

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	160K × 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4sd32ba-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM4S. A peripheral identifier is required for the control of the peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the Power Management Controller.

Instance ID	Instance Name	NVIC Interrupt	PMC Clock Control	Instance Description
0	SUPC	Х		Supply Controller
1	RSTC	Х		Reset Controller
2	RTC	Х		Real-Time Clock
3	RTT	Х		Real-Time Timer
4	WDT	Х		Watchdog Timer
5	PMC	Х		Power Management Controller
6	EEFC0	Х		Enhanced Embedded Flash Controller 0
7	EEFC1	_		Enhanced Embedded Flash Controller 1
8	UART0	x	Х	Universal Asynchronous Receiver Transmitter 0
9	UART1	x	Х	Universal Asynchronous Receiver Transmitter 1
10	SMC	_	Х	Static Memory Controller
11	PIOA	Х	Х	Parallel I/O Controller A
12	PIOB	Х	Х	Parallel I/O Controller B
13	PIOC	Х	Х	Parallel I/O Controller C
14	USART0	х	Х	Universal Synchronous Asynchronous Receiver Transmitter 0
15	USART1	x	х	Universal Synchronous Asynchronous Receiver Transmitter 1
16	_	_	-	Reserved
17	_	_	-	Reserved
18	HSMCI	Х	Х	Multimedia Card Interface
19	TWIO	Х	Х	Two-Wire Interface 0
20	TWI1	Х	Х	Two-Wire Interface 1
21	SPI	Х	Х	Serial Peripheral Interface
22	SSC	Х	Х	Synchronous Serial Controller
23	TC0	Х	Х	Timer/Counter 0
24	TC1	Х	Х	Timer/Counter 1
25	TC2	Х	Х	Timer/Counter 2
26	TC3	Х	Х	Timer/Counter 3
27	TC4	Х	X	Timer/Counter 4
28	TC5	Х	Х	Timer/Counter 5

Table 11-1. Peripheral Identifiers

12.4.3.5 Exception Priorities

As Table 12-9 shows, all exceptions have an associated priority, with:

- A lower priority value indicating a higher priority
- Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about configuring exception priorities see "System Handler Priority Registers", and "Interrupt Priority Registers".

Note: Configurable priority values are in the range 0- . This means that the Reset, Hard fault, and NMI exceptions, with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt priority register entry into two fields:

- An upper field that defines the group priority
- A lower field that defines a *subpriority* within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see "Application Interrupt and Reset Control Register".

12.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the priority of the exception being handled. See "Interrupt Priority Grouping" for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See "Exception Entry" more information.

Return

This occurs when the exception handler is completed, and:

- There is no pending exception with sufficient priority to be serviced
- The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See "Exception Return" for more information.

Table 12-12. Fault Status and Fault Address Registers

Handler	Status Register Name	Address Register Name	Register Description
Hard fault	SCB_HFSR	-	"Hard Fault Status Register"
Memory management fault	MMFSR	SCB_MMFAR	"MMFSR: Memory Management Fault Status Subregister" "MemManage Fault Address Register"
Bus fault	BFSR	SCB_BFAR	"BFSR: Bus Fault Status Subregister" "Bus Fault Address Register"
Usage fault	UFSR	-	"UFSR: Usage Fault Status Subregister"

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

- It is reset
- An NMI occurs
- It is halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup state.

16.5.7 RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation. The RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be programmed on-the-fly and also programmed during application manufacturing, in order to correct the crystal frequency accuracy at room temperature $(20-25^{\circ}C)$. The typical clock drift range at room temperature is ± 20 ppm.

In the device operating temperature range, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200 ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm.

The calibration circuitry is fully digital. Thus, the configured correction is independent of temperature, voltage, process, etc., and no additional measurement is required to check that the correction is effective.

If the correction value configured in the calibration circuitry results from an accurate crystal frequency measure, the remaining accuracy is bounded by the values listed below:

- Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 20 ppm, and from 30 ppm to 90 ppm
- Below 2 ppm, for an initial crystal drift between 20 ppm up to 30 ppm, and from 90 ppm to 130 ppm
- Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry does not modify the 32.768 kHz crystal oscillator clock frequency but it acts by slightly modifying the 1 Hz clock period from time to time. When the period is modified, depending on the sign of the correction, the 1 Hz clock period increases or reduces by around 4 ms. Depending on the CORRECTION, NEGPPM and HIGHPPM values configured in RTC_MR, the period interval between two correction events differs.

