

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4sd32ba-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 8-3. Flash Size

The following erase commands can be used depending on the sector size:

- 8 Kbyte small sector
 - Erase and write page (EWP)
 - Erase and write page and lock (EWPL)
 - Erase sector (ES) with FARG set to a page number in the sector to erase
 - Erase pages (EPA) with FARG [1:0] = 0 to erase four pages or FARG [1:0] = 1 to erase eight pages.
 FARG [1:0] = 2 and FARG [1:0] = 3 must not be used.
- 48 Kbyte and 64 Kbyte sectors
 - One block of 8 pages inside any sector, with the command Erase pages (EPA) with FARG[1:0] = 1
 - One block of 16 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 2
 - One block of 32 pages inside any sector, with the command Erase pages (EPA) and FARG[1:0] = 3
 - One sector with the command Erase sector (ES) and FARG set to a page number in the sector to erase
- Entire memory plane
 - The entire Flash, with the command Erase all (EA)

The Write commands of the Flash cannot be used under 330 kHz.

8.1.3.2 Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables reading the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.

It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands. One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash organization, thus making the software generic.

8.1.3.3 Flash Speed

The user must set the number of wait states depending on the frequency used.

For more details, refer to Section 44.12 "AC Characteristics".

12.6.5.22 USAD8

Unsigned Sum of Absolute Differences

Syntax

 $USAD8\{cond\}\{Rd,\}$ Rn, Rm

where:

cond is an optional condition code, see "Conditional Execution".

Rd is the destination register.

Rn is the first operand register.

Rm is the second operand register.

Operation

The USAD8 instruction:

- 1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
- 2. Adds the absolute values of the differences together.
- 3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

USAD8 R1	, R4,	R0 .	Subtracts each byte in R0 from corresponding byte of R4
			adds the differences and writes to R1
USAD8 R0	, R5		Subtracts bytes of R5 from corresponding byte in R0,
			adds the differences and writes to R0.

18.4.2 Slow Clock Generator

The SUPC embeds a slow clock generator that is supplied with the VDDIO power supply. As soon as the VDDIO is supplied, both the crystal oscillator and the embedded RC oscillator are powered up, but only the embedded RC oscillator is enabled. When the RC oscillator is selected as the slow clock source, the slow clock stabilizes more quickly than when the crystal oscillator is selected.

The user can select the crystal oscillator to be the source of the slow clock, as it provides a more accurate frequency than the RC oscillator. The crystal oscillator is selected by setting the XTALSEL bit in the SUPC Control register (SUPC_CR). The following sequence must be used to switch from the RC oscillator to the crystal oscillator:

- 1. The PIO lines multiplexed with XIN32 and XOUT32 are configured to be driven by the oscillator.
- 2. The crystal oscillator is enabled.
- 3. A number of slow RC oscillator clock periods is counted to cover the start-up time of the crystal oscillator (refer to the Electrical Characteristics for information on 32 kHz crystal oscillator start-up time).
- 4. The slow clock is switched to the output of the crystal oscillator.
- 5. The RC oscillator is disabled to save power.

The switching time may vary depending on the slow RC oscillator clock frequency range. The switch of the slow clock source is glitch-free. The OSCSEL bit of the SUPC Status register (SUPC_SR) indicates when the switch sequence is finished.

Reverting to the RC oscillator as a slow clock source is only possible by shutting down the VDDIO power supply.

If the user does not need the crystal oscillator, the XIN32 and XOUT32 pins should be left unconnected.

The user can also set the crystal oscillator in Bypass mode instead of connecting a crystal. In this case, the user has to provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are given in the section 'Electrical Characteristics. To enter Bypass mode, the OSCBYPASS bit in the Mode register (SUPC_MR) must be set before setting XTALSEL.

18.4.3 Core Voltage Regulator Control/Backup Low-power Mode

The SUPC can be used to control the embedded voltage regulator.

The voltage regulator automatically adapts its quiescent current depending on the required load current. More information can be found in the Electrical Characteristics.

The user can switch off the voltage regulator, and thus put the device in Backup mode, by writing a 1 to the VROFF bit in SUPC_CR.

