

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	47
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 11x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4sd32bb-mnr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Examples

AND	R9,	R2,	#0xFF00
ORREQ	R2,	R0,	R5
ANDS	R9,	R8,	#0x19
EORS	R7,	R11	, #0x18181818
BIC	R0,	R1,	#0xab
ORN	R7	, R11	L, R14, ROR #4
ORNS	R7,	R11	, R14, ASR #32

12.6.5.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax

op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

op is one of:

ASR Arithmetic Shift Right.

LSL Logical Shift Left.

LSR Logical Shift Right.

ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation, see "Conditional Execution".

Rd is the destination register.

Rm is the register holding the value to be shifted.

Rs is the register holding the shift length to apply to the value in *Rm*. Only the least significant byte is used and can be in the range 0 to 255.

n is the shift length. The range of shift length depends on the instruction:

ASR shift length from 1 to 32

LSL shift length from 0 to 31

LSR shift length from 1 to 32

ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register *Rm* to the left or right by the number of places specified by constant *n* or register *Rs*.

RRX moves the bits in register *Rm* to the right by 1.

In all these instructions, the result is written to *Rd*, but the value in register *Rm* remains unchanged. For details on what result is generated by the different instructions, see "Shift Operations".

Restrictions

Do not use SP and do not use PC.

Condition Flags

Unaligned	A data item stored at an address that is not divisible by the number of bytes that defines the data s is said to be unaligned. For example, a word stored at an address that is not divisible by four.		
Undefined	Indicates an instruction that generates an Undefined instruction exception.		
Unpredictable	One cannot rely on the behavior. Unpredictable behavior must not represent security holes. Unpredictable behavior must not halt or hang the processor, or any parts of the system.		
Warm reset	Also known as a core reset. Initializes the majority of the processor excluding the debug controller and debug logic. This type of reset is useful if debugging features of a processor.		
WA	See "Write-allocate (WA)".		
WB	See "Write-back (WB)".		
Word	A 32-bit data item.		
Write	Writes are defined as operations that have the semantics of a store. Writes include the Thumb instructions STM, STR, STRH, STRB, and PUSH.		
Write-allocate (WA)	In a write-allocate cache, a cache miss on storing data causes a cache line to be allocated into the cache.		
Write-back (WB)	In a write-back cache, data is only written to main memory when it is forced out of the cache on line replacement following a cache miss. Otherwise, writes by the processor only update the cache. This is also known as copyback.		
Write buffer	A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main memory, whose purpose is to optimize stores to main memory.		
Write-through (WT)	In a write-through cache, data is written to main memory at the same time as the cache is updated.		

18.4 Functional Description

18.4.1 Overview

The device is divided into two power supply areas:

- VDDIO power supply: includes the Supply Controller, part of the Reset Controller, the slow clock switch, the general-purpose backup registers, the supply monitor and the clock which includes the Real-time Timer and the Real-time Clock.
- Core power supply: includes part of the Reset Controller, the Brownout Detector, the processor, the SRAM memory, the Flash memory and the peripherals.

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when the VDDIO power supply rises (when the system is starting) or when Backup mode is entered.

The SUPC also integrates the slow clock generator, which is based on a 32 kHz crystal oscillator, and an embedded 32 kHz RC oscillator. The slow clock defaults to the RC oscillator, but the software can enable the crystal oscillator and select it as the slow clock source.

The SUPC and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset cell. The zero-power power-on reset allows the SUPC to start correctly as soon as the VDDIO voltage becomes valid.

At start-up of the system, once the backup voltage VDDIO is valid and the embedded 32 kHz RC oscillator is stabilized, the SUPC starts up the core by sequentially enabling the internal voltage regulator. The SUPC waits until the core voltage VDDCORE is valid, then releases the reset signal of the core vddcore_nreset signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply monitor detects a voltage level on VDDIO that is too low, the SUPC asserts the reset signal of the core vddcore_nreset signal until VDDIO is valid. Likewise, if the brownout detector detects a core voltage level VDDCORE that is too low, the SUPC asserts the reset signal vddcore_nreset until VDDCORE is valid.