Figure 16-3. Calibration circuitry

27.4 Block Diagram

Figure 27-1. Block Diagram

Prior to instructing the device to enter Wait mode:

- 1. Select the fast RC oscillator as the master clock source (the CSS field in PMC_MCKR must be written to 1).
- 2. Disable the PLL if enabled.
- 3. Clear the internal wake-up sources.

The system enters Wait mode either by setting the WAITMODE bit in CKGR_MOR, or by executing the WaitForEvent (WFE) instruction of the processor while the LPM bit is at 1 in PMC_FSMR. Immediately after setting the WAITMODE bit or using the WFE instruction, wait for the MCKRDY bit to be set in PMC_SR.

A fast startup is enabled upon the detection of a programmed level on one of the 16 wake-up inputs (WKUP) or upon an active alarm from the RTC, RTT and USB Controller. The polarity of the 16 wake-up inputs is programmable by writing the PMC Fast Startup Polarity Register (PMC_FSPR).

The fast startup circuitry, as shown in Figure 29-4, is fully asynchronous and provides a fast startup signal to the PMC. As soon as the fast startup signal is asserted, the embedded 4/8/12 MHz fast RC oscillator restarts automatically.

When entering Wait mode, the embedded Flash can be placed in one of the Low-power modes (Deep-powerdown or Standby modes) depending on the configuration of the FLPM field in the PMC_FSMR. The FLPM field can be programmed at anytime and its value will be applied to the next Wait mode period.

The power consumption reduction is optimal when configuring 1 (Deep-power-down mode) in field FLPM. If 0 is programmed (Standby mode), the power consumption is slightly higher than in Deep-power-down mode.

When programming 2 in field FLPM, the Wait mode Flash power consumption is equivalent to that of the Active mode when there is no read access on the Flash.

Figure 29-4. Fast Startup Circuitry

29.17.3 PMC System Clock Status Register

Name:	PMC_SCSR						
Address:	0x400E0408						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
	-	-					-
23	22	21	20	19	18	17	16
-	-	_	_	-	_	_	-
	-						
15	14	13	12	11	10	9	8
_	—	_	_	_	PCK2	PCK1	PCK0
7	6	5	4	3	2	1	0
UDP	-	_	_	_	_	_	-

• UDP: USB Device Port Clock Status

0: The 48 MHz clock (UDPCK) of the USB Device Port is disabled.

1: The 48 MHz clock (UDPCK) of the USB Device Port is enabled.

• PCKx: Programmable Clock x Output Status

0: The corresponding Programmable Clock output is disabled.

1: The corresponding Programmable Clock output is enabled.

32.9.16 SSC Interrupt Mask Register

Name:	SSC_IMR						
Address:	0x4000404C						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	_	_	-	—	—	-
	-				-	-	-
23	22	21	20	19	18	17	16
_	-	-	-	Ι	—	—	-
	-				-	-	-
15	14	13	12	11	10	9	8
_	-	-		RXSYN	TXSYN	CP1	CP0
7	6	5	4	3	2	1	0
RXBUFF	ENDRX	OVRUN	RXRDY	TXBUFE	ENDTX	TXEMPTY	TXRDY

• TXRDY: Transmit Ready Interrupt Mask

0: The Transmit Ready Interrupt is disabled.

1: The Transmit Ready Interrupt is enabled.

• TXEMPTY: Transmit Empty Interrupt Mask

0: The Transmit Empty Interrupt is disabled.

1: The Transmit Empty Interrupt is enabled.

• ENDTX: End of Transmission Interrupt Mask

0: The End of Transmission Interrupt is disabled.

1: The End of Transmission Interrupt is enabled.

• TXBUFE: Transmit Buffer Empty Interrupt Mask

0: The Transmit Buffer Empty Interrupt is disabled.

1: The Transmit Buffer Empty Interrupt is enabled.

• RXRDY: Receive Ready Interrupt Mask

- 0: The Receive Ready Interrupt is disabled.
- 1: The Receive Ready Interrupt is enabled.

• OVRUN: Receive Overrun Interrupt Mask

- 0: The Receive Overrun Interrupt is disabled.
- 1: The Receive Overrun Interrupt is enabled.

ENDRX: End of Reception Interrupt Mask

0: The End of Reception Interrupt is disabled.

1: The End of Reception Interrupt is enabled.

