

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0811ph020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

Each instance in Revision History reflects a change to this document from its previous revision. For more details, refer to the corresponding pages and appropriate links in the table below.

Date	Revision Level	Description	Page
Oct 2011	18	Added LDWX information to Load Instructions table, eZ8 CPU Instruction Summary table and to Second Op Code Map after 1FH figure; revised Flash Sector Protect Register description; revised Packaging chapter.	<u>206, 212,</u> <u>220, 152,</u> <u>221</u>
May 2008	17	Removed Flash Microcontrollers from the title throughout the document.	All
Feb 2008	16	Updated the flag status for BCLR, BIT, and BSET in eZ8 CPU Instruction Summary table.	<u>208</u>
Dec 2007	15	Updated Zilog logo/text, Foreword section. Updated Z8 Encore! 8K Series to Z8 Encore! XP [®] F0822 Series Flash Microcontrollers throughout the document.	All

iii

Embedded in Life

n IXYS Company

Embedded in Life

5

10-Bit Analog-to-Digital Converter

The optional Analog-to-Digital Converter (ADC) converts an analog input signal to a 10bit binary number. The ADC accepts inputs from 2 to 5 different analog input sources.

UART

The Universal Asynchronous Receiver/Transmitter (UART) is full-duplex and capable of handling asynchronous data transfers. The UART supports 8-bit and 9-bit data modes and selectable parity.

I²C

The Inter-Integrated Circuit (I^2C) controller makes the Z8 Encore! XP compatible with the I^2C protocol. The I^2C Controller consists of two bidirectional bus lines, a serial data (SDA) line, and a serial clock (SCL) line.

Serial Peripheral Interface

The Serial Peripheral Interface (SPI) allows the Z8 Encore! XP to exchange data between other peripheral devices such as EEPROMs, A/D converters, and ISDN devices. The SPI is a full-duplex, synchronous, and character-oriented channel that supports a four-wire interface.

Timers

Two 16-bit reloadable timers are used for timing/counting events or for motor control operations. These timers provide a 16-bit programmable reload counter and operate in One-Shot, Continuous, Gated, Capture, Compare, Capture and Compare, and PWM modes.

Interrupt Controller

Z8 Encore! XP[®] F0822 Series products support up to 18 interrupts. These interrupts consist of 7 internal peripheral interrupts and 11 GPIO pin interrupt sources. The interrupts have 3 levels of programmable interrupt priority.

Reset Controller

Z8 Encore! XP[®] F0822 Series products are reset using the RESET pin, POR, WDT, STOP Mode exit, or VBO warning signal.

ilog Embedded in Life An IXYS Company

Address (He	ex) Register Description	Mnemonic	Reset (Hex)	Page No
Analog-to-D	igital Converter (ADC)			
F70	ADC Control	ADCCTL	20	<u>139</u>
F71	Reserved	_	XX	
F72	ADC Data High Byte	ADCD_H	XX	<u>141</u>
F73	ADC Data Low Bits	ADCD_L	XX	<u>142</u>
F74–FBF	Reserved	—	XX	
Interrupt Co	ntroller			
FC0	Interrupt Request 0	IRQ0	00	<u>45</u>
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	<u>48</u>
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	<u>48</u>
FC3	Interrupt Request 1	IRQ1	00	<u>46</u>
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	<u>49</u>
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	<u>49</u>
FC6	Interrupt Request 2	IRQ2	00	<u>47</u>
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	<u>51</u>
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	<u>51</u>
FC9–FCC	Reserved	—	XX	
FCD	Interrupt Edge Select	IRQES	00	<u>52</u>
FCE	Reserved	—	00	
FCF	Interrupt Control	IRQCTL	00	<u>53</u>
GPIO Port A				
FD0	Port A Address	PAADDR	00	<u>32</u>
FD1	Port A Control	PACTL	00	<u>33</u>
FD2	Port A Input Data	PAIN	XX	<u>38</u>
FD3	Port A Output Data	PAOUT	00	<u>39</u>
GPIO Port B				
FD4	Port B Address	PBADDR	00	<u>32</u>
FD5	Port B Control	PBCTL	00	<u>33</u>
FD6	Port B Input Data	PBIN	XX	<u>38</u>
FD7	Port B Output Data	PBOUT	00	<u>39</u>

Table 7. Register File Address Map (Continued)

Note: XX = undefined.