When Backup mode is entered, the SUPC sequentially asserts the reset signal of the core power supply vddcore_nreset and disables the voltage regulator, in order to supply only the VDDIO power supply. Current consumption is reduced to a few microamps for the backup part retention. Exit from this mode is possible on multiple wake-up sources including an event on WKUP pins, or a clock alarm. To exit this mode, the SUPC operates in the same way as system start-up.

23.7.11 CRCCU Status Register

CRCCU_SR						
0x4004403C						
Read-only						
30	29	28	27	26	25	24
		CF	₹C			
22	21	20	19	18	17	16
		CF	₹C			
14	13	12	11	10	9	8
		CF	₹C			
6	5	4	3	2	1	0
		CF	₹C			
	CRCCU_SR 0x4004403C Read-only 30 22 14 6	CRCCU_SR 0x4004403C Read-only 30 29 22 21 14 13 6 5	CRCCU_SR 0x4004403C Read-only 30 29 22 21 20 22 21 20 14 13 12 6 5 4 CF CF 6 5 4	CRCCU_SR 0x4004403C Read-only 30 29 28 27 20 29 28 27 22 21 20 19 14 13 12 11 CRC CRC 6 5 4 3	CRCCU_SR 0x4004403C Read-only 30 29 28 27 26 20 27 26 27 26 22 21 20 19 18 12 11 10 10 6 5 4 3 2 CRC	CRCCU_SR 0x4004403C Read-only 30 29 28 27 26 25 CRC 22 21 20 19 18 17 22 21 20 19 18 17 14 13 12 11 10 9 6 5 4 3 2 1

• CRC: Cyclic Redundancy Check Value

This register can not be read if the COMPARE bit in the CRCCU_MR is set to true.

27.6 Peripheral DMA Controller (PDC) User Interface

Offset	Register	Name	Access	Reset
0x00	Receive Pointer Register	PERIPH ⁽¹⁾ _RPR	Read/Write	0
0x04	Receive Counter Register	PERIPH_RCR	Read/Write	0
0x08	Transmit Pointer Register	PERIPH_TPR	Read/Write	0
0x0C	Transmit Counter Register	PERIPH_TCR	Read/Write	0
0x10	Receive Next Pointer Register	PERIPH_RNPR	Read/Write	0
0x14	Receive Next Counter Register	PERIPH_RNCR	Read/Write	0
0x18	Transmit Next Pointer Register	PERIPH_TNPR	Read/Write	0
0x1C	Transmit Next Counter Register	PERIPH_TNCR	Read/Write	0
0x20	Transfer Control Register	PERIPH_PTCR	Write-only	_
0x24	Transfer Status Register	PERIPH_PTSR	Read-only	0

Table 27-2. Register Mapping

Note: 1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user depending on the function and the desired peripheral.

Atmel

29.17.6 PMC Peripheral Clock Status Register 0

Name:	PMC_PCSR0						
Address:	0x400E0418						
Access:	Read-only						
31	30	29	28	27	26	25	24
PID31	PID30	PID29	PID28	PID27	PID26	PID25	PID24
			-	-	-	-	-
23	22	21	20	19	18	17	16
PID23	PID22	PID21	PID20	PID19	PID18	PID17	PID16
			-	-	-	-	-
15	14	13	12	11	10	9	8
PID15	PID14	PID13	PID12	PID11	PID10	PID9	PID8
7	6	5	4	3	2	1	0
_	-	_	_	_	_	_	_

• PIDx: Peripheral Clock x Status

0: The corresponding peripheral clock is disabled.

1: The corresponding peripheral clock is enabled.

Note: PIDx refers to identifiers defined in the section "Peripheral Identifiers". Other peripherals status can be read in PMC_PCSR1 (Section 29.17.25 "PMC Peripheral Clock Status Register 1").

35.4 Product Dependencies

35.4.1 I/O Lines

The UART pins are multiplexed with PIO lines. The user must first configure the corresponding PIO Controller to enable I/O line operations of the UART.

Instance	Signal	I/O Line	Peripheral			
UART0	URXD0	PA9	А			
UART0	UTXD0	PA10	А			
UART1	URXD1	PB2	А			
UART1	UTXD1	PB3	А			

Table 35-2. I/O	Lines
-----------------	-------

35.4.2 Power Management

The UART clock can be controlled through the Power Management Controller (PMC). In this case, the user must first configure the PMC to enable the UART clock. Usually, the peripheral identifier used for this purpose is 1.