This asserts the vddcore_nreset signal after the write resynchronization time, which lasts two slow clock cycles (worst case). Once the vddcore_nreset signal is asserted, the processor and the peripherals are stopped one slow clock cycle before the core power supply shuts off.

When the internal voltage regulator is not used and VDDCORE is supplied by an external supply, the voltage regulator can be disabled by writing a 1 to the ONREG bit in SUPC_MR.

18.4.4 Supply Monitor

The SUPC embeds a supply monitor located in the VDDIO power supply and which monitors VDDIO power supply.

The supply monitor can be used to prevent the processor from falling into an unpredictable state if the main power supply drops below a certain level.

The threshold of the supply monitor is programmable in the SMTH field of the Supply Monitor Mode register (SUPC_SMMR). Refer to the VDDIO Supply Monitor characteristics in the section Electrical Characteristics.

tamper detection circuitry. If RTCOUTx is not used, the RTC must be configured to create an internal sampling point for the debouncer logic. The period of time between two samples can be configured by programming the TPERIOD field in RTC_MR.

Figure 18-8 illustrates the use of WKUPx without the RTCOUTx pin.

Figure 18-8. Using WKUP Pins Without RTCOUTx Pins

18.4.7.3 Clock Alarms

The RTC and the RTT alarms can generate a wake-up of the core power supply. This can be enabled by setting, respectively, the bits RTCEN and RTTEN in SUPC_WUMR.

The Supply Controller does not provide any status as the information is available in the user interface of either the Real-Time Timer or the Real-Time Clock.

18.4.7.4 Supply Monitor Detection

The supply monitor can generate a wake-up of the core power supply. See Section 18.4.4 "Supply Monitor".

- 1. Execute the 'Get GPNVM Bit' command by writing EEFC_FCR.FCMD with the GGPB command. Field EEFC_FCR.FARG is meaningless.
- 2. GPNVM bits can be read by the software application in EEFC_FRR. The first word read corresponds to the 32 first GPNVM bits, following reads provide the next 32 GPNVM bits as long as it is meaningful. Extra reads to EEFC_FRR return 0.

For example, if the third bit of the first word read in EEFC_FRR is set, the third GPNVM bit is active.

One error can be detected in EEFC_FSR after a programming sequence:

- Command Error: A bad keyword has been written in EEFC_FCR.
- Note: Access to the Flash in read is permitted when a 'Set GPNVM Bit', 'Clear GPNVM Bit' or 'Get GPNVM Bit' command is executed.

20.4.3.6 Calibration Bit

Calibration bits do not interfere with the embedded Flash memory plane.

The calibration bits cannot be modified.

The status of calibration bits are returned by the EEFC. The sequence is the following:

- 1. Execute the 'Get CALIB Bit' command by writing EEFC_FCR.FCMD with the GCALB command. Field EEFC_FCR.FARG is meaningless.
- 2. Calibration bits can be read by the software application in EEFC_FRR. The first word read corresponds to the first 32 calibration bits. The following reads provide the next 32 calibration bits as long as it is meaningful. Extra reads to EEFC_FRR return 0.

The 4/8/12 MHz fast RC oscillator is calibrated in production. This calibration can be read through the GCALB command. The following table shows the bit implementation for each frequency.

Table 20-5. Calibration Bit Indexes

RC Calibration Frequency	EEFC_FRR Bits
8 MHz output	[28–22]
12 MHz output	[38–32]

The RC calibration for the 4 MHz is set to '1000000'.

20.4.3.7 Security Bit Protection

When the security bit is enabled, access to the Flash through the SWD interface or through the Fast Flash Programming interface is forbidden. This ensures the confidentiality of the code programmed in the Flash.

The security bit is GPNVM0.

Disabling the security bit can only be achieved by asserting the ERASE pin at '1', and after a full Flash erase is performed. When the security bit is deactivated, all accesses to the Flash are permitted.

20.4.3.8 Unique Identifier Area

Each device is programmed with a 128 bits unique identifier area . See Figure 20-1 "Flash Memory Areas".

