

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, Microwire, QEI, MMC/SD, SPI, SSI, SSP, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	142
Program Memory Size	1MB (1M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	136K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 8x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	208-LQFP
Supplier Device Package	208-LQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc18s57jbd208e

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 10: LPC18xx Configuration Registers (CREG)

Bit	Symbol	Value	Description	Reset value	Acces
17:16	DMAMUXPER8		Select DMA to peripheral connection for DMA peripheral 8.	0	R/W
		0x0	Timer3 match 1		
		0x1	USART3 receive		
		0x2	SCT DMA request 1		
		0x3	Reserved		
19:18	DMAMUXPER9		Select DMA to peripheral connection for DMA peripheral 9.	0	R/W
		0x0	SSP0 receive		
		0x1	I2S0 DMA request 1		
		0x2	SCT DMA request 1		
		0x3	Reserved	_	
21:20 DN	DMAMUXPER10		Select DMA to peripheral connection for DMA peripheral 10.	0	R/W
		0x0	SSP0 transmit		
		0x1	I2S0 DMA request 2		
		0x2	SCT DMA request 0		
		0x3	Reserved		
23:22	DMAMUXPER11		Selects DMA to peripheral connection for DMA peripheral 11.	0	R/W
		0x0	SSP1 receive	_	
		0x1	Reserved		
		0x2	USART0 transmit		
		0x3	Reserved		
25:24	DMAMUXPER12		Select DMA to peripheral connection for DMA peripheral 12.	0	R/W
		0x0	SSP1 transmit		
		0x1	Reserved		
		0x2	USART0 receive	_	
		0x3	Reserved		
27:26	DMAMUXPER13		Select DMA to peripheral connection for DMA peripheral 13.	0	R/W
		0x0	ADC0		
		0x1	AES in		
		0x2	SSP1 receive		
		0x3	USART3 receive		
29:28	DMAMUXPER14		Select DMA to peripheral connection for DMA peripheral 14.	0	R/W
		0x0	ADC1	_	
		0x1	AES out		
		0x2	SSP1 transmit	_	
		0x3	USART3 transmit		

Table 92. DMA mux control register (DMAMUX, address 0x4004 311C) bit description

Chapter 12: LPC18xx Clock Generation Unit (CGU)

Bit	Symbol	Value	Description	Reset value	Access		
28:24	CLK_SEL		Clock-source selection.	0x01	R/W		
		0x00	32 kHz oscillator				
		0x01	IRC (default)				
		0x02	ENET_RX_CLK				
		0x03	ENET_TX_CLK				
		0x04	GP_CLKIN				
	0) 0)		0>	0x05	Reserved		
			Crystal oscillator				
		0x07	PLLOUSB				
		0x08	PLL0AUDIO				
		0x09	PLL1				
		0x0C	IDIVA				
		0x0D	IDIVB				
		0x0E	IDIVC				
		0x0F	IDIVD				
		0x10	IDIVE				
31:29	-		Reserved	-	-		

Table 131. BASE_OUT_CLK control register (BASE_OUT_CLK, addresses 0x4005 00AC) bit description ...continued

12.6.14 BASE_AUDIO_CLK register

Table 132.	BASE_AUDIO_CLK control register (BASE_AUDIO_CLK, addresses 0x4005 00C0)
	bit description

	bit decemption	•			
Bit	Symbol	Value	Description	Reset value	Access
0	PD		Output stage power down	0	R/W
		0	Output stage enabled (default)		
		1	power-down		
10:1	-		Reserved	-	-
11	AUTOBLOCK		Block clock automatically during frequency change	0	R/W
		0	Autoblocking disabled		
		1	Autoblocking enabled		
23:12	-		Reserved	-	-

UM10430

Chapter 12: LPC18xx Clock Generation Unit (CGU)

Fclkin [MHz]	PLL0USB_MDIV	PLL0USB_NP_DIV
	Table 115	Table 116
1	0x073E 56C9	0x0030 2062
2	0x073E 2DAD	0x0030 2062
3	0x0B3E 34B1	0x0030 2062
4	0x0E3E 7777	0x0030 2062
5	0x0D32 6667	0x0030 2062
6	0x0B2A 2A66	0x0030 2062
8	0x0820 6AAA	0x0030 2062
10	0x071A 7FAA	0x0030 2062
12	0x0616 7FFA	0x0030 2062
15	0x0512 3FFF	0x0030 2062
16	0x0410 1FFF	0x0030 2062
20	0x040E 03FF	0x0030 2062
24	0x030C 00FF	0x0030 2062

Table 136. PLL0 (for USB) settings for 480 MHz output clock

12.8.4 PLL0AUDIO settings for audio applications

12.8.4.1 Using the fractional divider

<u>Table 137</u> shows typical divider settings for the audio PLL0 with the fractional divider active.

To use the fractional divider, follow these steps:

- Set bit SEL_EXT = 0 and PLLFRACT_REQ = 1 in the PLL0AUDIO_CTRL register (<u>Table 118</u>).
- 2. Calculate NDEC, PDEC, and PLLFRACT_CTRL for the output frequency Fout.
- 3. Write the calculated NDEC and PDEC values to the PLL0AUDIO_NP_DIV register.
- 4. Write the calculated PLLFRACT_CTRL value to the PLL0AUDIOFRAC register.

Table 137. PLL0AUDIO divider settings for 12 MHz input

Fs [kHz]	Fout [MHz]	Fcco [MHz]	Error [Hz]	NDEC	PDEC	PLL0AUDIO_NP_DIV	PLLF0RACT_CTRL
						Table 120	Table 121
128Fs							
192	24.576	540.672	1	514	29	0x0000201d	0x16872b
96	12.288	417.792	1	1	3	0x00001003	0x1a1cac
88.2	11.2896	338.688	1	0	24	0x0000018	0x070e56
64	8.192	344.064	1	0	30	0x0000001e	0x072b02
48	6.144	307.2	1	1	6	0x00001006	0x133333
44.1	5.6448	282.24	1	1	6	0x00001006	0x11a3d7
256Fs							
192	49.152	491.52	11	514	5	0x00002005	0x147ae1
96	24.576	540.672	1	514	29	0x0000201d	0x16872b

User manual

Chapter 14: LPC18xx Reset Generation Unit (RGU)

Table 159. Reset status register 1 (RESET_STATUS1, address 0x4005 3114) bit description