35.4.3 Interrupt Sources

The UART interrupt line is connected to one of the interrupt sources of the Interrupt Controller. Interrupt handling requires programming of the Interrupt Controller before configuring the UART.

Table 35-3.	Peripheral IDs
-------------	----------------

Instance	ID
UART0	8
UART1	9

35.5 Functional Description

The UART operates in Asynchronous mode only and supports only 8-bit character handling (with parity). It has no clock pin.

The UART is made up of a receiver and a transmitter that operate independently, and a common baud rate generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented features are compatible with those of a standard USART.

35.5.1 Baud Rate Generator

The baud rate generator provides the bit period clock named baud rate clock to both the receiver and the transmitter. The baud rate clock is the peripheral clock divided by 16 times the clock divisor (CD) value written in the Baud Rate Generator register (UART_BRGR). If UART_BRGR is set to 0, the baud rate clock is disabled and the UART remains inactive. The maximum allowable baud rate is peripheral clock divided by 16 x 65536).

35.6.2 UART Mode Register

Name: UART_MR

Address: 0x400E0604 (0), 0x400E0804 (1)

Access: Read/Write

31	30	29	28	27	26	25	24
—	—	-	-	—	-	-	—
23	22	21	20	19	18	17	16
-	-	-	-	_	-	Ι	_
15	14	13	12	11	10	9	8
CHM	IODE	-	-		PAR		_
7	6	5	4	3	2	1	0
_	_	_	_	_	_	_	_

• PAR: Parity Type

Value	Name	Description
0	EVEN	Even Parity
1	ODD	Odd Parity
2	SPACE	Space: parity forced to 0
3	MARK	Mark: parity forced to 1
4	NO	No parity

• CHMODE: Channel Mode

Value	Name	Description
0	NORMAL	Normal mode
1	AUTOMATIC	Automatic echo
2	LOCAL_LOOPBACK	Local loopback
3	REMOTE_LOOPBACK	Remote loopback

36.7 Universal Synchronous Asynchronous Receiver Transmitter (USART) User Interface

Offset	Register	Name	Access	Reset
0x0000	Control Register	US_CR	Write-only	-
0x0004	Mode Register	US_MR	Read/Write	0x0
0x0008	Interrupt Enable Register	US_IER	Write-only	_
0x000C	Interrupt Disable Register	US_IDR	Write-only	-
0x0010	Interrupt Mask Register	US_IMR	Read-only	0x0
0x0014	Channel Status Register	US_CSR	Read-only	0x0
0x0018	Receive Holding Register	US_RHR	Read-only	0x0
0x001C	Transmit Holding Register	US_THR	Write-only	_
0x0020	Baud Rate Generator Register	US_BRGR	Read/Write	0x0
0x0024	Receiver Time-out Register	US_RTOR	Read/Write	0x0
0x0028	Transmitter Timeguard Register	US_TTGR	Read/Write	0x0
0x002C-0x003C	Reserved	-	-	-
0x0040	FI DI Ratio Register	US_FIDI	Read/Write	0x174
0x0044	Number of Errors Register	US_NER	Read-only	0x0
0x0048	Reserved	-	-	-
0x004C	IrDA Filter Register	US_IF	Read/Write	0x0
0x0050	Manchester Configuration Register	US_MAN	Read/Write	0x30011004
0x0054-0x005C	Reserved	-	-	-
0x0060-0x00E0	Reserved	-	—	_
0x00E4	Write Protection Mode Register	US_WPMR	Read/Write	0x0
0x00E8	Write Protection Status Register	US_WPSR	Read-only	0x0
0x00EC-0x00FC	Reserved	-	-	-
0x0100–0x0128	Reserved for PDC Registers	_	-	_

Table 36-15. Register Mapping

36.7.17 USART Transmitter Timeguard Register

Name:	US_TTGR						
Address:	0x40024028 (0), 0x40028028 (1)						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	—
	-	-	-	-		-	-
23	22	21	20	19	18	17	16
_	-	-	-	-	Ι	Ι	—
	-	-	-	-			
15	14	13	12	11	10	9	8
-	-	_	—	-	-	-	—
7	6	5	4	3	2	1	0
			Т	G			

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• TG: Timeguard Value

0: The transmitter timeguard is disabled.