The sequence to read the unique identifier area is the following:

- 1. Execute the 'Start Read Unique Identifier' command by writing EEFC_FCR.FCMD with the STUI command. Field EEFC_FCR.FARG is meaningless.
- 2. Wait until the bit EEFC_FSR.FRDY falls to read the unique identifier area. The unique identifier field is located in the first 128 bits of the Flash memory mapping. The 'Start Read Unique Identifier' command reuses some addresses of the memory plane for code, but the unique identifier area is physically different from the memory plane for code.

26.15 Asynchronous Page Mode

The SMC supports asynchronous burst reads in Page mode, providing that the Page mode is enabled in the SMC_MODE register (PMEN field). The page size must be configured in the SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.

The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The MSB of data address defines the address of the page in memory, the LSB of address define the address of the data in the page as detailed in Table 26-7.

With Page mode memory devices, the first access to one page (t_{pa}) takes longer than the subsequent accesses to the page (t_{sa}) as shown in Figure 26-31. When in Page mode, the SMC enables the user to define different read timings for the first access within one page, and next accesses within the page.

Page Size	Page Address ⁽¹⁾	Data Address in the Page
4 bytes	A[23:2]	A[1:0]
8 bytes	A[23:3]	A[2:0]
16 bytes	A[23:4]	A[3:0]
32 bytes	A[23:5]	A[4:0]

 Table 26-7.
 Page Address and Data Address within a Page

Note: 1. "A" denotes the address bus of the memory device.

26.15.1 Protocol and Timings in Page Mode

Figure 26-31 shows the NRD and NCS timings in Page mode access.

The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS timings are identical. The pulse length of the first access to the page is defined with the NCS_RD_PULSE field of the SMC_PULSE register. The pulse length of subsequent accesses within the page are defined using the NRD_PULSE parameter.

Atmel

- ENDTX flag is set when the PDC Transmit Counter Register (PERIPH_TCR) reaches zero.
- TXBUFE flag is set when both PERIPH_TCR and the PDC Transmit Next Counter Register (PERIPH_TNCR) reach zero.

These status flags are described in the Transfer Status Register (PERIPH_PTSR).

27.5.4 Data Transfers

The serial peripheral triggers its associated PDC channels' transfers using transmit enable (TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the peripheral's user interface.

When the peripheral receives external data, it sends a Receive Ready signal to its PDC receive channel which then requests access to the Matrix. When access is granted, the PDC receive channel starts reading the peripheral Receive Holding register (RHR). The read data are stored in an internal buffer and then written to memory.

When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then requests access to the Matrix. When access is granted, the PDC transmit channel reads data from memory and transfers the data to the Transmit Holding register (THR) of its associated peripheral. The same peripheral sends data depending on its mechanism.

27.5.5 PDC Flags and Peripheral Status Register

Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the PDC returns flags to the peripheral. All these flags are only visible in the peripheral's Status register.

Depending on whether the peripheral is half- or full-duplex, the flags belong to either one single channel or two different channels.

27.5.5.1 Receive Transfer End

The receive transfer end flag is set when PERIPH_RCR reaches zero and the last data has been transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_RCR or PERIPH_RNCR.

27.5.5.2 Transmit Transfer End

The transmit transfer end flag is set when PERIPH_TCR reaches zero and the last data has been written to the peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

27.5.5.3 Receive Buffer Full

The receive buffer full flag is set when PERIPH_RCR reaches zero, with PERIPH_RNCR also set to zero and the last data transferred to memory.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

27.5.5.4 Transmit Buffer Empty

The transmit buffer empty flag is set when PERIPH_TCR reaches zero, with PERIPH_TNCR also set to zero and the last data written to peripheral THR.

This flag is reset by writing a non-zero value to PERIPH_TCR or PERIPH_TNCR.

Atmel

27.6.3 Transmit Pointer Register

Name:	PERIPH_TPR						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			TXF	۲R			
23	22	21	20	19	18	17	16
			TXF	۲R			
15	14	13	12	11	10	9	8
			TXF	۲R			
7	6	5	4	3	2	1	0
			TXF	۲R			

• TXPTR: Transmit Counter Register

TXPTR must be set to transmit buffer address.

When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

29.15 Clock Switching Details

29.15.1 Master Clock Switching Timings

Table 29-1 and Table 29-2 give the worst case timings required for the master clock to switch from one selected clock to another one. This is in the event that the prescaler is de-activated. When the prescaler is activated, an additional time of 64 clock cycles of the newly selected clock has to be added.