19

Embedded in Life An TIXYS Company 21

Reset and Stop Mode Recovery

The Reset Controller within the Z8 Encore! XP[®] F0822 Series controls Reset and Stop Mode Recovery operation. In typical operation, the following events cause a Reset to occur:

- Power-On Reset (POR)
- Voltage Brown-Out
- WDT time-out (when configured through the WDT_RES option bit to initiate a Reset)
- External **RESET** pin assertion
- On-Chip Debugger initiated Reset (OCDCTL[0] set to 1)

When the Z8 Encore! XP[®] F0822 Series device is in STOP Mode, a Stop Mode Recovery is initiated by any of the following events:

- WDT time-out
- GPIO Port input pin transition on an enabled Stop Mode Recovery source
- DBG pin driven Low

Reset Types

Z8 Encore! XP[®] F0822 Series provides two types of reset operation (System Reset and Stop Mode Recovery). The type of reset is a function of both the current operating mode of the Z8 Encore! XP[®] F0822 Series device and the source of the Reset. Table 8 lists the types of Resets and their operating characteristics.

Table 8. Reset and Stop Mode Recovery Characteristics and Latency

Reset Characteristics and Latency					
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)		
System Reset	Reset (as applicable)	Reset	66 WDT Oscillator cycles + 16 System Clock cycles		
Stop Mode Recovery	Unaffected, except for the WDT_CTL Register	Reset	66 WDT Oscillator cycles + 16 System Clock cycles		

System Reset

During a System Reset, a Z8 Encore! XP[®] F0822 Series device is held in Reset for 66 cycles of the WDT oscillator followed by 16 cycles of the system clock. At the beginning

In COMPARE Mode, the system clock always provides the timer input. The Compare time is calculated by the following equation:

Compare Mode Time (s) = (Compare Value – Start Value)xPrescale System Clock Frequency (Hz)

GATED Mode

In GATED Mode, the timer counts only when the Timer Input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control Register. When the Timer Input signal is asserted, counting begins. A timer interrupt is generated when the Timer Input signal is deasserted or a timer reload occurs. To determine if a Timer Input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. When reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the Timer Input signal is still asserted). Also, if the Timer Output alternate function is enabled, the Timer Output pin changes state (from Low to High or from High to Low) at timer reset.

Observe the following procedure for configuring a timer for GATED Mode and initiating the count:

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for GATED Mode
 - Set the prescale value
- 2. Write to the Timer High and Low Byte registers to set the starting count value. This only affects the first pass in GATED Mode. After the first timer reset in GATED Mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. If appropriate, enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. Configure the associated GPIO port pin for the Timer Input alternate function.
- 6. Write to the Timer Control Register to enable the timer.
- 7. Assert the Timer Input signal to initiate the counting.

Universal Asynchronous Receiver/ Transmitter

The Universal Asynchronous Receiver/Transmitter (UART) is a full-duplex communication channel capable of handling asynchronous data transfers. The UART uses a single 8-bit data mode with selectable parity. Features of the UART include:

- 8-bit asynchronous data transfer
- · Selectable even- and odd-parity generation and checking
- Option of one or two stop bits
- Separate transmit and receive interrupts
- Framing, parity, overrun, and break detection
- Separate transmit and receive enables
- 16-bit Baud Rate Generator
- Selectable MULTIPROCESSOR (9-Bit) Mode with three configurable interrupt schemes
- BRG timer mode
- Driver Enable output for external bus transceivers

Architecture

The UART consists of three primary functional blocks: Transmitter, Receiver, and Baud Rate Generator. The UART's transmitter and receiver functions independently, but use the same baud rate and data format. Figure 11 displays the UART architecture.

- Read data from the UART Receive Data Register. If operating in MULTIPROCES-SOR (9-Bit) Mode, further actions may be required depending on the Multiprocessor Mode bits MPMD[1:0].
- 7. Return to <u>Step 5</u> to receive additional data.

