

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	19
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0812sj020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Breakpoints
On-Chip Debugger Commands
OCD Control Register 169
OCD Status Register
On-Chip Oscillator
Operating Modes
Crystal Oscillator Operation 172
Oscillator Operation with an External RC Network 174
Electrical Characteristics 176
Absolute Maximum Ratings 176
DC Characteristics
AC Characteristics
On-Chip Peripheral AC and DC Electrical Characteristics
General Purpose I/O Port Input Data Sample Timing
On-Chin Debugger Timing 193
SPI MASTER Mode Timing
SPI SLAVE Mode Timing 195
I2C Timing
UART Timing 197
eZ8 CPU Instruction Set 199
Assembly Language Programming Introduction
Assembly Language Syntax 200
eZ8 CPU Instruction Notation
Condition Codes
eZ8 CPU Instruction Classes
Elege Degister 217
Fridgs Register 217 On Code Mans 218
Deckasing 221
Ordering Information
Part Number Sulfix Designations
Timer () Control Registers 225
UART Control Registers 220
I2C Control Registers
SPI Control Registers
Analog-to-Digital Converter Control Registers

ix

ilog Embedded in Life

2

 0°C to +70°C standard temperature and -40°C to +105°C extended temperature operating ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Z8 Encore! $XP^{\textcircled{B}}$ F0822 Series.

				16-bit Timers					Package Pin Counts	
Part Number	Flash (KB)	RAM (KB)	I/O	with PWM	ADC Inputs	UARTs with IrDA	I ² C	SPI	20	28
Z8F0822	8	1	19	2	5	1	1	1		Х
Z8F0821	8	1	11	2	2	1	1		Х	
Z8F0812	8	1	19	2	0	1	1	1		Х
Z8F0811	8	1	11	2	0	1	1		Х	
Z8F0422	4	1	19	2	5	1	1	1		Х
Z8F0421	4	1	11	2	2	1	1		Х	
Z8F0412	4	1	19	2	0	1	1	1		Х
Z8F0411	4	1	11	2	0	1	1		Х	

Table 1. Z8 Encore! XP[®] F0822 Series Part Selection Guide

Operation

The SPI is a full-duplex, synchronous, and character-oriented channel that supports a fourwire interface (serial clock, transmit, receive and Slave select). The SPI block consists of a transmit/receive shift register, a Baud Rate (clock) Generator and a control unit.

During an SPI transfer, data is sent and received simultaneously by both the Master and the Slave SPI devices. Separate signals are required for data and the serial clock. When an SPI transfer occurs, a multibit (typically 8-bit) character is shifted out one data pin and an multibit character is simultaneously shifted in on a second data pin. An 8-bit shift register in the Master and another 8-bit shift register in the Slave are connected as a circular buffer. The SPI Shift Register is single-buffered in the transmit and receive directions. New data to be transmitted cannot be written into the shift register until the previous transmission is complete and receive data (if valid) has been read.

SPI Signals

The four basic SPI signals are:

- MISO (Master-In, Slave-Out)
- MOSI (Master-Out, Slave-In)
- SCK (Serial Clock)
- \overline{SS} (Slave Select)

The following sections discuss these SPI signals. Each signal is described in both Master and Slave modes.

Master-In/Slave-Out

The Master-In/Slave-Out (MISO) pin is configured as an input in a Master device and as an output in a Slave device. It is one of the two lines that transfer serial data, with the most significant bit sent first. The MISO pin of a Slave device is placed in a high-impedance state if the Slave is not selected. When the SPI is not enabled, this signal is in a highimpedance state.

Master-Out/Slave-In

The Master-Out/Slave-In (MOSI) pin is configured as an output in a Master device and as an input in a Slave device. It is one of the two lines that transfer serial data, with the most significant bit sent first. When the SPI is not enabled, this signal is in a high-impedance state.

SPI Control Register Definitions

This section defines the features of the following Serial Peripheral Interface registers.

SPI Data Register: see page 109

SPI Control Register: see page 110

SPI Status Register: see page 111

SPI Mode Register: see page 112

SPI Diagnostic State Register: see page 113

SPI Baud Rate High and Low Byte Registers: see page 114

SPI Data Register

The SPI Data Register, shown in Table 64, stores both the outgoing (transmit) data and the incoming (receive) data. Reads from the SPI Data Register always return the current contents of the 8-bit Shift Register. Data is shifted out starting with bit 7. The last bit received resides in bit position 0.

With the SPI configured as a Master, writing a data byte to this register initiates the data transmission. With the SPI configured as a Slave, writing a data byte to this register loads the shift register in preparation for the next data transfer with the external Master. In either the Master or Slave modes, if a transmission is already in progress, writes to this register are ignored and the Overrun error flag, OVR, is set in the SPI Status Register.

