27 and Figure 34-28.

• EOSACC: End Of Slave Access (cleared on read)

This bit is only used in Slave mode.

0: A slave access is being performed.

1: The Slave access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.

EOSACC behavior can be seen in Figure 34-29 and Figure 34-30.

• ENDRX: End of RX buffer (cleared by writing TWI_RCR or TWI_RNCR)

0: The Receive Counter Register has not reached 0 since the last write in TWI_RCR or TWI_RNCR.

1: The Receive Counter Register has reached 0 since the last write in TWI_RCR or TWI_RNCR.

• ENDTX: End of TX buffer (cleared by writing TWI_TCR or TWI_TNCR)

0: The Transmit Counter Register has not reached 0 since the last write in TWI_TCR or TWI_TNCR.

1: The Transmit Counter Register has reached 0 since the last write in TWI_TCR or TWI_TNCR.

• RXBUFF: RX Buffer Full (cleared by writing TWI_RCR or TWI_RNCR)

0: TWI_RCR or TWI_RNCR have a value other than 0.

1: Both TWI_RCR and TWI_RNCR have a value of 0.

• TXBUFE: TX Buffer Empty (cleared by writing TWI_TCR or TWI_TNCR)

0: TWI_TCR or TWI_TNCR have a value other than 0.

1: Both TWI_TCR and TWI_TNCR have a value of 0.
755SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

If STTTO is performed, the counter clock is stopped until a first character is received. The idle state on RXD before
the start of the frame does not provide a time-out. This prevents having to obtain a periodic interrupt and enables a
wait of the end of frame when the idle state on RXD is detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This enables generation
of a periodic interrupt so that a user time-out can be handled, for example when no key is pressed on a keyboard.

Figure 36-23 shows the block diagram of the Receiver Time-out feature.

Figure 36-23. Receiver Time-out Block Diagram

Table 36-10 gives the maximum time-out period for some standard baud rates.

36.6.3.12 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of a received
character is detected at level 0. This can occur if the receiver and the transmitter are fully desynchronized.

A framing error is reported on the FRAME bit of US_CSR. The FRAME bit is asserted in the middle of the stop bit
as soon as the framing error is detected. It is cleared by writing a 1 to the RSTSTA bit in the US_CR.

Table 36-10. Maximum Time-out Period

Baud Rate (bit/s) Bit Time (µs) Time-out (ms)

600 1,667 109,225

1,200 833 54,613

2,400 417 27,306

4,800 208 13,653

9,600 104 6,827

14,400 69 4,551

19,200 52 3,413

28,800 35 2,276

38,400 26 1,704

56,000 18 1,170

57,600 17 1,138

200,000 5 328

16-bit Time-out
Counter

0

TO

TIMEOUT

Baud Rate
Clock

=

Character
Received

RETTO

Load

Clock

16-bit
Value

STTTO

D Q1

Clear
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

798

SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

976

̶ register PWM_CDTYUPDx holds the new duty-cycle value until the end of the update period of
synchronous channels (when UPRCNT is equal to UPR in PWM Sync Channels Update Period
Register (PWM_SCUP)) and the end of the current PWM period, then updates the value for the next
period.

Note: If the update registers PWM_CDTYUPDx, PWM_CPRDUPDx and PWM_DTUPDx are written several times between
two updates, only the last written value is taken into account.

Figure 39-18. Synchronized Period, Duty-Cycle and Dead-Time Update

39.6.5.4 Changing the Update Period of Synchronous Channels

It is possible to change the update period of synchronous channels while they are enabled. See “Method 2:
Manual write of duty-cycle values and automatic trigger of the update” and “Method 3: Automatic write of duty-
cycle values and automatic trigger of the update” .

To prevent an unexpected update of the synchronous channels registers, the user must use the PWM Sync
Channels Update Period Update Register (PWM_SCUPUPD) to change the update period of synchronous
channels while they are still enabled. This register holds the new value until the end of the update period of
synchronous channels (when UPRCNT is equal to UPR in PWM_SCUP) and the end of the current PWM period,
then updates the value for the next period.

Note: If the update register PWM_SCUPUPD is written several times between two updates, only the last written value is
taken into account.

Note: Changing the update period does make sense only if there is one or more synchronous channels and if the update
method 1 or 2 is selected (UPDM = 1 or 2 in PWM Sync Channels Mode Register).