Receiving Data Using Interrupt-Driven Method

The UART Receiver interrupt indicates the availability of new data (as well as error conditions). Observe the following procedure to configure the UART receiver for interruptdriven operation:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the required baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt Control registers to enable the UART Receiver interrupt and set the required priority.
- 5. Clear the UART Receiver interrupt in the applicable Interrupt Request Register.
- 6. Write to the UART Control 1 Register to enable MULTIPROCESSOR (9-Bit) Mode functions, if appropriate.
 - Set the Multiprocessor Mode Select (MPEN) to enable MULTIPROCESSOR Mode.
 - Set the Multiprocessor Mode bits, MPMD[1:0], to select the required address matching scheme.
 - Configure the UART to interrupt on received data and errors or errors only (interrupt on errors only is unlikely to be useful for Z8 Encore! XP devices without a DMA block)
- 7. Write the device address to the Address Compare Register (automatic multiprocessor modes only).
- 8. Write to the UART Control 0 Register to:
 - Set the receive enable bit (REN) to enable the UART for data reception
 - Enable parity, if required, and if MULTIPROCESSOR Mode is not enabled, and select either even or odd parity.
- 9. Execute an EI instruction to enable interrupts.

Bit	7	6	5	4	3	2	1	0
Field				Tک	(D			
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	W	W	W	W	W	W	W	W
Address				F4	ОН	•		

Table 53. UART Transmit Data Register (U0TXD)

Bit	Description
[7:0]	Transmit Data
TXD	UART transmitter data byte to be shifted out through the TXDx pin.

UART Receive Data Register

Data bytes received through the RXDx pin are stored in the UART Receive Data Register, which is shown in Table 54. The read-only UART Receive Data Register shares a Register File address with the write-only UART Transmit Data Register.

Table 54. UART Receive Data Register (U0RXD)

7	6	5	4	3	2	1	0
	RXD						
	Х						
	R						
F40H							
	7	7 6	7 6 5	R)	RXD R	7 6 3 4 3 2 RXD X R	7 6 5 4 3 2 1 RXD X R

Bit	Description
[7:0]	Receive Data
RXD	UART receiver data byte from the RXDx pin.

Embedded in Life An IXYS Company

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers, shown in Tables 57 and 58, configure the properties of the UART's transmit and receive operations. The UART Control registers must not been written while the UART is enabled.

Table 57. UART Control 0 Register (U0CTL0)

Bit	7	6	5	4	3	2	1	0
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN
RESET				()			
R/W				R/	W			
Address				F4	2H			
Bit	Descriptio	n						
[7]	Transmit E							
TEN		ables or disa	bles the trar	nsmitter. The	e enable is a	lso controlle	ed by the \overline{CT}	S signal
	and the CT	SE bit. If the	CTS signal					0
		itter disable itter enable						
[0]	Receive Er		J.					
[6] REN		n able ables or disa	bles the rec	eiver				
11211	0 = Receive							
	1 = Receive	er enabled.						
[5]			<i></i>					
CTSE		S signal has				ntrol from the	e transmitter	
[4]	Parity Ena			olgrial do al				·
PEN		ables or disa	bles parity. I	Even or odd	is determine	ed by the PS	SEL bit. This	bit is over-
	,	ne MPEN bit						
	0 = Parity is 1 = The training		ds data with	an addition	al parity bit :	and the rece	eiver receive	s an addi-
	1 = The transmitter sends data with an additional parity bit and the receiver receives an a tional parity bit.							
[3]	Parity Sele							
PSEL	0 = Even parity is transmitted and expected on all received data.							
[0]	1 = Odd parity is transmitted and expected on all received data. Send Break							
[2] SBRK		κ ises or breał	ks data trans	mission by	forcina the T	ransmit data	a output to 0	. Sending a
	break interr	upts any tra	nsmission ir	n progress, s	so ensure that	at the transn	nitter has fin	ished send-
		fore setting						
		easserted. S			uration of the	e break and	the duration	l of any
	0 = No brea		e .onoming t	broan				
	1 = The out	tput of the tr	ansmitter is	zero.				

ilog° Embedded in Life An∎IXYS Company

Bit	Description (Continued)
[1] STOP	Stop Bit Select 0 = The transmitter sends one stop bit. 1 = The transmitter sends two stop bits.
[0] LBEN	Loop Back Enable 0 = Normal operation. 1 = All transmitted data is looped back to the receiver.