34.8.2 TWI Master Mode Register

Name:	TWI_MMR						
Address:	0x40018004 (0), 0x4001C004 (1)						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	_
23	22	21	20	19	18	17	16
—				DADR			
15	14	13	12	11	10	9	8
-	– – MREAD – – IADRSZ						
7	6	5	4	3	2	1	0
_	-	_	_	-	_	_	_

• IADRSZ: Internal Device Address Size

Value	Name	Description
0	NONE	No internal device address
1	1_BYTE	One-byte internal device address
2	2_BYTE	Two-byte internal device address
3	3_BYTE	Three-byte internal device address

MREAD: Master Read Direction

0: Master write direction.

1: Master read direction.

• DADR: Device Address

The device address is used to access slave devices in Read or Write mode. These bits are only used in Master mode.

Figure 36-25. Break Transmission

ak
-

36.6.3.14 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a framing error with data to 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may be cleared by writing a 1 to the RSTSTA bit in the US_CR.

An end of receive break is detected by a high level for at least 2/16 of a bit period in Asynchronous operating mode or one sample at high level in Synchronous operating mode. The end of break detection also asserts the RXBRK bit.

36.6.3.15 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins are used to connect with the remote device, as shown in Figure 36-26.

Figure 36-26. Connection with a Remote Device for Hardware Handshaking

RXD

CTS

RTS

Setting the USART to operate with hardware handshaking is performed by writing the USART_MODE field in US_MR to the value 0x2.

TXD

RTS

CTS

The USART behavior when hardware handshaking is enabled is the same as the behavior in standard Synchronous or Asynchronous mode, except that the receiver drives the RTS pin as described below and the level on the CTS pin modifies the behavior of the transmitter as described below. Using this mode requires using the PDC channel for reception. The transmitter can handle hardware handshaking in any case.

Figure 36-27 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if the receiver is disabled or if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high. Normally, the remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the receiver is enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new buffer in the PDC clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

• ACPC: RC Compare Effect on TIOA

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

• AEEVT: External Event Effect on TIOA

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

ASWTRG: Software Trigger Effect on TIOA

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

• BCPB: RB Compare Effect on TIOB

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

• BCPC: RC Compare Effect on TIOB

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

38.14.4 HSMCI SDCard/SDIO Register

Name:	HSMCI_SDCR	HSMCI_SDCR						
Address:	0x400000C							
Access:	Read/Write							
31	30	29	28	27	26	25	24	
_	-	-	_	-	-	-	-	
23	22	21	20	19	18	17	16	
-	—	-	—	-	-	-	-	
15	14	13	12	11	10	9	8	
-	—	-	—	-	-	-	-	
7	6	5	4	3	2	1	0	
S	DCBUS	_	_	—	—	SDC	SEL	

This register can only be written if the WPEN bit is cleared in the HSMCI Write Protection Mode Register.

• SDCSEL: SDCard/SDIO Slot

Value	Name	Description
0	SLOTA	Slot A is selected.
1	SLOTB	-
2	SLOTC	-
3	SLOTD	_

• SDCBUS: SDCard/SDIO Bus Width

Value	Name	Description
0	1	1 bit
1	_	Reserved
2	4	4 bits
3	8	8 bits

39.7.12 PWM Sync Channels Update Period Update Register

Name:	PWM_SCUPUPD						
Address:	0x40020030						
Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
	-		-		-	-	-
23	22	21	20	19	18	17	16
_	-	_	-	_	-	-	_
	-		-	-	-	-	-
15	14	13	12	11	10	9	8
-	—	-	-	—	—	-	—
7	6	5	4	3	2	1	0
-	-	_	_		UPR	UPD	

This register acts as a double buffer for the UPR value. This prevents an unexpected automatic trigger of the update of synchronous channels.

• UPRUPD: Update Period Update

Defines the wanted time between each update of the synchronous channels if automatic trigger of the update is activated (UPDM = 1 or UPDM = 2 in PWM Sync Channels Mode Register). This time is equal to UPR+1 periods of the synchronous channels.

39.7.34 PWM Comparison x Mode Register

Name: PWM_CMPMx

Address: 0x40020138 [0], 0x40020148 [1], 0x40020158 [2], 0x40020168 [3], 0x40020178 [4], 0x40020188 [5], 0x40020198 [6], 0x400201A8 [7]

Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	_
23	22	21	20	19	18	17	16
CUPRCNT			CUPR				
15	14	13	12	11	10	9	8
	CPR	CNT			C	PR	
7	6	5	4	3	2	1	0
	C	ſR		_	_	_	CĒN

• CEN: Comparison x Enable

0: The comparison x is disabled and can not match.

1: The comparison x is enabled and can match.

