

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0412sj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Interrupt Request Control Registers	238
GPIO Control Registers	241
Watchdog Timer Control Registers	244
Flash Control Registers	246
Index	248
Customer Support	258

ilog° Embedded in Life An∎IXYS Company

7

Signal and Pin Descriptions

Z8 Encore! XP[®] F0822 Series products are available in a variety of packages, styles, and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information regarding the physical package specifications, see the <u>Packaging</u> chapter on page 221.

Available Packages

Table 2 identifies the package styles available for each device within the Z8 Encore! XP^{\circledast} F0822 Series.

	00 Din 000D	
10-Bit ADC	and PDIP	28-Pin SOIC and PDIP
Yes		Х
Yes	Х	
No		Х
No	Х	
Yes		Х
Yes	Х	
No		Х
No	Х	
	10-Bit ADC Yes No No Yes Yes No No	10-Bit ADCand PDIPYesXYesXNoXYesXYesXYesXNoXNoXNoX

Table 2. Z8 Encore! XP[®] F0822 Series Package Options

Pin Configurations

Figures 2 through 5 display the pin configurations for all of the packages available in the Z8 Encore! $XP^{\textcircled{B}}$ F0822 Series. See <u>Table 4</u> on page 13 for a description of the signals.

Note: The analog input alternate functions (ANAx) are not available on Z8 Encore! XP[®] F0822 Series devices.

ILO G

13

Pin Characteristics

Table 4 provides detailed information about the characteristics for each pin available on Z8 Encore! $XP^{\textcircled{B}}$ F0822 Series products. The data in Table 4 is sorted alphabetically by pin symbol mnemonic.

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tri-State Output	Internal Pull-Up or Pull-Down	Schmitt-Trigger Input	Open Drain Output
AV _{DD}	N/A	N/A	N/A	N/A	No	No	N/A
AV _{SS}	N/A	N/A	N/A	N/A	No	No	N/A
DBG	I/O	I	N/A	Yes	No	Yes	Yes
PA[7:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, pro- grammable
PB[4:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, pro- grammable
PC[5:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, pro- grammable
RESET	I	I	Low	N/A	Pull-up	Yes	N/A
V _{DD}	N/A	N/A	N/A	N/A	No	No	N/A
V _{REF}	Analog	N/A	N/A	N/A	No	No	N/A
V _{SS}	N/A	N/A	N/A	N/A	No	No	N/A
X _{IN}	Ι	I	N/A	N/A	No	No	N/A
X _{OUT}	0	0	N/A	No	No	No	No

Table 4. Pin Characteristics

nbedded in Life

15

Program Memory

The eZ8 CPU supports 64KB of Program memory address space. Z8 Encore! XP[®] F0822 Series contain 4KB to 8KB on-chip Flash in the Program memory address space, depending on the device. Reading from Program memory addresses outside the available Flash addresses returns FFH. Writing to unimplemented Program memory addresses produces no effect. Table 5 describes the Program memory Maps for Z8 Encore! XP[®] F0822 Series devices.

Program Memory Address (Hex)	Function
Z8F082x and Z8F081x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-1FFF	Program Memory
Z8F042x and Z8F041x Products	
0000-0001	Option Bits
0002-0003	Reset Vector
0004-0005	WDT Interrupt Vector
0006-0007	Illegal Instruction Trap
0008-0037	Interrupt Vectors*
0038-0FFF	Program Memory
Note: *See Table 24 on page 41 for a lis	t of the interrupt vectors.

Table 5. Z8 Encore! XP[®] F0822 Series Program Memory Maps

Data Memory

Z8 Encore! $XP^{(0)}$ F0822 Series does not use the eZ8 CPU's 64KB Data Memory address space.