...continued

159.	Resel status regi	Ster I (F	COLLO	JIAIU31,	audress	084005 51	14) DIL U	escription
	a a setter s a st							

D:/		Description	Dent	•
Bit	Symbol	Description	Reset value	Access
11:10	EMC_RST	Status of the EMC_RST reset generator output	01	R/W
		00 = No reset activated		
		01 = Reset output activated by input to the reset generator		
		10 = Reserved		
		11 = Reset output activated by software write to RESET_CTRL register		
13:12	ETHERNET_RST	Status of the ETHERNET_RST reset generator output	01	R/W
		00 = No reset activated		
		01 = Reset output activated by input to the reset generator		
		10 = Reserved		
		11 = Reset output activated by software write to RESET_CTRL register		
15:14	-	Reserved	01	-
17:16	-	Reserved	01	-
19:18	FLASHA_RST	Status of the FLASHA_RST reset generator output	01	-
		00 = No reset activated		
		01 = Reset output activated by input to the reset generator		
		10 = Reserved		
		11 = Reset output activated by software write to RESET_CTRL register		
21:20	-	Reserved	01	-
23:22	EEPROM_RST	Status of the EEPROM_RST reset generator output	01	-
		00 = No reset activated		
		01 = Reset output activated by input to the reset generator		
		10 = Reserved		
		11 = Reset output activated by software write to RESET_CTRL register		
25:24	GPIO_RST	Status of the GPIO_RST reset generator output	01	R/W
		00 = No reset activated		
		01 = Reset output activated by input to the reset generator		
		10 = Reserved		
		11 = Reset output activated by software write to RESET_CTRL register		
27:26	FLASHB_RST	Status of the FLASHB_RST reset generator output	01	-
		00 = No reset activated		
		01 = Reset output activated by input to the reset generator		
		10 = Reserved		
		11 = Reset output activated by software write to RESET_CTRL register		
29:28	-	Reserved	01	-
31:30	-	Reserved	01	_

UM10430

Chapter 15: LPC18xx Pin configuration

Symbol	LBGA256	TFBGA180	TFBGA100	LQFP144		Reset state [<u>1]</u>	Type	Description
PE_11	D16	-	-	-	[2]	N; PU	-	R — Function reserved.
							0	CTOUT_12 — SCT output 12. Match output 3 of timer 3.
							0	U1_TXD — Transmitter output for UART1.
							I/O	EMC_D30 — External memory data line 30.
							I/O	GPIO7[11] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PE_12	D15	-	-	-	[2]	N; PU	-	R — Function reserved.
							0	CTOUT_11 — SCT output 11. Match output 3 of timer 2.
							I	U1_RXD — Receiver input for UART1.
							I/O	EMC_D31 — External memory data line 31.
							I/O	GPIO7[12] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PE_13	G14	-	-	-	[2]	N; PU	-	R — Function reserved.
							0	CTOUT_14 — SCT output 14. Match output 2 of timer 3.
							I/O	$I2C1_SDA - I^2C1$ data input/output (this pin does not use a specialized I ² C pad).
							0	EMC_DQMOUT3 — Data mask 3 used with SDRAM and static devices.
							I/O	GPIO7[13] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
PE_14	C15	-	-	-	[2]	N; PU	-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
							0	EMC_DYCS3 — SDRAM chip select 3.
							I/O	GPI07[14] — General purpose digital input/output pin.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.

Table 169. LPC1850/30/20/10 Pin description (flashless parts) ... continued

LCD. Ethernet. USB0. and USB1 functions are not available on all parts.

Pin name	LBGA256	TFBGA100	LQFP144	LQFP208		Reset state [1]	Type	Description
P1_13		H8	60	83	[2]	N;	I/O	GPIO1[6] — General purpose digital input/output pin.
						PU	0	U1_TXD — Transmitter output for UART1.
							-	R — Function reserved.
							I/O	EMC_D6 — External memory data line 6.
							Ι	T0_CAP0 — Capture input 0 of timer 0.
							-	R — Function reserved.
							-	R — Function reserved.
							Ι	SD_CD — SD/MMC card detect input.
P1_14	R11	J8	61	85	[2]	N;	I/O	GPIO1[7] — General purpose digital input/output pin.
						PU	Ι	U1_RXD — Receiver input for UART1.
							-	R — Function reserved.
							I/O	EMC_D7 — External memory data line 7.
							0	T0_MAT2 — Match output 2 of timer 0.
							-	R — Function reserved.
							-	R — Function reserved.
							-	R — Function reserved.
P1_15	T12	K8	62	87	[2]	N;	I/O	GPIO0[2] — General purpose digital input/output pin.
						PU	0	U2_TXD — Transmitter output for USART2.
							-	R — Function reserved.
							Ι	ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).
							0	T0_MAT1 — Match output 1 of timer 0.
							-	R — Function reserved.
							I/O	EMC_D8 — External memory data line 8.
							-	R — Function reserved.
۲ <u>1</u> 16	M7	H9	64	90	[2]	N;	I/O	GPIO0[3] — General purpose digital input/output pin.
						PU	Ι	U2_RXD — Receiver input for USART2.
							-	R — Function reserved.
							Ι	ENET_CRS — Ethernet Carrier Sense (MII interface).
							0	T0_MAT0 — Match output 0 of timer 0.
							-	R — Function reserved.
							I/O	EMC_D9 — External memory data line 9.
							Ι	ENET_RX_DV — Ethernet Receive Data Valid (RMII/MII

interface).

Chapter 15: LPC18xx Pin configuration

 Table 236. Pin interrupt falling edge register (FALL, address 0x4008 7020) bit description

Bit	Symbol	Description	Reset value	Access
7:0	FDET	Falling edge detect. Bit n detects the falling edge of the pin selected in PINTSELn. Read 0: No falling edge has been detected on this pin since Reset or the last time a one was written to this bit. Write 0: no operation. Read 1: a falling edge has been detected since Reset or the last time a one was written to this bit. Write 1: clear falling edge detection for this pin.	0	R/W
31:8	-	Reserved.	-	-

18.5.1.10 Pin interrupt status register

Reading this register returns ones for pin interrupts that are currently requesting an interrupt. For pins identified as edge-sensitive in the Interrupt Select register, writing ones to this register clears both rising- and falling-edge detection for the pin. For level-sensitive pins, writing ones inverts the corresponding bit in the Active level register, thus switching the active level on the pin.

Table 237. Pin interrupt status register (IST address 0x4008 7024) bit description

Bit	Symbol	Description	Reset value	Access
7:0	PSTAT	Pin interrupt status. Bit n returns the status, clears the edge interrupt, or inverts the active level of the pin selected in PINTSELn. Read 0: interrupt is not being requested for this interrupt pin. Write 0: no operation. Read 1: interrupt is being requested for this interrupt pin. Write 1 (edge-sensitive): clear rising- and falling-edge detection for this pin. Write 1 (level-sensitive): switch the active level for this pin (in the IENF register).	0	R/W
31:8	-	Reserved.	-	-

18.5.2 GPIO GROUP0/GROUP1 interrupt register description

18.5.2.1 Grouped interrupt control register

 Table 238. GPIO grouped interrupt control register (CTRL, addresses 0x4008 8000 (GROUP0 INT) and 0x4008 9000 (GROUP1 INT)) bit description

Bit	Symbol	Value	Description	Reset value
0	INT		Group interrupt status. This bit is cleared by writing a one to it. Writing zero has no effect.	0
		0	No interrupt request is pending.	
		1	Interrupt request is active.	_