• CTR: Comparison x Trigger

The comparison x is performed when the value of the comparison x period counter (CPRCNT) reaches the value defined by CTR.

• CPR: Comparison x Period

CPR defines the maximum value of the comparison x period counter (CPRCNT). The comparison x value is performed periodically once every CPR+1 periods of the channel 0 counter.

CPRCNT: Comparison x Period Counter

Reports the value of the comparison x period counter. Note: The field CPRCNT is read-only

• CUPR: Comparison x Update Period

Defines the time between each update of the comparison x mode and the comparison x value. This time is equal to CUPR+1 periods of the channel 0 counter.

CUPRCNT: Comparison x Update Period Counter

Reports the value of the comparison x update period counter. Note: The field CUPRCNT is read-only

40.7.4 UDP Interrupt Enable Register

Name:	UDP_IER						
Address:	0x40034010						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	—	-	-	—	-	—
	-				-		-
23	22	21	20	19	18	17	16
_	-	_	-	-	-	-	-
	-				-		-
15	14	13	12	11	10	9	8
_	-	WAKEUP	Ι	SOFINT	EXTRSM	RXRSM	RXSUSP
7	6	5	4	3	2	1	0
EP7INT	EP6INT	EP5INT	EP4INT	EP3INT	EP2INT	EP1INT	EPOINT

- EP0INT: Enable Endpoint 0 Interrupt
- EP1INT: Enable Endpoint 1 Interrupt
- EP2INT: Enable Endpoint 2Interrupt
- EP3INT: Enable Endpoint 3 Interrupt
- EP4INT: Enable Endpoint 4 Interrupt
- EP5INT: Enable Endpoint 5 Interrupt
- EP6INT: Enable Endpoint 6 Interrupt
- EP7INT: Enable Endpoint 7 Interrupt
- 0: No effect
- 1: Enables corresponding Endpoint Interrupt

• RXSUSP: Enable UDP Suspend Interrupt

- 0: No effect
- 1: Enables UDP Suspend Interrupt

• RXRSM: Enable UDP Resume Interrupt

- 0: No effect
- 1: Enables UDP Resume Interrupt

• FREERUN: Free Run Mode

Value	Name	Description
0	OFF	Normal Mode
1	ON	Free Run Mode: Never wait for any trigger.

• PRESCAL: Prescaler Rate Selection

 $PRESCAL = (f_{peripheral clock} / (2 \times f_{ADCCLK})) - 1.$

• STARTUP: Startup Time

Value	Name	Description
0	SUT0	0 periods of ADCCLK
1	SUT8	8 periods of ADCCLK
2	SUT16	16 periods of ADCCLK
3	SUT24	24 periods of ADCCLK
4	SUT64	64 periods of ADCCLK
5	SUT80	80 periods of ADCCLK
6	SUT96	96 periods of ADCCLK
7	SUT112	112 periods of ADCCLK
8	SUT512	512 periods of ADCCLK
9	SUT576	576 periods of ADCCLK
10	SUT640	640 periods of ADCCLK
11	SUT704	704 periods of ADCCLK
12	SUT768	768 periods of ADCCLK
13	SUT832	832 periods of ADCCLK
14	SUT896	896 periods of ADCCLK
15	SUT960	960 periods of ADCCLK

• SETTLING: Analog Settling Time

Value	Name	Description
0	AST3	3 periods of ADCCLK
1	AST5	5 periods of ADCCLK
2	AST9	9 periods of ADCCLK
3	AST17	17 periods of ADCCLK

• ANACH: Analog Change

Value	Name	Description
0	NONE	No analog change on channel switching: DIFF0, GAIN0 and OFF0 are used for all channels.
1	ALLOWED	Allows different analog settings for each channel. See ADC_CGR and ADC_COR registers.

• TRACKTIM: Tracking Time

Tracking Time = $(TRACKTIM + 1) \times ADCCLK$ periods

43.7 Digital-to-Analog Converter Controller (DACC) User Interface

Offset	Register	Name	Access	Reset
0x00	Control Register	DACC_CR	Write-only	-
0x04	Mode Register	DACC_MR	Read/Write	0x00000000
0x08–0x0C	Reserved	-	_	_
0x10	Channel Enable Register	DACC_CHER	Write-only	-
0x14	Channel Disable Register	DACC_CHDR	Write-only	_
0x18	Channel Status Register	DACC_CHSR	Read-only	0x00000000
0x1C	Reserved	-	_	_
0x20	Conversion Data Register	DACC_CDR	Write-only	-
0x24	Interrupt Enable Register	DACC_IER	Write-only	_
0x28	Interrupt Disable Register	DACC_IDR	Write-only	_
0x2C	Interrupt Mask Register	DACC_IMR	Read-only	0x00000000
0x30	Interrupt Status Register	DACC_ISR	Read-only	0x00000000
0x34–0x90	Reserved	-	_	_
0x94	Analog Current Register	DACC_ACR	Read/Write	0x00000000
0x98–0xE0	Reserved	-	_	-
0xE4	Write Protection Mode Register	DACC_WPMR	Read/Write	0x00000000
0xE8	Write Protection Status Register	DACC_WPSR	Read-only	0x00000000
0xEC-0xFC	Reserved	_	_	-