When the character length is less than 8 bits (as set by the NUMBITS field in the SPI Mode Register), the transmit character must be set as *left-justified* in the SPI Data Register. A received character of less than 8 bits is right justified (last bit received is in bit position 0). For example, if the SPI is configured for 4-bit characters, the transmit characters must be written to SPIDATA[7:4] and the received characters are read from SPI-DATA[3:0].

Bit	7	6	5	4	3	2	1	0
Field		DATA						
RESET		Х						
R/W	R/W							
Address	F60H							

Table	64	SPI	Data	Register	(SPIDATA)
Table	0 4 .	011	Data	Register	

Bit	Description
[7:0]	SPI Data
DATA	Transmit and/or receive data.

ILO O Embedded in Life IXYS Company 133

Table 75. I²C Baud Rate Low Byte Register (I2CBRL)

Bit	7	6	5	4	3	2	1	0	
Field		BRL							
RESET		FFH							
R/W	R/W								
Address	F54H								

Bit	Description
[7:0]	I ² C Baud Rate Low Byte
BRL	Least significant byte, BRG[7:0], of the I ² C Baud Rate Generator's reload value.

Note: If the DIAG bit in the I^2C Diagnostic Control Register is set to 1, a read of the I2CBRL Register returns the current value of the I^2C Baud Rate Counter [7:0].

I²C Diagnostic State Register

The I²C Diagnostic State Register, shown in Table 76, provides observability into the internal state. This register is read-only; it is used for I²C diagnostics and manufacturing test purposes.

Bit	7	6	5	4	3	2	1	0	
Field	SCLIN	SDAIN	STPCNT	TXRXSTATE					
RESET	Х								
R/W		R							
Address	F55H								

Table 76. I²C Diagnostic State Register (I2CDST)

Bit	Description
[7]	Serial Clock Input
SCLIN	Value of the Serial Clock input signal.
[6]	Serial Data Input
SDAIN	Value of the Serial Data input signal.
[5]	Stop Count
STPCNT	Value of the internal Stop Count control signal.

ilog^{*} Embedded in Life An TIXYS Company 135

I²C Diagnostic Control Register

The I²C Diagnostic Register, shown in Table 77, provides control over diagnostic modes. This register is a read/write register used for I²C diagnostics.

Table 77. I²C Diagnostic Control Register (I2CDIAG)

Bit	7	6	5	4	3	2	1	0	
Field		Reserved							
RESET		0							
R/W		R							
Address	F56H								
Bit	Descriptio	n							
[7:1]	Reserved								

[1.1]	These bits are reserved and must be programmed to 0000000.
[0]	Diagnostic Control Bit
DIAG	Selects the read-back value of the Baud Rate Reload registers.
	0 = Normal Mode. Reading the Baud Rate High and Low Byte registers returns the baud rate reload value.
	 Diagnostic Mode. Reading the Baud Rate High and Low Byte registers returns the baud rate counter value.

145

Table 83. Z8 Encore! XP[®] F0822 Series Information Area Map

Flash Memory Address (Hex)	Function
FE00H–FE3FH	Reserved
FE40H–FE53H	Part Number 20-character ASCII alphanumeric code Left-justified and filled with zeros
FE54H–FFFFH	Reserved

Operation

The Flash Controller provides the proper signals and timing for the Byte Programming, Page Erase, and Mass Erase functions within Flash memory. The Flash Controller contains a protection mechanism, using the Flash Control Register (FCTL), to prevent accidental programming or erasure. The following subsections provide details about the various operations (Lock, Unlock, Sector Protect, Byte Programming, Page Erase and Mass Erase).

Timing Using the Flash Frequency Registers

Before performing a program or erase operation in Flash memory, you must first configure the Flash Frequency High and Low Byte registers. The Flash Frequency registers allow programming and erasure of Flash memory with system clock frequencies ranging from 20kHz through 20MHz (the valid range is limited to the device operating frequencies).

The Flash Frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control timing for Flash program and erase operations. The 16-bit Flash Frequency value must contain the system clock frequency in kHz. This value is calculated using the following equation:

FFREQ[15:0] = System Clock Frequency (Hz) 1000

Caution: Flash programming and erasure are not supported for system clock frequencies below 20kHz, above 20MHz, or outside of the device operating frequency range. The Flash Frequency High and Low Byte registers must be loaded with the correct value to ensure proper Flash programming and erase operations.

ilog Embedded in Life An TIXYS Company 146

Flash Read Protection

The user code contained within Flash memory can be protected from external access. Programming the Flash Read Protect option bit prevents reading of user code by the OCD or by using the Flash Controller Bypass mode. For more information, see the <u>Option Bits</u> chapter on page 155 and the <u>On-Chip Debugger</u> chapter on page 158.

Flash Write/Erase Protection

Z8 Encore! XP[®] F0822 Series provides several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by the Flash Controller unlock mechanism, the Flash Sector Protect Register, and the Flash Write Protect option bit.