1–255: The transmitter timeguard is enabled and TG is Timeguard Delay / Bit Period.

39.3 Block Diagram

Figure 39-1. Pulse Width Modulation Controller Block Diagram

39.4 I/O Lines Description

Each channel outputs two complementary external I/O lines.

Table 39-1. I/O Line Description

Name	Description	Туре
PWMHx	PWM Waveform Output High for channel x	Output
PWMLx	PWM Waveform Output Low for channel x	Output
PWMFIx	PWM Fault Input x	Input

39.5 Product Dependencies

39.5.1 I/O Lines

The pins used for interfacing the PWM are multiplexed with PIO lines. The programmer must first program the PIO controller to assign the desired PWM pins to their peripheral function. If I/O lines of the PWM are not used by the application, they can be used for other purposes by the PIO controller.

39.6.2.3 2-bit Gray Up/Down Counter for Stepper Motor

A pair of channels may provide a 2-bit gray count waveform on two outputs. Dead-time generator and other downstream logic can be configured on these channels.

Up or Down Count mode can be configured on-the-fly by means of PWM_SMMR configuration registers.

When GCEN0 is set to '1', channels 0 and 1 outputs are driven with gray counter.

Figure 39-6. 2-bit Gray Up/Down Counter

39.6.2.4 Dead-Time Generator

The dead-time generator uses the comparator output OCx to provide the two complementary outputs DTOHx and DTOLx, which allows the PWM macrocell to drive external power control switches safely. When the dead-time generator is enabled by setting the bit DTE to 1 or 0 in the PWM Channel Mode Register (PWM_CMRx), dead-times (also called dead-bands or non-overlapping times) are inserted between the edges of the two complementary outputs DTOHx and DTOLx. Note that enabling or disabling the dead-time generator is allowed only if the channel is disabled.

The dead-time is adjustable by the PWM Channel Dead Time Register (PWM_DTx). Both outputs of the dead-time generator can be adjusted separately by DTH and DTL. The dead-time values can be updated synchronously to the PWM period by using the PWM Channel Dead Time Update Register (PWM_DTUPDx).

The dead-time is based on a specific counter which uses the same selected clock that feeds the channel counter of the comparator. Depending on the edge and the configuration of the dead-time, DTOHx and DTOLx are delayed until the counter has reached the value defined by DTH or DTL. An inverted configuration bit (DTHI and DTLI bit in the PWM_CMRx) is provided for each output to invert the dead-time outputs. The following figure shows the waveform of the dead-time generator.

Atmel

Figure 39-10. Method 1 (UPDM = 0)

Method 2: Manual write of duty-cycle values and automatic trigger of the update

In this mode, the update of the period value, the duty-cycle values, the dead-time values and the update period value must be done by writing in their respective update registers with the processor (respectively PWM_CPRDUPDx, PWM_CDTYUPDx, PWM_DTUPDx and PWM_SCUPUPD).

To trigger the update of the period value and the dead-time values, the user must use the bit UPDULOCK in the PWM_SCUC register, which updates synchronously (at the same PWM period) the synchronous channels:

- If the bit UPDULOCK is set to '1', the update is done at the next PWM period of the synchronous channels.
- If the UPDULOCK bit is not set to '1', the update is locked and cannot be performed.

After writing the UPDULOCK bit to '1', it is held at this value until the update occurs, then it is read 0.

The update of the duty-cycle values and the update period is triggered automatically after an update period.

To configure the automatic update, the user must define a value for the update period by the UPR field in the PWM_SCUP register. The PWM controller waits UPR+1 period of synchronous channels before updating automatically the duty values and the update period value.

The status of the duty-cycle value write is reported in the PWM Interrupt Status Register 2 (PWM_ISR2) by the following flags:

• WRDY: this flag is set to '1' when the PWM Controller is ready to receive new duty-cycle values and a new update period value. It is reset to '0' when the PWM_ISR2 register is read.

Depending on the interrupt mask in the PWM Interrupt Mask Register 2 (PWM_IMR2), an interrupt can be generated by these flags.