Chapter 20: LPC18xx SD/MMC interface

20.6.20 FIFO Threshold Watermark Register (FIFOTH)

Table 298. FIFO Threshold Watermark Register (FIFOTH, address 0x4000 404C) bit description

Bit	Symbol	Value	Description	Reset value
11:0	TX_WMARK		FIFO threshold watermark level when transmitting data to card. When FIFO data count is less than or equal to this number, DMA/FIFO request is raised. If Interrupt is enabled, then interrupt occurs. During end of packet, request or interrupt is generated, regardless of threshold programming. In non-DMA mode, when transmit FIFO threshold (TXDR) interrupt is enabled, then interrupt is generated instead of DMA request. During end of packet, on last interrupt, host is responsible for filling FIFO with only required remaining bytes (not before FIFO is full or after CIU completes data transfers, because FIFO may not be empty). In DMA mode, at end of packet, if last transfer is less than burst size, DMA controller does single cycles until required bytes are transferred. 12 bits - 1 bit less than FIFO-count of status register, which is 13 bits. Limitation: TX_WMark >= 1; Recommended value: TX_WMARK = 16; (means less than or equal to FIFO_DEPTH/2).	0
15:12	-		Reserved.	0
27:16	RX_WMARK		FIFO threshold watermark level when receiving data to card. When FIFO data count reaches greater than this number, DMA/FIFO request is raised. During end of packet, request is generated regardless of threshold programming in order to complete any remaining data. In non-DMA mode, when receiver FIFO threshold (RXDR) interrupt is enabled, then interrupt is generated instead of DMA request. During end of packet, interrupt is not generated if threshold programming is larger than any remaining data. It is responsibility of host to read remaining bytes on seeing Data Transfer Done interrupt. In DMA mode, at end of packet, even if remaining bytes are less than threshold, DMA request does single transfers to flush out any remaining bytes before Data Transfer Done interrupt is set. 12 bits - 1 bit less than FIFO-count of status register, which is 13 bits. Limitation: RX_WMark less than FIFO_DEPTH-2 Recommended: RX_WMARK = 15; (means greater than (FIFO_DEPTH/2) - 1) NOTE: In DMA mode during CCS time-out, the DMA does not generate the request at the end of packet, even if remaining bytes are less than threshold. In this case, there will be some data left in the FIFO. It is the responsibility of the application to reset the FIFO after the CCS time-out.	0x1F

For static memory larger delays are defined by in steps of one EMC clock cycle by the STATICWAIT registers (see <u>Section 22.6.22</u> to <u>Section 22.6.27</u>).

22.7.4 Data buffers

The AHB interface reads and writes via buffers to improve memory bandwidth and reduce transaction latency. The EMC contains four 16-word buffers. The buffers can be used as read buffers, write buffers, or a combination of both. The buffers are allocated automatically.

The buffers must be disabled during SDRAM initialization. The buffers must be enabled during normal operation.

The buffers can be enabled or disabled for static memory using the StaticConfig Registers.

22.7.4.1 Write buffers

Write buffers are used to:

 Merge write transactions so that the number of external transactions are minimized. Buffer data until the EMC can complete the write transaction, improving AHB write latency.

Convert all dynamic memory write transactions into quadword bursts on the external memory interface. This enhances transfer efficiency for dynamic memory.

• Reduce external memory traffic. This improves memory bandwidth and reduces power consumption.

Write buffer operation:

• If the buffers are enabled, an AHB write operation writes into the Least Recently Used (LRU) buffer, if empty.

If the LRU buffer is not empty, the contents of the buffer are flushed to memory to make space for the AHB write data.

• If a buffer contains write data it is marked as dirty, and its contents are written to memory before the buffer can be reallocated.

The write buffers are flushed whenever:

• The memory controller state machine is not busy performing accesses to external memory.

The memory controller state machine is not busy performing accesses to external memory, and an AHB interface is writing to a different buffer.

Note: For dynamic memory, the smallest buffer flush is a quadword of data. For static memory, the smallest buffer flush is a byte of data.

22.7.4.2 Read buffers

Read buffers are used to:

• Buffer read requests from memory. Future read requests that hit the buffer read the data from the buffer rather than memory, reducing transaction latency.

Chapter 26: LPC18xx Ethernet

Bit	Symbol	Description	Reset value	Access
13:8	PBL	Programmable burst length	1	R/W
		These bits indicate the maximum number of beats to be transferred in one DMA transaction. This will be the maximum value that is used in a single block Read/Write. The DMA will always attempt to burst as specified in PBL each time it starts a Burst transfer on the host bus. PBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior. When USP is set high, this PBL value is applicable for TxDMA transactions only.		
		The PBL values have the following limitations.		
		The maximum number of beats (PBL) possible is limited by the size of the Tx FIFO and Rx FIFO in the MTL layer and the data bus width on the DMA. The FIFO has a constraint that the maximum beat supported is half the depth of the FIFO, except when specified (as given below). For different data bus widths and FIFO sizes, the valid PBL range (including x8 mode) is provided in the following table. If the PBL is common for both transmit and receive DMA, the minimum Rx FIFO and Tx FIFO depths must be considered. Do not program out-of-range PBL values, because the system may not behave properly.		
15:14	PR	Rx-to-Tx priority ratio	00	R/W
		RxDMA requests given priority over TxDMA requests in the following ratio. This is valid only when the DA bit is reset.		
		00 = 1-to-1		
		01 = 2-to-1		
		10 = 3-to-1		
		11 = 4-to-1		
16	FB	Fixed burst	0	R/W
		This bit controls whether the AHB Master interface performs fixed burst transfers or not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AHB will use SINGLE and INCR burst transfer operations.		
22:17	RPBL	RxDMA PBL	1	R/W
		These bits indicate the maximum number of beats to be transferred in one RxDMA transaction. This will be the maximum value that is used in a single block Read/Write. The RxDMA will always attempt to burst as specified in RPBL each time it starts a Burst transfer on the host bus. RPBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior. These bits are valid and applicable only when USP is set high.		
23	USP	Use separate PBL	0	R/W
		When set high, it configures the RxDMA to use the value configured in bits [22:17] as PBL while the PBL value in bits [13:8] is applicable to TxDMA operations only. When reset to low, the PBL value in bits [13:8] is applicable for both DMA engines.		
24	PBL8X	8 x PBL mode	0	R/W
		When set high, this bit multiplies the PBL value programmed (bits [22:17] and bits [13:8]) eight times. Thus the DMA will transfer data in to a maximum of 8, 16, 32, 64, 128, and 256 beats depending on the PBL value.		
		Remark: This bit function is not backward compatible. Before version 3.50a, this bit was 4xPBL.		