Information Area

Table 6 describes the Z8 Encore! XP[®] F0822 Series Information Area. This 512-byte Information Area is accessed by setting bit 7 of the Page Select Register to 1. When access is enabled, the Information Area is mapped into the Program memory and overlays the 512 bytes at addresses FE00H to FFFFH. When the Information Area access is enabled, all

Embedded in Life

18

Address (Hex	() Register Description	Mnemonic	Reset (Hex)	Page No
UART 0				
F40	UART0 Transmit Data	U0TXD	XX	<u>88</u>
	UART0 Receive Data	U0RXD	XX	<u>89</u>
F41	UART0 Status 0	U0STAT0	0000011Xb	<u>90</u>
F42	UART0 Control 0	U0CTL0	00	<u>92</u>
F43	UART0 Control 1	U0CTL1	00	<u>92</u>
F44	UART0 Status 1	U0STAT1	00	<u>90</u>
F45	UART0 Address Compare Register	U0ADDR	00	<u>94</u>
F46	UART0 Baud Rate High Byte	U0BRH	FF	<u>95</u>
F47	UART0 Baud Rate Low Byte	U0BRL	FF	<u>95</u>
F48–F4F	Reserved	—	XX	
l ² C				
F50	I ² C Data	I2CDATA	00	<u>129</u>
F51	I ² C Status	I2CSTAT	80	<u>129</u>
F52	I ² C Control	I2CCTL	00	<u>131</u>
F53	I ² C Baud Rate High Byte	I2CBRH	FF	<u>132</u>
F54	I ² C Baud Rate Low Byte	I2CBRL	FF	<u>132</u>
F55	I ² C Diagnostic State	I2CDST	XX000000b	<u>133</u>
F56	I ² C Diagnostic Control	I2CDIAG	00	<u>135</u>
F57–F5F	Reserved	_	XX	
Serial Periphe	eral Interface (SPI) Unavailable in 20-Pin	Package Devices		
F60	SPI Data	SPIDATA	01	109
F61	SPI Control	SPICTL	00	<u>110</u>
F62	SPI Status	SPISTAT	00	<u>111</u>
F63	SPI Mode	SPIMODE	00	<u>112</u>
F64	SPI Diagnostic State	SPIDST	00	<u>113</u>
F65	Reserved	—	XX	
F66	SPI Baud Rate High Byte	SPIBRH	FF	<u>114</u>
F67	SPI Baud Rate Low Byte	SPIBRL	FF	<u>114</u>
F68–F6F	Reserved		XX	

Table 7. Register File Address Map (Continued)

Note: XX = undefined.

Iloa

27

Low-Power Modes

Z8 Encore! XP[®] F0822 Series products contain power-saving features. The highest level of power reduction is provided by STOP Mode. The next level of power reduction is provided by the HALT Mode.

STOP Mode

Execution of the eZ8 CPU's stop instruction places the device into STOP Mode. In STOP Mode, the operating characteristics are:

- Primary crystal oscillator is stopped; the X_{IN} pin is driven High and the X_{OUT} pin is driven Low
- System clock is stopped
- eZ8 CPU is stopped
- Program counter (PC) stops incrementing
- If enabled for operation in STOP Mode, the WDT and its internal RC oscillator continue to operate
- If enabled for operation in STOP Mode through the associated option bit, the VBO protection circuit continues to operate
- All other on-chip peripherals are idle

To minimize current in STOP Mode, WDT must be disabled and all GPIO pins configured as digital inputs must be driven to one of the supply rails (V_{CC} or GND). The device can be brought out of STOP Mode using Stop Mode Recovery. For more information about Stop Mode Recovery, see the <u>Reset and Stop Mode Recovery</u> chapter on page 21.

Caution: STOP Mode must not be used when driving the Z8F082x family devices with an external clock driver source.