Sequence for Method 2:

- 1. Select the manual write of duty-cycle values and the automatic update by setting the field UPDM to '1' in the PWM_SCM register
- 2. Define the synchronous channels by the bits SYNCx in the PWM_SCM register.
- 3. Define the update period by the field UPR in the PWM_SCUP register.
- 4. Enable the synchronous channels by writing CHID0 in the PWM_ENA register.
- 5. If an update of the period value and/or of the dead-time values is required, write registers that need to be updated (PWM_CPRDUPDx, PWM_DTUPDx), else go to Step 8.
- 6. Set UPDULOCK to '1' in PWM_SCUC.
- 7. The update of these registers will occur at the beginning of the next PWM period. At this moment the bit UPDULOCK is reset, go to Step 5. for new values.
- 8. If an update of the duty-cycle values and/or the update period is required, check first that write of new update values is possible by polling the flag WRDY (or by waiting for the corresponding interrupt) in the PWM_ISR2.
- 9. Write registers that need to be updated (PWM_CDTYUPDx, PWM_SCUPUPD).

39.7.7 PWM Interrupt Mask Register 1

Name:	PWM_IMR1						
Address: (0x40020018						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	—	—	-	—	—	—
	-		-		-	-	
23	22	21	20	19	18	17	16
_	-	_	_	FCHID3	FCHID2	FCHID1	FCHID0
	-						-
15	14	13	12	11	10	9	8
_	-	_	—	_	—	—	-
7	6	5	4	3	2	1	0
_	—	_	—	CHID3	CHID2	CHID1	CHID0

CHIDx: Counter Event on Channel x Interrupt Mask

• FCHIDx: Fault Protection Trigger on Channel x Interrupt Mask

39.7.33 PWM Comparison x Value Update Register

Name: PWM_CMPVUPDx

Address: 0x40020134 [0], 0x40020144 [1], 0x40020154 [2], 0x40020164 [3], 0x40020174 [4], 0x40020184 [5], 0x40020194 [6], 0x400201A4 [7]

Access:	Write-only						
31	30	29	28	27	26	25	24
-	-	-	_	—	-	_	CVMUPD
23	22	21	20	19	18	17	16
			CVI	JPD			
15	14	13	12	11	10	9	8
			CVI	JPD			
7	6	5	4	3	2	1	0
			CVI	JPD			

This register acts as a double buffer for the CV and CVM values. This prevents an unexpected comparison x match. Only the first 16 bits (channel counter size) of field CVUPD are significant.

• CVUPD: Comparison x Value Update

Define the comparison x value to be compared with the counter of the channel 0.

• CVMUPD: Comparison x Value Mode Update

0: The comparison x between the counter of the channel 0 and the comparison x value is performed when this counter is incrementing.

1: The comparison x between the counter of the channel 0 and the comparison x value is performed when this counter is decrementing.

Note: This bit is not relevant if the counter of the channel 0 is left-aligned (CALG = 0 in PWM Channel Mode Register)

<u>CAUTION</u>: The write of the register PWM_CMPVUPDx must be followed by a write of the register PWM_CMPMUPDx.

40.7.5 UDP Interrupt Disable Register

Name:	UDP_IDR						
Address:	0x40034014						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	—	-	-	_	-	—
	-						-
23	22	21	20	19	18	17	16
_	-	-	Ι	Ι	-	Ι	—
	-		-	-			-
15	14	13	12	11	10	9	8
_	-	WAKEUP	Ι	SOFINT	EXTRSM	RXRSM	RXSUSP
7	6	5	4	3	2	1	0
EP7INT	EP6INT	EP5INT	EP4INT	EP3INT	EP2INT	EP1INT	EPOINT

- EP0INT: Disable Endpoint 0 Interrupt
- EP1INT: Disable Endpoint 1 Interrupt
- EP2INT: Disable Endpoint 2 Interrupt
- EP3INT: Disable Endpoint 3 Interrupt
- EP4INT: Disable Endpoint 4 Interrupt
- EP5INT: Disable Endpoint 5 Interrupt
- EP6INT: Disable Endpoint 6 Interrupt
- EP7INT: Disable Endpoint 7 Interrupt
- 0: No effect
- 1: Disables corresponding Endpoint Interrupt