Table 551. DMA Bus mode register (DMA_BUS_MODE, address 0x4001 1000) bit description ...continued

	0x4000 obrc (CRSR_IMG255)) bit description				
Bit	Symbol	Description	Reset value		
31:0	CRSR_IMG	Cursor Image data. The 256 words of the cursor image registers define the appearance of either one 64x64 cursor or 4 32x32 cursors.	0x0		

Table 608. Cursor Image registers (CRSR_IMG, address 0x4000 8800 (CRSR_IMG0) to 0x4000 8BFC (CRSR_IMG255)) bit description

27.6.16 Cursor Control register

The CRSR_CTRL register provides access to frequently used cursor functions, such as the display on/off control for the cursor, and the cursor number.

If a 32x32 cursor is selected, one of four 32x32 cursors can be enabled. The images each occupy one quarter of the image memory, with Cursor0 from location 0, followed by Cursor1 from address 0x100, Cursor2 from 0x200 and Cursor3 from 0x300. If a 64x64 cursor is selected only one cursor fits in the image buffer, and no selection is possible.

Similar frame synchronization rules apply to the cursor number as apply to the cursor coordinates. If CrsrFramesync is 1, the displayed cursor image is only changed during the vertical frame blanking period. If CrsrFrameSync is 0, the cursor image index is changed immediately, even if the cursor is currently being scanned.

Bit	Symbol	Description	Reset value
0	CRSRON	Cursor enable.	0x0
		0 = Cursor is not displayed.	
		1 = Cursor is displayed.	
3:1	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0x0
5:4	CRSRNUM1_0	Cursor image number.	0x0
		If the selected cursor size is 6x64, this field has no effect. If the selected cursor size is 32x32:	
		00 = Cursor0.	
		01 = Cursor1.	
		10 = Cursor2.	
		11 = Cursor3.	
31:6	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	0x0

Table 609. Cursor Control register (CRSR_CTRL, address 0x4000 8C00) bit description

27.6.17 Cursor Configuration register

The CRSR_CFG register provides overall configuration information for the hardware cursor.

27.7.1.2 AMBA AHB master interface

The AHB master interface transfers display data from a selected slave (memory) to the LCD controller DMA FIFOs. It can be configured to obtain data from any on-chip SRAM on AHB, various types of off-chip static memory, or off-chip SDRAM.

In dual panel mode, the DMA FIFOs are filled up in an alternating fashion via a single DMA request. In single panel mode, the DMA FIFOs are filled up in a sequential fashion from a single DMA request.

The inherent AHB master interface state machine performs the following functions:

- Loads the upper panel base address into the AHB address incrementer on recognition of a new frame.
- Monitors both the upper and lower DMA FIFO levels and asserts a DMA request to request display data from memory, filling them to above the programmed watermark. the DMA request is reasserted when there are at least four locations available in either FIFO (dual panel mode).
- Checks for 1 kB boundaries during fixed-length bursts, appropriately adjusting the address in such occurrences.
- · Generates the address sequences for fixed-length and undefined bursts.
- Controls the handshaking between the memory and DMA FIFOs. It inserts busy cycles if the FIFOs have not completed their synchronization and updating sequence.
- Fills up the DMA FIFOs, in dual panel mode, in an alternating fashion from a single DMA request.
- Asserts the a bus error interrupt if an error occurs during an active burst.
- Responds to retry commands by restarting the failed access. This introduces some busy cycles while it re-synchronizes.

27.7.2 Dual DMA FIFOs and associated control logic

The pixel data accessed from memory is buffered by two DMA FIFOs that can be independently controlled to cover single and dual-panel LCD types. Each FIFO is 16 words deep by 64 bits wide and can be cascaded to form an effective 32-Dword deep FIFO in single panel mode.

Synchronization logic transfers the pixel data from the AHB clock domain to the LCD controller clock domain. The water level marks in each FIFO are set such that each FIFO requests data when at least four locations become available.

An interrupt signal is asserted if an attempt is made to read either of the two DMA FIFOs when they are empty (an underflow condition has occurred).

27.7.3 Pixel serializer

This block reads the 32-bit wide LCD data from the output port of the DMA FIFO and extracts 24, 16, 8, 4, 2, or 1 bpp data, depending on the current mode of operation. The LCD controller supports big-endian, little-endian, and Windows CE data formats.

Depending on the mode of operation, the extracted data can be used to point to a color or gray scale value in the palette RAM or can actually be a true color value that can be directly applied to an LCD panel input.

UM10430

Chapter 27: LPC18xx LCD

FIFO data	24-bit RGB	16-bit (1:5:5:5 RGB)	16-bit (5:6:5 RGB)	16-bit (4:4:4 RGB)
31	-	p1 intensity bit	p1, Blue 4	-
30	-	p1, Blue 4	p1, Blue 3	-
29	-	p1, Blue 3	p1, Blue 2	-
28	-	p1, Blue 2	p1, Blue 1	-
27	-	p1, Blue 1	p1, Blue 0	p1, Blue 3
26	-	p1, Blue 0	p1, Green 5	p1, Blue 2
25	-	p1, Green 4	p1, Green 4	p1, Blue 1
24	-	p1, Green 3	p1, Green 3	p1, Blue 0
23	p0, Blue 7	p1, Green 2	p1, Green 2	p1, Green 3
22	p0, Blue 6	p1, Green 1	p1, Green 1	p1, Green 2
21	p0, Blue 5	p1, Green 0	p1, Green 0	p1, Green 1
20	p0, Blue 4	p1, Red 4	p1, Red 4	p1, Green 0
19	p0, Blue 3	p1, Red 3	p1, Red 3	p1, Red 3
18	p0, Blue 2	p1, Red 2	p1, Red 2	p1, Red 2
17	p0, Blue 1	p1, Red 1	p1, Red 1	p1, Red 1
16	p0, Blue 0	p1, Red 0	p1, Red 0	p1, Red 0
15	p0, Green 7	p0 intensity bit	p0, Blue 4	-
14	p0, Green 6	p0, Blue 4	p0, Blue 3	-
13	p0, Green 5	p0, Blue 3	p0, Blue 2	-
12	p0, Green 4	p0, Blue 2	p0, Blue 1	-
11	p0, Green 3	p0, Blue 1	p0, Blue 0	p0, Blue 3
10	p0, Green 2	p0, Blue 0	p0, Green 5	p0, Blue 2
9	p0, Green 1	p0, Green 4	p0, Green 4	p0, Blue 1
8	p0, Green 0	p0, Green 3	p0, Green 3	p0, Blue 0
7	p0, Red 7	p0, Green 2	p0, Green 2	p0, Green 3
6	p0, Red 6	p0, Green 1	p0, Green 1	p0, Green 2
5	p0, Red 5	p0, Green 0	p0, Green 0	p0, Green 1
4	p0, Red 4	p0, Red 4	p0, Red 4	p0, Green 0
3	p0, Red 3	p0, Red 3	p0, Red 3	p0, Red 3
2	p0, Red 2	p0, Red 2	p0, Red 2	p0, Red 2
1	p0, Red 1	p0, Red 1	p0, Red 1	p0, Red 1
0	p0, Red 0	p0, Red 0	p0, Red 0	p0, Red 0
-				

Table 622. RGB mode data formats

27.7.4 RAM palette

The RAM-based palette is a 256 x 16 bit dual-port RAM physically structured as 128 x 32 bits. Two entries can be written into the palette from a single word write access. The Least Significant Bit (LSB) of the serialized pixel data selects between upper and lower halves of the palette RAM. The half that is selected depends on the byte ordering mode. In little-endian mode, setting the LSB selects the upper half, but in big-endian mode, the lower half of the palette is selected.