HALT Mode

Execution of the eZ8 CPU's HALT instruction places the device into HALT Mode. In HALT Mode, the operating characteristics are:

• Primary crystal oscillator is enabled and continues to operate

Observe the following procedure for configuring a timer for CONTINUOUS Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CONTINUOUS Mode
 - Set the prescale value.
 - If using the Timer Output alternate function, set the initial output level (High or Low)
- 2. Write to the Timer High and Low Byte registers to set the starting count value (usually 0001H). This starting count value only affects the first pass in CONTINUOUS Mode. After the first timer reload in CONTINUOUS Mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the Timer Output function, configure the associated GPIO port pin for the Timer Output alternate function.
- 6. Write to the Timer Control Register to enable the timer and initiate counting.

In CONTINUOUS Mode, the system clock always provides the timer input. The timer period is calculated using the following equation:

CONTINUOUS Mode Time-Out Period (s) = Reload Value x Prescale System Clock Frequency (Hz)

If an initial starting value other than 0001H is loaded into the Timer High and Low Byte registers, the ONE-SHOT Mode equation must be used to determine the first time-out period.

COUNTER Mode

In COUNTER Mode, the timer counts input transitions from a GPIO port pin. The timer input is taken from the GPIO Port pin Timer Input alternate function. The TPOL bit in the Timer Control Register selects whether the count occurs on the rising edge or the falling edge of the Timer Input signal. In COUNTER Mode, the prescaler is disabled.

Caution: The input frequency of the Timer Input signal must not exceed one-fourth system clock frequency.

imbedded in Life TXYS Company 64

Reading the Timer Count Values

The current count value in the timers can be read while counting (enabled). This capability has no effect on timer operation. When the timer is enabled and the Timer High Byte Register is read, the contents of the Timer Low Byte Register are placed in a holding register. A subsequent read from the Timer Low Byte Register returns the value in the holding register. This operation allows accurate reads of the full 16-bit timer count value while enabled. When the timers are not enabled, a read from the Timer Low Byte Register returns the actual value in the counter.

Timer Output Signal Operation

Timer Output is a GPIO port pin alternate function. Generally, the Timer Output is toggled every time the counter is reloaded.

Timer Control Register Definitions

This section defines the features of the following Timer Control registers.

Timer 0-1 High and Low Byte Registers: see page 64

Timer Reload High and Low Byte Registers: see page 65

Timer 0-1 PWM High and Low Byte Registers: see page 66

Timer 0-3 Control 0 Registers: see page 67

Timer 0-1 Control 1 Registers: see page 68

Timer 0–1 High and Low Byte Registers

The Timer 0–1 High and Low Byte (TxH and TxL) registers, shown in Tables 39 and 40, contain the current 16-bit timer count value. When the timer is enabled, a read from TxH causes the value in TxL to be stored in a temporary holding register. A read from TMRL always returns this temporary register when the timers are enabled. When the timer is disabled, reads from the TMRL reads the register directly.

Zilog does not recommend writing to the Timer High and Low Byte registers while the timer is enabled. There are no temporary holding registers available for write operations, so simultaneous 16-bit writes are not possible. If either the Timer High or Low Byte registers are written during counting, the 8-bit written value is placed in the counter (High or Low Byte) at the next clock edge. The counter continues counting from the new value.

Embedded in Life

91

Bit	Description (Continued)
[1] TXE	Transmitter Data Register Empty This bit indicates that the UART Transmit Data Register is empty and ready for additional data. Writing to the UART Transmit Data Register resets this bit. 0 = Do not write to the UART Transmit Data Register. 1 = The UART Transmit Data Register is ready to receive an additional byte to be transmitted.
[0] CTS	CTS Signal When this bit is read it returns the level of the CTS signal.

UART Status 1 Register

The UART Status 1 Register, shown in Table 56, contains multiprocessor control and status bits.