Table 43-3. Register Mapping

43.7.7 DACC Interrupt Enable Register

Name:	DACC_IER						
Address:	0x4003C024						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	-	—
23	22	21	20	19	18	17	16
-	-	-	—	—	—	-	—
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	—
7	6	5	4	3	2	1	0
_	—	—	—	TXBUFE	ENDTX	EOC	TXRDY

The following configuration values are valid for all listed bit names of this register:

- 0: No effect
- 1: Enables the corresponding interrupt
- TXRDY: Transmit Ready Interrupt Enable
- EOC: End of Conversion Interrupt Enable
- ENDTX: End of Transmit Buffer Interrupt Enable
- TXBUFE: Transmit Buffer Empty Interrupt Enable

48-lead LQFP Mechanical Characteristics 45.7

Table 45-25. Device and 48-lead LQFP Package Maximum Weight

SAM4S		190	mg	
Table 45-26.	48-lead LQFP Package C			

0.20

0.008

Moisture Sensitivity Level

3

47. Ordering Information

Devices in TFBGA, VFBGA, LQFP and QFN packages can be ordered in trays or in tape and reel. Devices in a WLCSP package are available in tape and reel only.

Table 47-1 provides ordering codes for tray packing. For tape and reel, append an 'R' to the tray ordering code; e.g., ATSAM4SD32CA-CUR.

Ordering Code	MRL	Flash (Kbytes)	SRAM (Kbytes)	Package	Carrier Type	Operating Temperature Range	
ATSAM4SD32CA-CU	А	2*1024	160	TFBGA100	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD32CB-CU	В	2 1024					
ATSAM4SD32CA-CFU	Α	2*1024	160	VFBGA100	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD32CB-CFU	В	2 1024					
ATSAM4SD32CA-AU	Α	2*1024	160	LQFP100	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD32CB-AU	В	2 1024					
ATSAM4SD32CA-AN	Α	2*1024	160	LQFP100	Tray	Industrial (-40°C to +105°C)	
ATSAM4SD32CB-AN	В	2 1024	100				
ATSAM4SD32BA-MU	Α	2*1024	400	QFN64	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD32BB-MU	В	2 1024	100				
ATSAM4SD32BA-AU	Α	2*1024	160	LQFP64	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD32BB-AU	В	2 1024					
ATSAM4SD32BA-AN	Α	0*4004	160	LQFP64	Tray	Industrial	
ATSAM4SD32BB-AN	В	2 1024				(-40°C to +105°C)	
ATSAM4SD32BA-UUR	Α	2*1024	160	WLCSP64	Tape and reel	Industrial (-40°C to +85°C)	
ATSAM4SD32BB-UUR	В	2 1024					
ATSAM4SD16CA-CU	Α	2*512	160	TFBGA100	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD16CB-CU	В	2 512					
ATSAM4SD16CA-CFU	Α	2*512	160	VFBGA100	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD16CB-CFU	В	2 512					
ATSAM4SD16CA-AU	Α	2*512	160	LQFP100	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD16CB-AU	В	2 512					
ATSAM4SD16CA-AN	Α	2*512	160	LQFP100	Tray	Industrial (-40°C to +105°C)	
ATSAM4SD16CB-AN	В	2 512	160				
ATSAM4SD16BA-MU	Α	2*512	160	QFN64	Tray	Industrial	
ATSAM4SD16BB-MU	В	2 012				(-40°C to +85°C)	
ATSAM4SD16BA-AU	А	2*512	160	LQFP64	Tray	Industrial (-40°C to +85°C)	
ATSAM4SD16BB-AU	В	2 312					
ATSAM4SD16BA-AN	Α	2*512	160	LQFP64	Tray	Industrial	
ATSAM4SD16BB-AN	В	2 512	100			(-40°C to +105°C)	

 Table 47-1.
 Ordering Codes for SAM4S Devices