From	Main Clock	SLCK	PLL Clock	
То				
Main Clock	-	4 x SLCK + 2.5 x Main Clock	3 x PLL Clock + 4 x SLCK + 1 x Main Clock	
SLCK	0.5 x Main Clock + 4.5 x SLCK	_	3 x PLL Clock + 5 x SLCK	
PLL Clock	0.5 x Main Clock + 4 x SLCK + PLLCOUNT x SLCK + 2.5 x PLLx Clock	2.5 x PLL Clock + 5 x SLCK + PLLCOUNT x SLCK	2.5 x PLL Clock + 4 x SLCK + PLLCOUNT x SLCK	

 Table 29-1.
 Clock Switching Timings (Worst Case)

Notes: 1. PLL designates either the PLLA or the PLLB Clock.

2. PLLCOUNT designates either PLLACOUNT or PLLBCOUNT.

	From	PLLA Clock	PLLB Clock
То			
PLLA Clock		2.5 x PLLA Clock + 4 x SLCK + PLLACOUNT x SLCK	3 x PLLA Clock + 4 x SLCK + 1.5 x PLLA Clock
PLLB Clock		3 x PLLB Clock + 4 x SLCK + 1.5 x PLLB Clock	2.5 x PLLB Clock + 4 x SLCK + PLLBCOUNT x SLCK

Table 29-2. Clock Switching Timings between Two PLLs (Worst Case)

31.6.25 PIO Peripheral ABCD Select Register 2

Name: PIO_	ABCDSR2
------------	---------

Access: Read/Write

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

This register can only be written if the WPEN bit is cleared in the PIO Write Protection Mode Register.

• P0–P31: Peripheral Select

If the same bit is set to 0 in PIO_ABCDSR1:

0: Assigns the I/O line to the Peripheral A function.

1: Assigns the I/O line to the Peripheral C function.

If the same bit is set to 1 in PIO_ABCDSR1:

- 0: Assigns the I/O line to the Peripheral B function.
- 1: Assigns the I/O line to the Peripheral D function.

31.6.28 PIO Input Filter Slow Clock Status Register

Name: PIO_IFSCSR

Address: 0x400E0E88 (PIOA), 0x400E1088 (PIOB), 0x400E1288 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Glitch or Debouncing Filter Selection Status

0: The glitch filter is able to filter glitches with a duration < $t_{peripheral clock}/2$.

1: The debouncing filter is able to filter pulses with a duration < $t_{div_{slck}}/2$.

32.8.1.2 Transmitter Clock Management

The transmitter clock is generated from the receiver clock or the divider clock or an external clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in the Transmit Clock Mode Register (SSC_TCMR). Transmit Clock can be inverted independently by the CKI bits in the SSC_TCMR.

The transmitter can also drive the TK I/O pad continuously or be limited to the actual data transfer. The clock output is configured by the SSC_TCMR. The Transmit Clock Inversion (CKI) bits have no effect on the clock outputs. Programming the SSC_TCMR to select TK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) can lead to unpredictable results.

33.8 Serial Peripheral Interface (SPI) User Interface

Offset	Register	Name	Access	Reset
0x00	Control Register	SPI_CR	Write-only	_
0x04	Mode Register	SPI_MR	Read/Write	0x0
0x08	Receive Data Register	SPI_RDR	Read-only	0x0
0x0C	Transmit Data Register	SPI_TDR	Write-only	_
0x10	Status Register	SPI_SR	Read-only	0x000000F0
0x14	Interrupt Enable Register	SPI_IER	Write-only	_
0x18	Interrupt Disable Register	SPI_IDR	Write-only	_
0x1C	Interrupt Mask Register	SPI_IMR	Read-only	0x0
0x20-0x2C	Reserved	-	-	_
0x30	Chip Select Register 0	SPI_CSR0	Read/Write	0x0
0x34	Chip Select Register 1	SPI_CSR1	Read/Write	0x0
0x38	Chip Select Register 2	SPI_CSR2	Read/Write	0x0
0x3C	Chip Select Register 3	SPI_CSR3	Read/Write	0x0
0x40-0xE0	Reserved	-	-	_
0xE4	Write Protection Mode Register	SPI_WPMR	Read/Write	0x0
0xE8	Write Protection Status Register	SPI_WPSR	Read-only	0x0
0xEC-0xF8	Reserved	-	-	_
0xFC	Reserved	-	-	_
0x100–0x124	Reserved for PDC Registers	_	_	_