Table 56. UART Status 1 Register (U0STAT1)

Bit	7	6	5	4	3	2	1	0	
Field	Reserved NEWFRM MPRX								
RESET	0								
R/W	R R/W R								
Address				F4	4H				

Bit	Description
[7:2]	Reserved These bits are reserved and must be programmed to 000000.
[1] NEWFRM	 New Frame Status bit denoting the start of a new frame. Reading the UART Receive Data Register resets this bit to 0. 0 = The current byte is not the first data byte of a new frame. 1 = The current byte is the first data byte of a new frame.
[0] MPRX	Multiprocessor Receive Returns the value of the last multiprocessor bit received. Reading from the UART Receive Data Register resets this bit to 0.

ilog Embedded in Life An IXYS Company

95

UART Baud Rate High and Low Byte Registers

The UART Baud Rate High and Low Byte registers, shown in Tables 60 and 61, combine to create a 16-bit baud rate divisor value (BRG[15:0]) that sets the data transmission rate (baud rate) of the UART.

Table 60. UART Baud Rate High Byte Register (U0BRH)

Bit	7	6	5	4	3	2	1	0		
Field		BRH								
RESET	1									
R/W	R/W									
Address				F4	6H					

Table 61. UART Baud Rate Low Byte Register (U0BRL)

Bit	7	6	5	4	3	2	1	0		
Field		BRL								
RESET	1									
R/W	R/W									
Address				F4	7H					

The UART data rate is calculated using the following equation:

UART Baud Rate (bits/s) = $\frac{\text{System Clock Frequency (Hz)}}{16 \text{ xUART Baud Rate Divisor Value}}$

For a given UART data rate, the integer baud rate divisor value is calculated using the following equation:

UART Baud Rate Divisor Value (BRG) = Round
$$\left(\frac{\text{System Clock Frequency (Hz)}}{16x\text{UART Data Rate (bits/s)}}\right)$$

The baud rate error relative to the desired baud rate is calculated using the following equation:

182

С

Figure 44 displays the maximum HALT Mode current consumption across the entire operating temperature range of the device and plotted opposite the system clock frequency. All GPIO pins are configured as outputs and driven High.

Figure 44. Maximum HALT Mode I_{CC} vs. System Clock Frequency

> ilog mbedded in Life

185

AC Characteristics

Table 99 provides information about the AC characteristics and timing. All AC timing information assumes a standard load of $50 \mathrm{pF}$ on all outputs.

		V _{DD} = 2 T _A = -40°	2.7–3.6V C to 105°C		
Symbol	Parameter	Minimum	Maximum	Units	Conditions
F _{SYSCLK}	System Clock Frequency (ROM)	-	20.0	MHz	
F _{SYSCLK}	System Clock Frequency (Flash)	-	20.0	MHz	Read-only from Flash mem- ory.
		0.032768	20.0	MHz	Program or erasure of Flash memory.
F _{XTAL}	Crystal Oscillator Frequency	0.032768	20.0	MHz	System clock frequencies below the crystal oscillator minimum require an exter- nal clock driver.
T _{XIN}	System Clock Period	50	-	ns	$T_{CLK} = 1/F_{SYSCLK}$
T _{XINH}	System Clock High Time	20	30	ns	T _{CLK} = 50ns
T _{XINL}	System Clock Low Time	20	30	ns	T _{CLK} = 50ns

Table 99. AC Characteristics

198

С

resented here by \overline{DE} . \overline{DE} asserts after the UART Transmit Data Register has been written. \overline{DE} remains asserted for multiple characters as long as the Transmit Data Register is written with the next character before the current character has completed.

Table	113.	UART	Timing	without	стѕ
-------	------	------	--------	---------	-----

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
T ₁	DE Assertion to TXD Falling Edge (Start) Delay	1 Bit period	1 Bit period + 1 * X _{IN} period		
T ₂	End of Stop Bit(s) to DE Deassertion Delay	1 * X _{IN} period	2 * X _{IN} period		