Chapter 38: LPC18xx USART0_2_3

Table 855.	USART Line Status Register Read Only (LSR - addresses 0x4008 1014 (USART0),
	0x400C 1014 (USART2), 0x400C 2014 (USART3)) bit description

Bit	Symbol	Value	Description	Reset Value
0	RDR		Receiver Data Ready. LSR[0] is set when the RBR holds an unread character and is cleared when the USART RBR FIFO is empty.	0
		0	RBR is empty.	
		1	RBR contains valid data.	
1	OE		Overrun Error. The overrun error condition is set as soon as it occurs. A LSR read clears LSR[1]. LSR[1] is set when USART RSR has a new character assembled and the USART RBR FIFO is full. In this case, the USART RBR FIFO will not be overwritten and the character in the USART RSR will be lost.	0
		0	Overrun error status is inactive.	_
		1	Overrun error status is active.	
2 PE			Parity Error. When the parity bit of a received character is in the wrong state, a parity error occurs. A LSR read clears LSR[2]. Time of parity error detection is dependent on FCR[0].	0
			Note: A parity error is associated with the character at the top of the USART RBR FIFO.	
		0	Parity error status is inactive.	
		1	Parity error status is active.	
3 F	FE		Framing Error. When the stop bit of a received character is a logic 0, a framing error occurs. A LSR read clears LSR[3]. The time of the framing error detection is dependent on FCR0. Upon detection of a framing error, the RX will attempt to re-synchronize to the data and assume that the bad stop bit is actually an early start bit. However, it cannot be assumed that the next received byte will be correct even if there is no Framing Error.	0
			Note: A framing error is associated with the character at the top of the USART RBR FIFO.	
		0	Framing error status is inactive.	
		1	Framing error status is active.	
4	BI		Break Interrupt. When RXD1 is held in the spacing state (all zeros) for one full character transmission (start, data, parity, stop), a break interrupt occurs. Once the break condition has been detected, the receiver goes idle until RXD1 goes to marking state (all ones). A LSR read clears this status bit. The time of break detection is dependent on FCR[0].	0
			Note: The break interrupt is associated with the character at the top of the USART RBR FIFO.	_
		0	Break interrupt status is inactive.	_
		1	Break interrupt status is active.	

UM10430

Chapter 38: LPC18xx USART0_2_3

Bit	Symbol	Value	Description	Reset value
3	-	-	Reserved.	-
4	DCTRL		Direction control for DIR pin.	0
		0	Disable Auto Direction Control.	
		1	Enable Auto Direction Control.	
5	OINV		Direction control pin polarity. This bit reverses the polarity of the direction control signal on the DIR pin.	0
		0	The direction control pin will be driven to logic '0' when the transmitter has data to be sent. It will be driven to logic '1' after the last bit of data has been transmitted.	
		1	The direction control pin will be driven to logic '1' when the transmitter has data to be sent. It will be driven to logic '0' after the last bit of data has been transmitted.	-
31:6	-	-	Reserved, user software should not write ones to reserved bits. The value read from a reserved bit is not defined.	NA

Table 864. USART RS485 Control register (RS485CTRL - addresses 0x4008 104C (USART0), 0x400C 104C (USART2), 0x400C 204C (USART3)) bit description ...continued

After reset RS485 mode will be disabled. The RS485 feature allows the USART to be configured as one of multiple addressable slave receivers controlled by a single USART. In RS485 mode the USART differentiates between an address character and a data character by means of a ninth bit. The parity bit is used to implement this bit, and when set to '1' indicates an address and when set to '0' indicates data. RS485 mode is enabled by setting the NMMEN bit. The USART slave receiver can be assigned a unique address and, manually or automatically, reject or accept data based on a received address. See section <u>Section 38.7.4</u> for details.

38.6.17 USART RS485 Address Match register

The RS485ADRMATCH register contains the address match value for RS-485/EIA-485 mode.

Table 865. USART RS485 Address Match register (RS485ADRMATCH - addresses 0x4008 1050 (USART0), 0x400C 1050 (USART2), 0x400C 2050 (USART3)) bit description

	acscription				
Bit	Symbol	Description	Reset value		
7:0	ADRMATCH	Contains the address match value.	0x00		
31:8	-	Reserved	-		

The ADRMATCH bit field contains the slave address match value that is used to compare a received address value to. During automatic address detection, this value is used to accept or reject serial input data.

41.6 Register description

<u>Table 909</u> shows the registers associated with the I2S interface and a summary of their functions. Following the table are details for each register.

Reset value reflects the data stored in used bits only. It does not include reserved bits content.

 Table 909. Register overview: I2S0 (base address 0x400A 2000)