Table 33-5.Register Mapping

• RX_PP: Receiver Preamble Pattern detected

Value	Name	Description		
00	ALL_ONE	The preamble is composed of '1's		
01	ALL_ZERO	The preamble is composed of '0's		
10	ZERO_ONE	The preamble is composed of '01's		
11	ONE_ZERO	The preamble is composed of '10's		

The following values assume that RX_MPOL field is not set:

• RX_MPOL: Receiver Manchester Polarity

0: Logic zero is coded as a zero-to-one transition, Logic one is coded as a one-to-zero transition.

1: Logic zero is coded as a one-to-zero transition, Logic one is coded as a zero-to-one transition.

• ONE: Must Be Set to 1

Bit 29 must always be set to 1 when programming the US_MAN register.

• DRIFT: Drift Compensation

0: The USART cannot recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

Figure 37-6. Waveform Mode

Depending on the quadrature signals, the direction is decoded and allows to count up or down in timer/counter channels 0 and 1. The direction status is reported on TC_QISR.

37.6.14.5 Speed Measurement

When SPEEDEN is set in the TC_BMR, the speed measure is enabled on channel 0.

A time base must be defined on channel 2 by writing the TC_RC2 period register. Channel 2 must be configured in Waveform mode (WAVE bit set) in TC_CMR2. The WAVSEL field must be defined with 0x10 to clear the counter by comparison and matching with TC_RC value. Field ACPC must be defined at 0x11 to toggle TIOA output.

This time base is automatically fed back to TIOA of channel 0 when QDEN and SPEEDEN are set.

Channel 0 must be configured in Capture mode (WAVE = 0 in TC_CMR0). The ABETRG bit of TC_CMR0 must be configured at 1 to select TIOA as a trigger for this channel.

EDGTRG must be set to 0x01, to clear the counter on a rising edge of the TIOA signal and field LDRA must be set accordingly to 0x01, to load TC_RA0 at the same time as the counter is cleared (LDRB must be set to 0x01). As a consequence, at the end of each time base period the differentiation required for the speed calculation is performed.

The process must be started by configuring bits CLKEN and SWTRG in the TC_CCR.

The speed can be read on field RA in TC_RA0.

Channel 1 can still be used to count the number of revolutions of the motor.

37.6.15 2-bit Gray Up/Down Counter for Stepper Motor

Each channel can be independently configured to generate a 2-bit gray count waveform on corresponding TIOA, TIOB outputs by means of the GCEN bit in TC_SMMRx.

Up or Down count can be defined by writing bit DOWN in TC_SMMRx.

It is mandatory to configure the channel in Waveform mode in the TC_CMR.

The period of the counters can be programmed in TC_RCx.

Figure 37-20. 2-bit Gray Up/Down Counter

37.6.16 Fault Mode

At any time, the TC_RCx registers can be used to perform a comparison on the respective current channel counter value (TC_CVx) with the value of TC_RCx register.

The CPCSx flags can be set accordingly and an interrupt can be generated.

This interrupt is processed but requires an unpredictable amount of time to be achieve the required action.

It is possible to trigger the FAULT output of the TIMER1 with CPCS from TC_SR0 and/or CPCS from TC_SR1. Each source can be independently enabled/disabled in the TC_FMR.

Atmel

40.3 Block Diagram

Access to the UDP is via the APB bus interface. Read and write to the data FIFO are done by reading and writing 8-bit values to APB registers.

The UDP peripheral requires two clocks: one peripheral clock used by the Master Clock domain (MCK) and a 48 MHz clock (UDPCK) used by the 12 MHz domain.

A USB 2.0 full-speed pad is embedded and controlled by the Serial Interface Engine (SIE).

The signal external_resume is optional. It allows the UDP peripheral to wake up once in system mode. The host is then notified that the device asks for a resume. This optional feature must also be negotiated with the host during the enumeration.