Table 58. UART Control 1 Register (U0CTL1)

Bit	7	6	5	4	3	2	1	0
Field	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN
RESET		0						
R/W		R/W						
Address		F43H						

Bit	Description
[7,5] MPMD[1,0]	 00 = The UART generates an interrupt request on all received bytes (data and address). 01 = The UART generates an interrupt request only on received address bytes. 10 = The UART generates an interrupt request when a received address byte matches the value stored in the Address Compare Register and on all successive data bytes until an address mismatch occurs. 11 = The UART generates an interrupt request on all received data bytes for which the most
[6] MPEN	recent address byte matched the value in the Address Compare Register. Multiprocessor (9-Bit) Enable This bit is used to enable MULTIPROCESSOR (9-Bit) Mode. 0 = Disable MULTIPROCESSOR (9-Bit) Mode. 1 = Enable MULTIPROCESSOR (9-Bit) Mode.
[4] MPBT	Multiprocessor Bit TransmitThis bit is applicable only when MULTIPROCESSOR (9-Bit) Mode is enabled.0 = Send a 0 in the multiprocessor bit location of the data stream (9th bit).1 = Send a 1 in the multiprocessor bit location of the data stream (9th bit).
[3] DEPOL	Driver Enable Polarity 0 = DE signal is Active High. 1 = DE signal is Active Low.

ILO Embedded in Life IXYS Company 119

Start and Stop Conditions

The Master (I^2C) drives all Start and Stop signals and initiates all transactions. To start a transaction, the I^2C Controller generates a start condition by pulling the SDA signal Low while SCL is High. To complete a transaction, the I^2C Controller generates a Stop condition by creating a Low-to-High transition of the SDA signal while the SCL signal is High. The start and stop bits in the I^2C Control Register control the sending of start and stop conditions. A Master is also allowed to end one transaction and begin a new one by issuing a restart. This restart issuance is accomplished by setting the start bit at the end of a transaction rather than setting the stop bit.

Note: The start condition is not sent until the start bit is set and data has been written to the I²C Data Register.

Master Write and Read Transactions

The following sections provide Zilog's recommended procedure for performing I^2C write and read transactions from the I^2C Controller (Master) to slave I^2C devices. In general, software should rely on the TDRE, RDRF and NCKI bits of the status register (these bits generate interrupts) to initiate software actions. When using interrupts or DMA, the TXI bit is set to start each transaction and cleared at the end of each transaction to eliminate a *trailing* transmit interrupt.

Caution: Caution should be used in using the ACK status bit within a transaction because it is difficult for software to tell when it is updated by hardware.

When writing data to a slave, the I^2C pauses at the beginning of the Acknowledge cycle if the data register has not been written with the next value to be sent (TDRE bit in the I^2C Status Register equal to 1). In this scenario where software is not keeping up with the I^2C bus (TDRE asserted longer than one byte time), the Acknowledge clock cycle for byte *n* is delayed until the data register is written with byte n+1, and appears to be grouped with the data clock cycles for byte n+1. If either the start or stop bit is set, the I^2C does not pause prior to the Acknowledge cycle because no additional data is sent.

When a Not Acknowledge condition is received during a write (either during the address or data phases), the I²C Controller generates the Not Acknowledge interrupt (NCKI = 1) and pause until either the stop or start bit is set. Unless the Not Acknowledge was received on the last byte, the data register will already have been written with the next address or data byte to send. In this case the FLUSH bit of the control register should be set at the same time the stop or start bit is set to remove the stale transmit data and enable subsequent transmit interrupts.

174

Oscillator Operation with an External RC Network

The External RC oscillator mode is applicable to timing insensitive applications. Figure 39 displays a recommended configuration for connection with an external resistorcapacitor (RC) network.