the I2S transmit channel.the I2S transmit channel.DAIR/W0x004I2S Digital Audio Input Register. Contains control bits for the I2S receive channel.0x07E1Table 912TXFIFOWO0x008I2S Transmit FIFO. Access register for the 8 x 32-bit0Table 913RXFIFORO0x00CI2S Receive FIFO. Access register for the 8 x 32-bit0Table 914RXFIFORO0x00CI2S Receive FIFO. Access register for the 8 x 32-bit0Table 914STATERO0x010I2S Status Feedback Register. Contains status information0x7Table 915DMA1R/W0x014I2S DMA Configuration Register 1. Contains control information for DMA request 1.0Table 917DMA2R/W0x01CI2S Interrupt Reguest Control Register. Contains bits that control how the I2S interrupt request is generated.0Table 918TXRATER/W0x020I2S Transmit MCLK divider. This register determines the I2S TX MCLK rate by specifying the value to divide PCLK0Table 919TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S RX MCLK rate by specifying the value to divide PCLK0Table 921TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S RX MCLK rate by specifying the value to divide PCLK0Table 921TXRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S receive bit rate divider. This register determines the I2S RX MCLK rate by specifying the value to divide RX_MC	Name	Access	Address offset	Description	Reset value	Reference
the I2S receive channel.TXFIFOWO0x008I2S Transmit FIFO. Access register for the 8 x 32-bit transmitter FIFO.0Table 913 transmitter FIFO.RXFIFORO0x00CI2S Receive FIFO. Access register for the 8 x 32-bit about the I2S interface.0Table 914 receiver FIFO.STATERO0x010I2S Status Feedback Register. Contains status information about the I2S interface.0x7Table 915 Table 915DMA1R/W0x014I2S DMA Configuration Register 1. Contains control information for DMA request 1.0Table 916 Table 917DMA2R/W0x018I2S DMA Configuration Register 2. Contains control 	DAO	R/W	0x000	•	0x87E1	Table 911
RXFIFORO0x00CI2S Receive FIFO. receiver FIFO.0Table 914 receiver FIFO.STATERO0x010I2S Status Feedback Register. Contains status information about the I2S interface.0.77Table 915 Table 915DMA1R/W0x014I2S DMA Configuration Register 1. Contains control information for DMA request 1.0.Table 916 Table 917DMA2R/W0x018I2S DMA Configuration Register 2. Contains control information for DMA request 2.0Table 917IRQR/W0x01CI2S Interrupt Request Control Register 2. Contains bits that control how the I2S interrupt request is generated.0Table 918TXRATER/W0x020I2S Transmit MCLK divider. This register determines the I2S TX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920RXRATER/W0x024I2S Receive MCLK divider. This register determines the I2S RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 921TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 922RXBITRATER/W0x020I2S Receive bit rate divider. This register d	DAI	R/W	0x004		0x07E1	Table 912
receiver FIFO.STATERO0x010I2S Status Feedback Register. Contains status information about the I2S interface.0x7Table 915DMA1R/W0x014I2S DMA Configuration Register 1. Contains control information for DMA request 1.0Table 916DMA2R/W0x018I2S DMA Configuration Register 2. Contains control information for DMA request 2.0Table 917IRQR/W0x01CI2S Interrupt Request Control Register. Contains bits that control how the I2S interrupt request is generated.0Table 918TXRATER/W0x020I2S Transmit MCLK divider. This register determines the by in order to produce MCLK.0Table 919RXRATER/W0x024I2S Receive MCLK divider. This register determines the I2S RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S Transmit bit rate by specifying the value to divide PCLK.0Table 921TXBITRATER/W0x028I2S Receive bit rate divider. This register determines the I2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x02CI2S Receive bit rate divider. This register determines the I2S receive bit rate divi	TXFIFO	WO	0x008	•	0	Table 913
about the I2S interface.DMA1R/W0x014I2S DMA Configuration Register 1. Contains control information for DMA request 1.0Table 916DMA2R/W0x018I2S DMA Configuration Register 2. Contains control information for DMA request 2.0Table 917DMA2R/W0x010I2S Interrupt Request Control Register. Contains bits that control how the I2S interrupt request is generated.0Table 918TXRATER/W0x020I2S Transmit MCLK divider. This register determines the J2S TX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 919TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the L2S RX MCLK rate by specifying the value to divide py in order to produce MCLK.0Table 920TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the L2S RX MCLK rate by specifying the value to divide TX_MCLK by in order to produce MCLK.0Table 921TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the L2S receive bit rate divider. This register determines the L2S receive bit rate divider. This register determines the L2S receive bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921TXBODER/W0x020I2S Receive bit rate divider. This register determines the L2S receive bit rate divider. This	RXFIFO	RO	0x00C	•	0	Table 914
information for DMA request 1.DMA2R/W0x018I2S DMA Configuration Register 2. Contains control information for DMA request 2.0Table 917IRQR/W0x01CI2S Interrupt Request Control Register. Contains bits that control how the I2S interrupt request is generated.0Table 918TXRATER/W0x020I2S Transmit MCLK divider. This register determines the plas TX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 919RXRATER/W0x024I2S Receive MCLK divider. This register determines the plas RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the plas in order to produce MCLK.0Table 921TXBITRATER/W0x020I2S Receive bit rate divider. This register determines the plas in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x02CI2S Receive bit rate divider. This register determines the plas receive bit rate divider. This register determines the I2S receive bit rate	STATE	RO	0x010		0x7	Table 915
IRQR/W0x01CI2S Interrupt Request Control Register. Contains bits that control how the I2S interrupt request is generated.0Table 918TXRATER/W0x020I2S Transmit MCLK divider. This register determines the I2S TX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 919RXRATER/W0x024I2S Receive MCLK divider. This register determines the I2S RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920RXRATER/W0x028I2S Transmit bit rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S RX MCLK rate by specifying the value to divide TX_MCLK by in order to produce MCLK.0Table 921RXBITRATER/W0x020I2S Receive bit rate divider. This register determines the I2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x020I2S Receive bit rate divider. This register determines the I2S receive bit rate by specifying the value to divide RX_MCLK by in order to produce the transmit bit clock.0Table 922TXMODER/W0x030I2S Transmit mode control.0Table 923	DMA1	R/W	0x014		0	Table 916
control how the I2S interrupt request is generated.TXRATER/W0x020I2S Transmit MCLK divider. This register determines the l2S TX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 919RXRATER/W0x024I2S Receive MCLK divider. This register determines the l2S RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the l2S RX MCLK rate by specifying the value to divide PCLK.0Table 921TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the l2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x02CI2S Receive bit rate divider. This register determines the l2S receive bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 922RXBITRATER/W0x020I2S Receive bit rate by specifying the value to divide RX_MCLK by in order to produce the receive bit clock.0Table 922TXMODER/W0x030I2S Transmit mode control.0Table 923	DMA2	R/W	0x018		0	Table 917
I2S TX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.RXRATER/W0x024I2S Receive MCLK divider. This register determines the I2S RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.0Table 920TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x02CI2S Receive bit rate divider. This register determines the I2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x02CI2S Receive bit rate divider. This register determines the I2S receive bit rate by specifying the value to divide RX_MCLK by in order to produce the receive bit clock.0Table 922TXMODER/W0x030I2S Transmit mode control.0Table 923	IRQ	R/W	0x01C		0	Table 918
I2S RX MCLK rate by specifying the value to divide PCLK by in order to produce MCLK.TXBITRATER/W0x028I2S Transmit bit rate divider. This register determines the I2S transmit bit rate by specifying the value to divide TX_MCLK by in order to produce the transmit bit clock.0Table 921RXBITRATER/W0x02CI2S Receive bit rate divider. This register determines the I2S receive bit rate divider. This register determines the I2S receive bit rate by specifying the value to divide RX_MCLK by in order to produce the transmit bit clock.0Table 922TXMODER/W0x030I2S Transmit mode control.0Table 923	TXRATE	R/W	0x020	I2S TX MCLK rate by specifying the value to divide PCLK	0	Table 919
I2S transmit bit rate by specifying the value to divide I2S transmit bit rate by specifying the value to divide RXBITRATE R/W 0x02C I2S Receive bit rate divider. This register determines the 0 Table 922 I2S receive bit rate by specifying the value to divide RX_MCLK by in order to produce the receive bit clock. 0 Table 923 TXMODE R/W 0x030 I2S Transmit mode control. 0 Table 923	RXRATE	R/W	0x024	I2S RX MCLK rate by specifying the value to divide PCLK	0	Table 920
I2S receive bit rate by specifying the value to divide RX_MCLK by in order to produce the receive bit clock. TXMODE R/W 0x030 I2S Transmit mode control. 0 Table 923	TXBITRATE	R/W	0x028	I2S transmit bit rate by specifying the value to divide	0	Table 921
	RXBITRATE	R/W	0x02C	I2S receive bit rate by specifying the value to divide	0	Table 922
RXMODE R/W 0x034 I2S Receive mode control. 0 Table 924	TXMODE	R/W	0x030	I2S Transmit mode control.	0	Table 923
	RXMODE	R/W	0x034	I2S Receive mode control.	0	Table 924