• RXSUSP: Disable UDP Suspend Interrupt

- 0: No effect
- 1: Disables UDP Suspend Interrupt

• RXRSM: Disable UDP Resume Interrupt

- 0: No effect
- 1: Disables UDP Resume Interrupt

• SOFINT: Disable Start Of Frame Interrupt

- 0: No effect
- 1: Disables Start Of Frame Interrupt

42.7.13 ADC Overrun Status Register

Name:	ADC_OVER						
Address:	0x4003803C						
Access:	Read-only						
31	30	29	28	27	26	25	24
_	-	_	_	-	-	-	-
23	22	21	20	19	18	17	16
_	-	—	—	-	-	-	-
15	14	13	12	11	10	9	8
OVRE15	OVRE14	OVRE13	OVRE12	OVRE11	OVRE10	OVRE9	OVRE8
7	6	5	4	3	2	1	0
OVRE7	OVRE6	OVRE5	OVRE4	OVRE3	OVRE2	OVRE1	OVRE0

• OVREx: Overrun Error x

0: No overrun error on the corresponding channel since the last read of ADC_OVER.

1: An overrun error has occurred on the corresponding channel since the last read of ADC_OVER.

42.7.14 ADC Extended Mode Register

Name:	ADC_EMR						
Address:	0x40038040						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	_	-	TAG
23	22	21	20	19	18	17	16
-	-	-	_	-	-	—	-
15	14	13	12	11	10	9	8
-	-	—	-	—	—	CMPALL	—
7	6	5	4	3	2	1	0
	CMF	PSEL		_	_	CMPI	MODE

This register can only be written if the WPEN bit is cleared in the ADC Write Protection Mode Register.

• CMPMODE: Comparison Mode

Value	Name	Description
0	LOW	Generates an event when the converted data is lower than the low threshold of the window.
1	HIGH	Generates an event when the converted data is higher than the high threshold of the window.
2	IN	Generates an event when the converted data is in the comparison window.
3	OUT	Generates an event when the converted data is out of the comparison window.

• CMPSEL: Comparison Selected Channel

If CMPALL = 0: CMPSEL indicates which channel has to be compared.

If CMPALL = 1: No effect.

• CMPALL: Compare All Channels

- 0: Only channel indicated in CMPSEL field is compared.
- 1: All channels are compared.

• TAG: Tag of the ADC_LCDR

- 0: Sets CHNB field to zero in ADC_LCDR.
- 1: Appends the channel number to the conversion result in ADC_LCDR.

48.3.3 Brownout Detector

Issue: Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Connected

In active mode or in wait mode, if the Brownout Detector is disabled (SUPC_MR.BODDIS = 1) and power is lost on VDDCORE while VDDIO is powered, the device might not be properly reset and may behave unpredictably.

Workaround: When the Brownout Detector is disabled in active or in wait mode, VDDCORE always needs to be powered.

48.3.4 Low-power Mode

Issue: Unpredictable Behavior When Entering Sleep Mode

When entering Sleep mode, if an interrupt occurs during WFI or WFE (PMC_FSMR.LPM = 0) instruction processing, the ARM core may read an incorrect data, thus leading to unpredictable behavior of the software. This issue is not present in Wait mode.

Workaround: The following conditions must be met:

- 1. The interrupt vector table must be located in Flash.
- The Matrix slave interface for the Flash must be set to 'No default master'. This is done by setting the field DEFMSTR_TYPE to 0 in the register MATRIX_SCFG. The code example below can be used to program the NO_DEFAULT_MASTER state:

MATRIX_SCFG[2] = MATRIX_SCFG_SLOT_CYCLE(0xFF) | MATRIX_SCFG_DEFMSTR_TYPE(0x0); This must be done once in the software before entering Sleep mode.

48.3.5 PIO

Issue: PB4 Input Low-level Voltage Range

The undershoot is limited to -0.1V.

In normal operating conditions, the V_{II} minimum value on PB4 is limited to 0V.

Workaround: The voltage on PB4 with respect to ground must be in the range -0.1V to + VDDIO + 0.4V instead of -0.3V to + VDDIO + 0.4V for all other input pins, as shown in Table 44.1 "Absolute Maximum Ratings".

The minimum V_{IL} on PB4 must be 0V instead of -0.3V for all other input pins, as shown in Table 44.3 "DC Characteristics".

Atmel