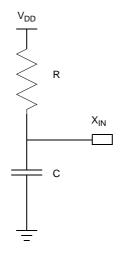


Figure 39. Connecting the On-Chip Oscillator to an External RC Network

An external resistance value of 45 k Ω is recommended for oscillator operation with an external RC network. The minimum resistance value to ensure operation is 40 k Ω . The typical oscillator frequency can be estimated from the values of the resistor (*R* in k Ω) and capacitor (*C* in pF) elements using the below equation:

Oscillator Frequency (kHz) =
$$\frac{1 \times 10^{6}}{(0.4 \times R \times C) + (4 \times C)}$$

Figure 40 displays the typical $(3.3 \text{ V} \text{ and } 25^{\circ}\text{C})$ oscillator frequency as a function of the capacitor (*C* in pF) employed in the RC network assuming a 45 k Ω external resistor. For very small values of C, the parasitic capacitance of the oscillator X_{IN} pin and the printed circuit board should be included in the estimation of the oscillator frequency.

It is possible to operate the RC oscillator using only the parasitic capacitance of the package and printed circuit board. To minimize sensitivity to external parasites, external capacitance values in excess of 20pF are recommended.

186

ilog[®]

On-Chip Peripheral AC and DC Electrical Characteristics

Table 100 provides information about the Power-On Reset and Voltage Brown-Out electrical characteristics.

Table 100. Power-On Reset and Voltage Brown-Out Electrical Characteristics and Timing	
---	--

		T _A =	–40°C to 1	05°C				
Symbol	Parameter	Minimum	Typical*	pical* Maximum		Conditions		
V _{POR}	Power-On Reset Voltage Threshold	2.15	2.40	2.60	V	$V_{DD} = V_{POR}$		
V _{VBO}	Voltage Brown-Out Reset Voltage Threshold	2.05	2.30	2.55	V	$V_{DD} = V_{VBO}$		
	V _{POR} to V _{VBO} hys- teresis	50	100	-	mV			
	Starting V _{DD} voltage to ensure valid POR	-	V_{SS}	-	V			
T _{ANA}	POR Analog Delay	_	50	_	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}		
T _{POR}	POR Digital Delay	-	5.0	-	ms	50 WDT Oscillator cycles (10kHz) + 16 System Clock cycles (20MHz)		
Т _{VBO}	Voltage Brown-Out Pulse Rejection Period	-	10	_	μs	V _{DD} < V _{VBO} to generate a Reset.		
T _{RAMP}	Time for VDD to transition from V_{SS} to V_{POR} to ensure valid Reset	0.10	_	100	ms			

.

Embedded in Life

Table 103 lists Reset and Stop Mode Recovery pin timing data; Table 104 lists Watchdog Timer Electrical Characteristics and Timing data.

		T _A =	-40°C to 1	05°C		
Symbol	Parameter	Minimum	Typical*	Maximum	Units	Conditions
T _{RESET}	Reset pin assertion to initiate a System Reset	4	-	-	T _{CLK}	Not in STOP Mode. T _{CLK} = System Clock period.
T _{SMR}	Stop Mode Recovery pin Pulse Rejection Period	10	20	40	ns	RESET, DBG and GPIO pins configured as SMR sources.

Table 103. Reset and Stop Mode Recovery Pin Timing

Table 104.	Watchdog	Timer Electrica	I Characterist	ics and Timing	

. . .

_--

			_D = 2.7–3. –40°C to 1			
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions
F _{WDT}	WDT Oscillator Frequency	5	10	20	kHz	
I _{WDT}	WDT Oscillator Current including internal RC oscillator	-	< 1	5	μA	

ilog[°] Embedded in Life

190

Table 105 lists ADC electrical characteristics and timing data.