UM10430

Chapter 42: LPC18xx I2C-bus interface

Status	Status of the I ² C-bus	Application software response					Next action taken by I ² C hardware
Code (STAT)	and hardware	To/From DAT To CON					
(01/1)			STA	STO	SI	AA	
0x60	Own SLA+W has been received; ACK	No DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
	has been returned.	No DAT action	Х	0	0	1	Data byte will be received and ACK will be returned.
0x68	Arbitration lost in SLA+R/W as master;	No DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
	Own SLA+W has been received, ACK returned.	No DAT action	Х	0	0	1	Data byte will be received and ACK will be returned.
0x70	General call address (0x00) has been received; ACK has been returned.	No DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
		No DAT action	Х	0	0	1	Data byte will be received and ACK will be returned.
0x78	Arbitration lost in SLA+R/W as master;	No DAT action or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
	General call address has been received, ACK has been returned.	No DAT action	х	0	0	1	Data byte will be received and ACK will be returned.
0x80	Previously addressed with own SLV	Read data byte or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
	address; DATA has been received; ACK has been returned.	Read data byte	Х	0	0	1	Data byte will be received and ACK will be returned.
0x88	Previously addressed with own SLA; DATA byte has been received; NOT ACK has been returned.	Read data byte or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address.
		Read data byte or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1.
		Read data byte or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free.
		Read data byte	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if ADR[0] = logic 1. A START condition will be transmitted when the bus becomes free.
0x90	Previously addressed with General Call;	Read data byte or	Х	0	0	0	Data byte will be received and NOT ACK will be returned.
	DATA byte has been received; ACK has been returned.	Read data byte	Х	0	0	1	Data byte will be received and ACK will be returned.

Table 966. Slave Receiver mode

Bit	Symbol	Value	Description	Reset value	Access
12:0	MSK28_16		Identifier mask 0 = The corresponding bit in the identifier of the message can not inhibit the match in the acceptance filtering. 1 = The corresponding identifier bit is used for acceptance filtering.	0xFFF	R/W
13	-		Reserved	1	-
14	MDIR		Mask message direction	1	R/W
		0	The message direction bit (DIR) has no effect on acceptance filtering.	-	
		1	The message direction bit (DIR) is used for acceptance filtering.		
15	MXTD		Mask extend identifier	1	R/W
		0	The extended identifier bit (IDE) has no effect on acceptance filtering.	_	
		1	The extended identifier bit (IDE) is used for acceptance filtering.	_	
31:16	-	-	Reserved	0	-

Table 991. CAN message interface command mask 2 registers (IF2_MSK2, 0x400E 208C (C_CAN0) and 0x400A 408C (C_CAN1)) bit description

43.6.2.4.3 CAN message interface command arbitration 1 registers

 Table 992. CAN message interface command arbitration 1 registers (IF1_ARB1, address 0x400E 2030 (C_CAN0) and 0x400A 4030 (C_CAN1)) bit description

Bit	Symbol	Description	Reset value	Access
15:0	ID15_0	Message identifier 29-bit identifier ("extended frame") 11-bit identifier ("standard frame")	0x00	R/W
31:16	-	Reserved	0	-

Table 993. CAN message interface command arbitration 1 registers (IF2_ARB1, address 0x400E 2090 (C_CAN0) and 0x400A 4090 (C_CAN1)) bit description

Bit	Symbol	Description	Reset value	Access
15:0	ID15_0	Message identifier 29-bit identifier ("extended frame") 11-bit identifier ("standard frame")	0x00	R/W
31:16	-	Reserved	0	-

1182 of 1284

Chapter 49: Supplementary information

	(BASE_USB0_CLK, address 0x4005 0060) bit
	description
Table 129	. BASE_USB1_CLK control register
	(BASE_USB1_CLK, address 0x4005 0068) bit
	description
Table 130	BASE_M3_CLK to BASE_UART3_CLK control
	registers (BASE_M3_CLK to
	BASE_UART3_CLK, address 0x4005 006C to
	0x4005 00A8) bit description
Table 131	BASE_OUT_CLK control register
	(BASE_OUT_CLK, addresses 0x4005 00AC) bit
T-11- 400	description
Table 132	BASE_AUDIO_CLK control register
	(BASE_AUDIO_CLK, addresses 0x4005 00C0)
Table 122	bit description174 BASE CGU OUT0 CLK to
	BASE_CGU_OUT1_CLK to BASE_CGU_OUT1_CLK control register
	(BASE_CGU_OUT0_CLK to
	BASE_CGU_OUT1_CLK, addresses 0x4005
	00C4 to 0x4005 00C8) bit description175
Table 134	. PLL0 operating modes
	. DIRECTL and DIRECTO bit settings in
	HP0/1 Mode register
Table 136	. PLL0 (for USB) settings for 480 MHz output clock
	186
Table 137	. PLL0AUDIO divider settings for 12 MHz input
	186
Table 138	. PLL0AUDIO divider setting for 12 MHz with
	fractional divider bypassed
Table 139	. CCU clocking and power control
	. CCU1 branch clocks
	. CCU2 branch clocks
	. Register overview: CCU1 (base address 0x4005
	1000)
Table 143	. Register overview: CCU2 (base address 0x4005
	2000)
Table 144	. CCU1/2 power mode register (CCU1_PM,
	address 0x4005 1000 and CCU2_PM, address
	0x4005 2000) bit description
	. CCU1 base clock status register
	(CCU1_BASE_STAT, address 0x4005 1004) bit
	description
Table 146	. CCU2 base clock status register
	(CCU2_BASE_STAT, address 0x4005 2004) bit
	description
Table 147	. CCU1 branch clock configuration register
	(CLK_XXX_CFG, addresses 0x4005 1100,
	0x4005 1104,, 0x4005 1A00) bit description
	199
Table 148	. CCU1 branch clock configuration register
	(CLK_M3_EMCDIV_CFG, addresses 0x4005
	1478) bit description
Table 149	. CCU2 branch clock configuration register
	(CLK_XXX_CFG, addresses 0x4005 2100,
	0x4005 2200,, 0x4005 2800) bit description
	200
Table 150	. CCU1 branch clock status register
	(CLK_XXX_STAT, addresses 0x4005 1104,