40.3.1 Signal Description

Table 40-2.Signal Names		
Signal Name	Description	Туре
UDPCK	48 MHz clock	Input
МСК	Master clock	Input
udp_int	Interrupt line connected to the Interrupt Controller	Input
DDP	USB D+ line	I/O
DDM	USB D- line	I/O

40.6.2.2 Data IN Transaction

Data IN transactions are used in control, isochronous, bulk and interrupt transfers and conduct the transfer of data from the device to the host. Data IN transactions in isochronous transfer must be done using endpoints with pingpong attributes.

Using Endpoints Without Ping-pong Attributes

To perform a Data IN transaction using a non ping-pong endpoint:

- 1. The application checks if it is possible to write in the FIFO by polling TXPKTRDY in the endpoint's UDP_CSRx (TXPKTRDY must be cleared).
- 2. The application writes the first packet of data to be sent in the endpoint's FIFO, writing zero or more byte values in the endpoint's UDP_FDRx.
- 3. The application notifies the USB peripheral it has finished by setting the TXPKTRDY in the endpoint's UDP_CSRx.
- 4. The application is notified that the endpoint's FIFO has been released by the USB device when TXCOMP in the endpoint's UDP_CSRx has been set. Then an interrupt for the corresponding endpoint is pending while TXCOMP is set.
- 5. The microcontroller writes the second packet of data to be sent in the endpoint's FIFO, writing zero or more byte values in the endpoint's UDP_FDRx.
- The microcontroller notifies the USB peripheral it has finished by setting the TXPKTRDY in the endpoint's UDP_CSRx.
- 7. The application clears the TXCOMP in the endpoint's UDP_CSRx.

After the last packet has been sent, the application must clear TXCOMP once this has been set.

TXCOMP is set by the USB device when it has received an ACK PID signal for the Data IN packet. An interrupt is pending while TXCOMP is set.

Warning: TX_COMP must be cleared after TX_PKTRDY has been set.

Note: Refer to Chapter 8 of the Universal Serial Bus Specification, Rev 2.0, for more information on the Data IN protocol layer.

Figure 40-6. Data IN Transfer for Non Ping-pong Endpoint

44.5.7 3 to 20 MHz Crystal Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ESR	Equivalent Series Resistor (Rs)	Fundamental @ 3 MHz			200	
		Fundamental @ 8 MHz		_	100	Ω
		Fundamental @ 12 MHz	_		80	
		Fundamental @ 16 MHz			80	
		Fundamental @ 20 MHz			50	
C _m	Motional Capacitance		_	_	8	fF
C _{SHUNT}	Shunt Capacitance		_	-	7	pF

Table 44-32. 3 to 20 MHz Crystal Characteristics

44.5.8 3 to 20 MHz XIN Clock Input Characteristics in Bypass Mode

Table 44-33. XIN Clock Electrical Characteristics (In Bypass Mode)

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
1/(t _{CPXIN})	XIN Clock Frequency	(1)	-	-	50	MHz
t _{CPXIN}	XIN Clock Period	(1)	20	_	_	ns
t _{CHXIN}	XIN Clock High Half-period	(1)	8	_	_	ns
t _{CLXIN}	XIN Clock Low Half-period	(1)	8	_	_	ns
t _{CLCH}	Rise Time	(1)	2.2	_	_	ns
t _{CHCL}	Fall Time	(1)	2.2	_	_	ns
V _{XIN_IL}	V _{XIN} Input Low-level Voltage	(1)	-0.3	-	$[0.8\text{V:}0.3\times\text{V}_{\text{DDIO}}]$	V
V _{XIN_IH}	V _{XIN} Input High-level Voltage	(1)	$[2.0V{:}0.7\times V_{DDIO}]$	_	V _{DDIO} + 0.3V	V
C _{para(standby)}	Internal Parasitic Capacitance During Standby	(1)	_	5.5	6.3	pF
R _{para(standby)}	Internal Parasitic Resistance During Standby	(1)	_	300	_	Ω

Note: 1. These characteristics apply only when the 3–20 MHz crystal oscillator is in Bypass mode.

Figure 44-16. XIN Clock Timing

45.6 64-ball WLCSP Mechanical Characteristics

This package respects the recommendations of the NEMI User Group.