Table 105. Analog-to-Digital Converter Electrical Characteristics and Timing
--

		V _D T _A =	_D = 3.0–3. –40°C to 1	6 V 105°C				
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions		
	Resolution	10	-	-	bits	External V _{REF} = 3.0V		
	Differential Nonlinearity (DNL)	-0.25	-	0.25	lsb	Guaranteed by design		
	Integral Nonlinearity (INL)	-2.0	-	2.0	lsb	External $V_{REF} = 3.0 V$		
	DC Offset Error	-35	-	25	mV	80-pin QFP and 64-pin LQFP packages.		
V _{REF}	Internal Reference Voltage	1.9	2.0	2.4	V	$V_{DD} = 3.0-3.6V$ $T_A = -40^{\circ}C \text{ to } 105^{\circ}C$		
VC _{REF}	Voltage Coefficient of – 78 – Internal Reference Voltage		-	mV/V	V_{REF} variation as a function of $\text{AV}_{\text{DD}}.$			
TC _{REF}	Temperature Coefficient of Internal Reference Voltage	-	1	-	mV/°C			
	Single-Shot Conversion Period		5129		cycles	System clock cycles		
	Continuous Conversion Period		256		cycles	System clock cycles		
R _S	Analog Source Impedance	-	-	150	Ω	Recommended		
Zin	Input Impedance		150		ΚΩ	20MHz system clock. Input impedance increases with lower sys- tem clock frequency.		
V _{REF}	External Reference Voltage			AV _{DD}	V	$AV_{DD} \le V_{DD}$. When using an external refer- ence voltage, decoupling capacitance should be placed from V _{REF} to AV_{SS} .		
I _{REF}	Current draw into V _{REF} pin when driving with external source.		25.0	40.0	μA			

207

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using Extended Addressing
COM	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using Extended Addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using Extended Addressing

Table 124. Logical Instructions

Table 125. Program Control Instructions

Operands	Instruction
_	On-Chip Debugger Break
p, bit, src, DA	Bit Test and Jump
bit, src, DA	Bit Test and Jump if Non-Zero
bit, src, DA	Bit Test and Jump if Zero
dst	Call Procedure
dst, src, RA	Decrement and Jump Non-Zero
—	Interrupt Return
dst	Jump
dst	Jump Conditional
DA	Jump Relative
DA	Jump Relative Conditional
—	Return
vector	Software Trap
	 p, bit, src, DA bit, src, DA dst, src, DA dst dst, src, RA dst dst dst DA DA

							Lo	ower Nil	oble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
0	1.2 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Op Code Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						
3	2.2 DEC R1	2.3 DEC IR1	2.3 SBC r1,r2	2.4 SBC r1,lr2	3.3 SBC R2,R1	3.4 SBC IR2,R1	3.3 SBC R1,IM	3.4 SBC IR1,IM	4.3 SBCX ER2,ER1	4.3 SBCX IM,ER1						
4	2.2 DA R1	2.3 DA IR1	2.3 OR r1,r2	2.4 OR r1,lr2	3.3 OR R2,R1	3.4 OR IR2,R1	3.3 OR R1,IM	3.4 OR IR1,IM	4.3 ORX ER2,ER1	4.3 ORX IM,ER1						
5	2.2 POP R1	2.3 POP IR1	2.3 AND r1,r2	2.4 AND r1,lr2	3.3 AND R2,R1	3.4 AND IR2,R1	3.3 AND R1,IM	3.4 AND IR1,IM	4.3 ANDX ER2,ER1	4.3 ANDX IM,ER1						1.2 WDT
6	2.2 COM R1	2.3 COM IR1	2.3 TCM r1,r2	2.4 TCM r1,lr2	3.3 TCM R2,R1	3.4 TCM IR2,R1	3.3 TCM R1,IM	3.4 TCM IR1,IM	4.3 TCMX ER2,ER1	4.3 TCMX IM,ER1						1.2 STOP
7	2.2 PUSH R2	2.3 PUSH IR2	2.3 TM r1,r2	2.4 TM r1,lr2	3.3 TM R2,R1	3.4 TM IR2,R1	3.3 TM R1,IM	3.4 TM IR1,IM	4.3 TMX ER2,ER1	4.3 TMX IM,ER1						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,lrr2	2.9 LDEI Ir1,Irr2	3.2 LDX r1,ER2	3.3 LDX Ir1,ER2	3.4 LDX IRR2,R1	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2 RL R1	2.3 RL IR1	2.5 LDE r2,Irr1	2.9 LDEI Ir2,Irr1	3.2 LDX r2,ER1	3.3 LDX Ir2,ER1	3.4 LDX R2,IRR1	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 El
А	2.5 INCW RR1	2.6 INCW IRR1	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
в	2.2 CLR R1	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						IRET
С	2.2 RRC R1	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI lr1,lrr2	2.3 JP IRR1	2.9 LDC lr1,lrr2		3.4 LD r1,r2,X	3.2 PUSHX ER2							1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI lr2,lrr1	2.6 CALL IRR1	2.2 BSWAP R1	DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
Е	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ p,b,r1,X	3.4 BTJ p,b,lr1,X			¥	↓	↓	↓	V	