Embedded in Life

211

										-		
Assembly	Symbolic	Add Mo	ress de	Op ∟ Code(s)			Fla	ıgs			Fetch	Instr.
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	н	Cycles	Cycles
DECW dst	dst ← dst – 1	RR		80	-	*	*	*	-	-	2	5
		IRR		81	_					-	2	6
DI	IRQCTL[7] ← 0			8F	-	-	-	-	-	-	1	2
DJNZ dst, RA	$dst \leftarrow dst - 1$ if dst $\neq 0$ PC \leftarrow PC + X	r		0A-FA	-	-	-	-	-	-	2	3
EI	IRQCTL[7] ← 1			9F	-	-	-	-	-	-	1	2
HALT	HALT Mode			7F	-	-	-	-	-	-	1	2
INC dst	dst ← dst + 1	R		20	-	*	*	*	-	-	2	2
		IR		21	-					-	2	3
		r		0E-FE	-					-	1	2
INCW dst	dst ← dst + 1	RR		A0	-	*	*	*	-	-	2	5
		IRR		A1	_					-	2	6
IRET	$FLAGS \leftarrow @SP$ $SP \leftarrow SP + 1$ $PC \leftarrow @SP$ $SP \leftarrow SP + 2$ $IRQCTL[7] \leftarrow 1$			BF	*	*	*	*	*	*	1	5
JP dst	PC ← dst	DA		8D	-	-	-	-	-	-	3	2
		IRR		C4							2	3
JP cc, dst	if cc is true PC ← dst	DA		0D-FD	-	-	-	-	-	-	3	2
JR dst	$PC \gets PC + X$	DA		8B	-	-	-	-	-	-	2	2
JR cc, dst	if cc is true PC \leftarrow PC + X	DA		0B-FB	-	-	-	-	-	-	2	2

Table 127. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

ilog° Embedded in Life An∎IXYS Company

212

Assembly	Symbolic	Address Mode		Op Code(s)	Flags						Fetch	Instr.
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	н	Cycles	Cycles
LD dst, rc	$dst \gets src$	r	IM	0C-FC	-	-	-	-	-	-	2	2
		r	X(r)	C7	-						3	3
		X(r)	r	D7	-						3	4
		r	Ir	E3	-						2	3
		R	R	E4	-						3	2
		R	IR	E5	-						3	4
		R	IM	E6	-						3	2
		IR	IM	E7	-						3	3
		lr	r	F3	-						2	3
		IR	R	F5	-						3	3
LDC dst, src	$dst \gets src$	r	Irr	C2	-	-	-	-	-	-	2	5
		lr	Irr	C5	-						2	9
		Irr	r	D2	-						2	5
LDCI dst, src	$dst \gets src$	lr	Irr	C3	-	-	-	-	-	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	D3	-						2	9
LDE dst, src	dst ← src	r	Irr	82	-	-	-	-	-	-	2	5
		Irr	r	92	-						2	5
LDEI dst, src	$dst \gets src$	lr	Irr	83	-	-	-	-	-	-	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	-						2	9
LDWX dst, src	dst ← src	ER	ER	1F E8	-	-	-	-	-	-	5	4

Table 127. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Z8 Encore! XP®	F0822	Series
Product	Specif	ication

226

Hex Address: F01

Table 131. Timer 0–1 Low Byte Register (TxL)

Bit	7	6	5	4	3	2	1	0			
Field	TL										
RESET	0										
R/W	R/W										
Address		F01H, F09H									

Hex Address: F02

Table 132. Timer 0–1 Reload High Byte Register (TxRH)

Bit	7	6	5	4	3	2	1	0	
Field	TRH								
RESET	1								
R/W	R/W								
Address	F02H, F0AH								

Hex Address: F03

Table 133. Timer 0–1 Reload Low Byte Register (TxRL)

Bit	7	6	5	4	3	2	1	0	
Field	TRL								
RESET	1								
R/W		R/W							
Address	F03H, F0BH								

Z8 Encore! XI	P [®] F0822 Series
Produ	ct Specification

236

Hex Address: F63

Table 165. SPI Mode Register (SPIMODE)

Bit	7	6	5	4	3	1	0			
Field	Rese	erved	DIAG	N	IUMBITS[2:0	SSIO	SSV			
RESET		0								
R/W	F	२		R/W						
Address		F63H								

Hex Address: F64

Table 166. SPI Diagnostic State Register (SPIDST)

Bit	7	6	5	5 4 3 2 1							
Field	SCKEN	TCKEN		SPISTATE							
RESET		0									
R/W		R									
Address		F64H									

Hex Address: F65

This address is reserved.