PWM_CPRDUPDx Value

PWM_CPRDx PWM_CDTYx

- If Asynchronous Channel
 -> End of PWM period
- If Synchronous Channel
 -> End of PWM period and UPDULOCK = 1

User's Writing

PWM_DTUPDx Value

User's Writing

PWM_DTx

- If Asynchronous Channel
 -> End of PWM period
- If Synchronous Channel
 - If UPDM = 0
 -> End of PWM period and UPDULOCK = 1
 - If UPDM = 1 or 2
 -> End of PWM period and end of Update Period

PWM_CDTYUPDx Value

User's Writing

41.4 Pin Name List

41.5 Product Dependencies

41.5.1 I/O Lines

41.5.2 Power Management

The ACC is clocked through the Power Management Controller (PMC), thus the programmer must first configure
the PMC to enable the ACC clock.

Note that the voltage regulator must be activated to use the analog comparator.

41.5.3 Interrupt

The ACC has an interrupt line connected to the Interrupt Controller (IC). In order to handle interrupts, the Interrupt
Controller must be programmed before configuring the ACC.

41.5.4 Fault Output

The ACC has the FAULT output connected to the FAULT input of PWM. Please refer to chapter Section 41.6.4
”Fault Mode” and the implementation of the PWM in the product.

Table 41-1. List of External Analog Data Inputs

Pin Name Description

AD0..AD7 ACC Analog PLUS inputs

AD0..AD3 ACC Analog MINUS inputs

ADVREF ADCVoltage reference

Table 41-2. ACC Pin List

Pin Name Description Type

AD0..AD7 External analog data inputs Input

TS On-chip temperature sensor Input

ADVREF ADC voltage reference Input

DAC0, DAC1 On-chip DAC inputs Input

The analog input pins (AD0–AD7 and DAC0–1) are multiplexed with digital functions (PIO) on
the IO line. By writing the SELMINUS and SELPLUS fields in the ACC Mode Register
(ACC_MR), the associated IO lines are set to Analog mode.

Table 41-3. Peripheral IDs

Instance ID

ACC 33
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1070

42.7.11 ADC Interrupt Mask Register

Name: ADC_IMR

Address: 0x4003802C

Access: Read-only

The following configuration values are valid for all listed bit names of this register:

0: The corresponding interrupt is disabled.

1: The corresponding interrupt is enabled.

• EOCx: End of Conversion Interrupt Mask x

• EOCAL: End of Calibration Sequence

• DRDY: Data Ready Interrupt Mask

• GOVRE: General Overrun Error Interrupt Mask

• COMPE: Comparison Event Interrupt Mask

• ENDRX: End of Receive Buffer Interrupt Mask

• RXBUFF: Receive Buffer Full Interrupt Mask

31 30 29 28 27 26 25 24

– – – RXBUFF ENDRX COMPE GOVRE DRDY

23 22 21 20 19 18 17 16

EOCAL – – – – – – –

15 14 13 12 11 10 9 8

EOC15 EOC14 EOC13 EOC12 EOC11 EOC10 EOC9 EOC8

7 6 5 4 3 2 1 0

EOC7 EOC6 EOC5 EOC4 EOC3 EOC2 EOC1 EOC0
SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

1110

Figure 44-25. SPI Slave Mode with (CPOL = NCPHA = 0) or (CPOL = NCPHA = 1)

44.12.3.1 Maximum SPI Frequency

The following formulas give maximum SPI frequency in master read and write modes and in slave read and write
modes.

Master Write Mode

The SPI only sends data to a slave device such as an LCD, for example. The limit is given by SPI2 (or SPI5)
timing. Since it gives a maximum frequency above the maximum pad speed (see Section 44.12.2 “I/O
Characteristics”), the maximum SPI frequency is defined by the pin FreqMax value.

Master Read Mode

tvalid is the slave time response to output data after detecting an SPCK edge. For a non-volatile memory with
tvalid (or tV) = 12 ns Max, fSPCKMax = 35.5 MHz @ VDDIO = 3.3V.

Slave Read Mode

In slave mode, SPCK is the input clock for the SPI. The maximum SPCK frequency is given by setup and
hold timings SPI7/SPI8 (or SPI10/SPI11). Since this gives a frequency well above the pad limit, the limit in
slave read mode is given by SPCK pad.

Slave Write Mode

For 3.3V I/O domain and SPI6, fSPCKMax = 25 MHz. tsu is the setup time from the master before sampling
data.

SPCK

MISO

MOSI

SPI9

SPI10 SPI11

NPCS0

SPI14

SPI15

fSPCKMax
1

SPI0 orSPI3() tvalid+
--=

fSPCKMax
1

2x S(PI6max orSPI9max() tsu)+
--=
1187SAM4S Series [DATASHEET]
Atmel-11100K-ATARM-SAM4S-Datasheet_09-Jun-15