Figure 58. First Op Code Map

Upper Nibble (Hex)

ilog Embedded in Life An∎IXYS Company

Ordering Information

Order your Z8 Encore! XP[®] F0822 Series products from Zilog using the part numbers shown in Table 129. For more information about ordering, please consult your local Zilog sales office. The <u>Sales Location page</u> on the Zilog website lists all regional offices.

Table 125. 20 Encore: AT 1 0000 Certes of defining matrix										
Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	l²C	SPI	UARTs with IrDA	Description
Z8F08xx with 8KB Flas		-	to-Di	gital	Conv	/erte	r			
Standard Temperature										
Z8F0821HH020SG	8KB	1KB	11	16	2	2	1	0	1	SSOP 20-pin package
Z8F0821PH020SG	8KB	1KB	11	16	2	2	1	0	1	PDIP 20-pin package
Z8F0822SJ020SG	8KB	1KB	19	19	2	5	1	1	1	SOIC 28-pin package
Z8F0822PJ020SG	8KB	1KB	19	19	2	5	1	1	1	PDIP 28-pin package
Extended Temperature	e: –40° to +	-105°C								
Z8F0821HH020EG	8KB	1KB	11	16	2	2	1	0	1	SSOP 20-pin package
Z8F0821PH020EG	8KB	1KB	11	16	2	2	1	0	1	PDIP 20-pin package
Z8F0822SJ020EG	8KB	1KB	19	19	2	5	1	1	1	SOIC 28-pin package
Z8F0822PJ020EG	8KB	1KB	19	19	2	5	1	1	1	PDIP 28-pin package
Z8F08xx with 8KB Flas	sh									
Standard Temperature: (0°C to 70°C)								
Z8F0811HH020SG	8KB	1KB	11	16	2	0	1	0	1	SSOP 20-pin package
Z8F0811PH020SG	8KB	1KB	11	16	2	0	1	0	1	PDIP 20-pin package
Z8F0812SJ020SG	8KB	1KB	19	19	2	0	1	1	1	SOIC 28-pin package
Z8F0812PJ020SG	8KB	1KB	19	19	2	0	1	1	1	PDIP 28-pin package
Extended Temperature	e: -40°C to	+105°C	;							
Z8F0811HH020EG	8KB	1KB	11	16	2	0	1	0	1	SSOP 20-pin package
Z8F0811PH020EG	8KB	1KB	11	16	2	0	1	0	1	PDIP 20-pin package
Z8F0812SJ020EG	8KB	1KB	19	19	2	0	1	1	1	SOIC 28-pin package
Z8F0812PJ020EG	8KB	1KB	19	19	2	0	1	1	1	PDIP 28-pin package

Table 129. Z8 Encore! XP F0830 Series Ordering Matrix

PS022518-1011

Embedded in Life

^	^	•	
,		٠.	