Hex Address: F66

Table 167. SPI Baud Rate High Byte Register (SPIBRH)

Bit	7	6	5	4	3	2	1	0		
Field		BRH								
RESET	1									
R/W		R/W								
Address		F66H								

Hex Address: FC1

Table 173. IRQ0 Enable High Bit Register (IRQ0ENH)

Bit	7	6	5	4	3	2	1	0		
Field	Reserved	T1ENH	T0ENH	U0RENH	U0TENH	I2CENH	SPIENH	ADCENH		
RESET	0									
R/W		R/W								
Address		FC1H								

Hex Address: FC2

Table 174. IRQ0 Enable Low Bit Register (IRQ0ENL)

Bit	7	6	5	4	3	2	1	0		
Field	Reserved	T1ENL	T0ENL	UORENL	U0TENL	I2CENL	SPIENL	ADCENL		
RESET		0								
R/W		R/W								
Address	FC2H									

Hex Address: FC3

Table 175. Interrupt Request 1 Register (IRQ1)

Bit	7	6	5	4	3	2	1	0		
Field	PA7I	PA6I	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I		
RESET		0								
R/W		R/W								
Address		FC3H								

Hex Address: FC4

Table 176. IRQ1 Enable High Bit Register (IRQ1ENH)

Bit	7	6	5	4	3	2	1	0		
Field	PA7ENH	PA6ENH	PA5ENH	PA4ENH	PA3ENH	PA2ENH	PA1ENH	PA0ENH		
RESET		0								
R/W		R/W								
Address		FC4H								

253

RA 202 RR 202 rr 202 vector 202 X 202 notational shorthand 201

0

OCD architecture 158 autobaud detector/generator 161 baud rate limits 162 block diagram 158 breakpoints 162 commands 164 control register 169 data format 161 DBG pin to RS-232 Interface 159 debug mode 160 debugger break 207 interface 159 serial errors 162 status register 171 timing 193 OCD commands execute instruction (12H) 168 read data memory (0DH) 168 read OCD control register (05H) 166 read OCD revision (00H) 165 read OCD status register (02H) 165 read program counter (07H) 166 read program memory (0BH) 167 read program memory CRC (0EH) 168 read register (09H) 167 read runtime counter (03H) 165 step instruction (10H) 168 stuff instruction (11H) 168 write data memory (0CH) 167 write OCD control register (04H) 166 write program counter (06H) 166 write program memory (0AH) 167 write register (08H) 166 on-chip debugger 5

on-chip debugger (OCD) 158 on-chip debugger signals 12 on-chip oscillator 172 one-shot mode 68 opcode map abbreviations 218 cell description 218 first 219 second after 1FH 220 Operational Description 77 OR 207 ordering information 222 ORX 207 oscillator signals 11

Ρ

Packaging 221 part selection guide 2 PC 202 peripheral AC and DC electrical characteristics 186 PHASE=0 timing (SPI) 105 PHASE=1 timing (SPI) 106 pin characteristics 13 polarity 201 **POP 206** pop using extended addressing 206 **POPX 206** port availability, device 29 port input timing (GPIO) 191 port output timing, GPIO 192 power supply signals 12 power-down, automatic (ADC) 137 power-on and voltage brown-out electrical characteristics and timing 186 power-on reset (POR) 22 program control instructions 207 program counter 202 program flash configurations 143 program memory 15, 143 PUSH 206 push using extended addressing 206 PUSHX 206

257

Х

X 202 XOR 207 XORX 207

Ζ

Z8 Encore! block diagram 3 features 1 introduction 1 part selection guide 2