0x4005 110C,, 0x4005 1A04) bit description	• •
201 Table 151. CCU2 branch clock status register	
(CLK_XXX_STAT, addresses 0x4005 2104,	
201	• •
Table 152. RGU clocking and power control	03
Table 153. Reset output configuration	
Table 154. Reset priority	
Table 155. Register overview: RGU (base address: 0x400	
3000)	
Table 156. Reset control register 0 (RESET CTRL0,	•.
address 0x4005 3100) bit description 2	10
Table 157. Reset control register 1 (RESET_CTRL1,	
address 0x4005 3104) bit description	
	11
Table 158. Reset status register 0 (RESET_STATUS0,	
address 0x4005 3110) bit description2	13
Table 159. Reset status register 1 (RESET STATUS1,	
address 0x4005 3114) bit description	
	14
Table 160. Reset status register 2 (RESET STATUS2,	• •
address 0x4005 3118) bit description	
	16
Table 161. Reset status register 3 (RESET_STATUS3,	
address 0x4005 311C) bit description	
	18
Table 162. Reset active status register 0	
(RESET_ACTIVE_STATUS0, address 0x4005	
3150) bit description2	19
Table 163. Reset active status register 1	
(RESET_ACTIVE_STATUS1, address 0x4005	
3154) bit description2	21
Table 164. Reset external status register 1	
(RESET_EXT_STAT1, address 0x4005 3404) b	oit
description	
Table 165. Reset external status register 2	
(RESET_EXT_STAT2, address 0x4005 3408) b	oit
description	
Table 166. Reset external status register 5	
(RESET_EXT_STAT5, address 0x4005 3414) b	oit
description22	24
Table 167. Reset external status registers x	
(RESET_EXT_STATx, address 0x4005 34xx) b	oit
description22	24
Table 168. Reset external status registers y	
(RESET_EXT_STATy, address 0x4005 34yy) bi	it
description22	25
Table 169. LPC1850/30/20/10 Pin description (flashless	
parts)	
Table 170. LPC18xx Pin description (flash-based parts) 2	
Table 171. SCU clocking and power control 33	
Table 172. Pin multiplexing	
Table 173. Register overview: System Control Unit (SCU)	
(base address 0x4008 6000)	
Table 174. Pin configuration registers for normal-drive pins	5
(SFS, address 0x4008 6000 (SPSP0_0) to	

UM10430

Chapter 49: Supplementary information

	(STATICWAITOEN[0:3], address 0x4000 5208
	(STATICWAITOEN0), 0x4000 5228
	(STATICWAITOEN1), 0x4000 5248
	(STATICWAITOEN2), 0x4000 5268
	(STATICWAITOEN3)) bit description525
Table 372	. Static Memory Read Delay registers
	(STATICWAITRD[0:3], address 0x4000 520C
	(STATICWAITRD0), 0x4000 522C
	(STATICWAITRD1), 0x4000 524C
	(STATICWAITRD2), 0x4000 526C
	(STATICWAITRD3)) bit description
Table 373	. Static Memory Page Mode Read Delay registers
	(STATICWAITPAGE[0:3], address 0x4000 5210
	(STATICWAITPAGE0), 0x4000 5230
	(STATICWAITPAGE1), 0x4000 5250
	(STATICWAITPAGE2), 0x4000 5270
	(STATICWAITPAGE3)) bit description526
Table 374	. Static Memory Write Delay registers
	(STATICWAITWR[0:3], address 0x4000 5214
	(STATICWAITWR0), 0x4000 5234
	(STATICWAITWR1), 0x4000 5254
	(STATICWAITWR2), 0x4000 5274
	(STATICWAITWR3)) bit description
Table 375	. Static Memory Turn-around Delay registers
	(STATICWAITTURN[0:3], address 0x4000 5218
	(STATICWAITTURN0), 0x4000 5238
	(STATICWAITTURN1), 0x4000 5258
	(STATICWAITTURN2), 0x4000 5278
	(STATICWAITTURN3)) bit description 527
Table 376	. SDRAM mode register description
	. USB0 clocking and power control
	. USB related acronyms
	. Fixed endpoint configuration
	. USB Packet size
	. USB0 pin description
	. Register access abbreviations
Table 383	. Register overview: USB0 OTG controller (register
	base address 0x4000 6000)541
Table 384	. System bus interface configuration register
	(SBUSCFG - address 0x4000 6090) bit
	description
Table 385	. CAPLENGTH register (CAPLENGTH - address
	0x4000 6100) bit description
Table 386	. HCSPARAMS register (HCSPARAMS - address
	0x4000 6104) bit description
Table 387	. HCCPARAMS register (HCCPARAMS - address
	0x4000 6108) bit description545
Table 388	. DCIVERSION register (DCIVERSION - address
	0x4000 6120) bit description545
	. DCCPARAMS (address 0x4000 6124)546
Table 390	. USB Command register in device mode
	(USBCMD_D - address 0x4000 6140) bit
	description
Table 391	. USB Command register in host mode
	(USBCMD_H - address 0x4000 6140) bit
	description - host mode
	. Frame list size values
Table 393	. USB Status register in device mode (USBSTS_D

	- address 0x4000 6144) register bit description 550
Table 394	. USB Status register in host mode (USBSTS_H - address 0x4000 6144) register bit description
Table 395	552 . USB Interrupt register in device mode (USBINTR_D - address 0x4000 6148) bit
Table 396	description
Table 397	. USB frame index register in device mode (FRINDEX_D - address 0x4000 614C) bit
Table 398	description
Table 399	. Number of bits used for the frame list index . 557
	. USB Device Address register in device mode
	(DEVICEADDR - address 0x4000 6154) bit description
Table 401	. USB Periodic List Base register in host mode
	(PERIODICLISTBASE - address 0x4000 6154) bit
Table 402	description
	mode (ENDPOINTLISTADDR - address 0x4000
	6158) bit description
Table 403	. USB Asynchronous List Address register in host
	mode (ASYNCLISTADDR- address 0x4000 6158)
	bit description
Table 404	. USB TT Control register in host mode (TTCTRL -
	address 0x4000 615C) bit description 559
Table 405	. USB burst size register (BURSTSIZE - address
	0x4000 6160) bit description - device/host mode
T 1 1 100	560
Table 406	. USB Transfer buffer Fill Tuning register in host
	mode (TXFILLTUNING - address 0x4000 6164) bit description
Table 407	. USB BINTERVAL register (BINTERVAL - address
	0x4000 6174) bit description
Table 408	. USB endpoint NAK register (ENDPTNAK -
	address 0x4000 6178) bit description 562
Table 409	. USB Endpoint NAK Enable register
	(ENDPTNAKEN - address 0x4000 617C) bit
	description
Table 410	. Port Status and Control register in device mode
	(PORTSC1_D - address 0x4000 6184) bit
Table 411	description
	(PORTSC1_H - address 0x4000 6184) bit
	description
Table 412	. Port states as described by the PE and SUSP bits
	in the PORTSC1 register
Table 413	. OTG Status and Control register (OTGSC -
	address 0x4000 61A4) bit description 571
Table 414	. USB Mode register in device mode
	(USBMODE_D - address 0x4000 61A8) bit
T.I.I. 477	description
Table 415	. USB Mode register in host mode (USBMODE_H - address 0x4000 61A8) bit description 574