Part Number	Flash	RAM	I/O Lines	Interrupts	16-Bit Timers w/PWM	10-Bit A/D Channels	I ² C	SPI	UARTs with IrDA	Description	
Z8F04xx with 4KB Flash, 10-Bit Analog-to-Digital Converter											
Standard Temperature:								-		0000000	
Z8F0421HH020SG	4KB	1KB	11	16	2	2	1	0	1	SSOP 20-pin package	
Z8F0421PH020SG	4KB	1KB	11	16	2	2	1	0	1	PDIP 20-pin package	
Z8F0422SJ020SG	4KB	1KB	19	19	2	5	1	1	1	SOIC 28-pin package	
Z8F0422PJ020SG	4KB	1KB	19	19	2	5	1	1	1	PDIP 28-pin package	
Extended Temperature:	–40°C to										
Z8F0421HH020EG	4KB	1KB	11	16	2	2	1	0	1	SSOP 20-pin package	
Z8F0421PH020EG	4KB	1KB	11	16	2	2	1	0	1	PDIP 20-pin package	
Z8F0422SJ020EG	4KB	1KB	19	19	2	5	1	1	1	SOIC 28-pin package	
Z8F0422PJ020EG	4KB	1KB	19	19	2	5	1	1	1	PDIP 28-pin package	
Z8F04xx with 4KB Flash	1										
Standard Temperature:	0°C to 70)°C									
Z8F0411HH020SG	4KB	1KB	11	16	2	0	1	0	1	SSOP 20-pin package	
Z8F0411PH020SG	4KB	1KB	11	16	2	0	1	0	1	PDIP 20-pin package	
Z8F0412SJ020SG	4KB	1KB	19	19	2	0	1	1	1	SOIC 28-pin package	
Z8F0412PJ020SG	4KB	1KB	19	19	2	0	1	1	1	PDIP 28-pin package	
Extended Temperature:	–40°C to	105°C									
Z8F0411HH020EG	4KB	1KB	11	16	2	0	1	0	1	SSOP 20-pin package	
Z8F0411PH020EG	4KB	1KB	11	16	2	0	1	0	1	PDIP 20-pin package	
Z8F0412SJ020EG	4KB	1KB	19	19	2	0	1	1	1	SOIC 28-pin package	
Z8F0412PJ020EG	4KB	1KB	19	19	2	0	1	1	1	PDIP 28-pin package	
Z8F08200100KITG	Development Kit (20- and 28-pin)										
ZUSBSC00100ZACG	USB Smart Cable Accessory Kit										
ZUSBOPTSC01ZACG	Opto-Isolated USB Smart Cable Accessory Kit										

Table 129. Z8 Encore! XP F0830 Series Ordering Matrix

Visit the Zilog website at <u>http://www.zilog.com</u> for ordering information about Z8 Encore! XP[®] F0822 Series development tools and accessories.

249

condition code 201 continuous conversion (ADC) 138 continuous mode 68 control register definition, UART 88 control register, I2C 131 counter modes 68 CP 204 CPC 204 CPCX 204 CPU and peripheral overview 4 CPU control instructions 206 CPX 204 Customer Feedback Form 258 customer feedback form 224 Customer Information 258

D

DA 201, 204 data register, I2C 129 DC characteristics 178 debugger, on-chip 158 **DEC 204** decimal adjust 204 decrement 204 and jump non-zero 207 word 204 **DECW 204** destination operand 202 device, port availability 29 DI 206 direct address 201 disable interrupts 206 **DINZ 207** DMA controller 5 dst 202

Ε

EI 206 electrical characteristics 176 ADC 190 flash memory and timing 187 GPIO input data sample timing 191 watch-dog timer 188 enable interrupt 206 ER 201 extended addressing register 201 external pin reset 24 external RC oscillator electrical characteristics 187 eZ8 CPU features 4 eZ8 CPU instruction classes 204 eZ8 CPU instruction notation 201 eZ8 CPU instruction set 199 eZ8 CPU instruction summary 208

F

FCTL register 150, 246 features, Z8 Encore! 1 first opcode map 219 FLAGS 202 flags register 202 flash controller 4 option bit address space 155 option bit configuration - reset 155 program memory address 0001H 157 flash memory arrangement 144 byte programming 147 code protection 146 control register definitions 149 controller bypass 148 electrical characteristics and timing 187 flash control register 150, 246 flash status register 151 frequency high and low byte registers 153 mass erase 148 operation 145 operation timing 145 page erase 148 page select register 152 FPS register 152 FSTAT register 151