Flash Controller Unlock Mechanism

At Reset, the Flash Controller locks to prevent accidental program or erasure of Flash memory. To program or erase Flash memory, the Flash Controller must be unlocked. After unlocking the Flash Controller, the Flash can be programmed or erased. Any value written by user code to the Flash Control Register or Page Select Register out of sequence locks the Flash Controller.

Observe the following procedure to unlock the Flash Controller from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write the page to be programmed or erased to the Page Select Register.
- 3. Write the first unlock command 73H to the Flash Control Register.
- 4. Write the second unlock command 8CH to the Flash Control Register.
- 5. Rewrite the page written in <u>Step 2</u> to the Page Select Register.

Flash Sector Protection

The Flash Sector Protect Register is configured to prevent sectors from being programmed or erased. After a sector is protected, it cannot be unprotected by user code. The Flash Sector Protect Register is cleared after reset and any previously written protection values is lost. User code must write this register in the initialization routine if enable sector protection is appropriate.

The Flash Sector Protect Register shares its Register File address with the Page Select Register. The Flash Sector Protect Register is accessed by writing the Flash Control Register with 5EH. After the Flash Sector Protect Register is selected, it can be accessed at the Page Select Register address. When the user code writes the Flash Sector Protect Register, bits can only be set to 1. Sectors can be protected, but not unprotected, using register write operations. Writing a value other than 5EH to the Flash Control Register deselects the Flash Sector Protect Register and reenables access to the Page Select Register.

nbedded in Life

151

Flash Status Register

The Flash Status Register, shown in Table 85, indicates the current state of the Flash Controller. This register can be read at any time. The read-only Flash Status Register shares its Register File address with the write-only Flash Control Register.

Table 85. Flash Status Register (FSTAT)

Bit	7	6	5	4	3	2	1	0
Field	Rese	erved						
RESET	0							
R/W	R							
Address	FF8H							

Bit	Description
[7:6]	Reserved
	These bits are reserved and must be programmed to 00.
[5:0]	Flash Controller Status
FSTAT	00_0000 = Flash Controller locked.
	00_0001 = First unlock command received.
	00_0010 = Second unlock command received.
	00_0011 = Flash Controller unlocked.
	00_0100 = Flash Sector Protect Register selected.
	00_1xxx = Program operation in progress.
	01_0xxx = Page erase operation in progress.
	10_0xxx = Mass erase operation in progress.

ilog Embedded in Life An TIXYS Company 158

On-Chip Debugger

Z8 Encore! XP[®] F0822 Series products have an integrated On-Chip Debugger (OCD) that provides advanced debugging features, including:

- Reading and writing of the Register File
- Reading and (Flash version only) writing of Program and Data Memory
- Setting of breakpoints
- Executing eZ8 CPU instructions

Architecture

The OCD consists of four primary functional blocks: transmitter, receiver, autobaud generator, and debug controller. Figure 34 displays the architecture of the OCD.

Figure 34. On-Chip Debugger Block Diagram

Embedded in Life

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (Kbps)	Minimum Baud Rate (Kbps)
20.0	2500	39.1
1.0	125.0	1.96
0.032768 (32kHz)	4.096	0.064

Table 92. OCD Baud-Rate Limits

If the OCD receives a serial break (nine or more continuous bits Low) the Autobaud Detector/Generator resets. The Autobaud Detector/Generator can then be reconfigured by sending 80H.

OCD Serial Errors

The OCD can detect any of the following error conditions on the DBG pin:

- Serial break (a minimum of nine continuous bits Low)
- Framing error (received stop bit is Low)
- Transmit collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a serial break that is 4096 system clock cycles in duration to the host, and resets the Autobaud Detector/Generator. A framing error or transmit collision can be caused by the host sending a serial break to the OCD. Because of the open-drain nature of the interface, returning a serial break back to the host only extends the length of the serial break if the host releases the serial break early.

The host transmits a serial break on the DBG pin when first connecting to the Z8 Encore! $XP^{\textcircled{0}}$ F0822 Series device or when recovering from an error. A serial break from the host resets the Autobaud Generator/Detector but does not reset the OCD Control Register. A serial break leaves the device in DEBUG Mode if that is the current mode. The OCD is held in Reset until the end of the serial break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a serial break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution breakpoints are generated using the BRK instruction (Op Code 00H). When the eZ8 CPU decodes a BRK instruction, it signals the OCD. If breakpoints are enabled, the OCD idles the eZ8 CPU and enters DEBUG Mode. If breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as a NOP instruction.

Caution: The OCDCNTR Register is used by many of the OCD commands. It counts the number of bytes for the register and memory read/write commands. It holds the residual value when generating the CRC. Therefore, if the OCDCNTR is being used to generate a BRK, its value should be written as a last step before leaving DEBUG Mode.

Because this register is overwritten by various OCD commands, it should only be used to generate temporary breakpoints, such as stepping over CALL instructions or running to a specific instruction and stopping.

On-Chip Debugger Commands

The host communicates to the OCD by sending OCD commands using the DBG interface. During normal operation, only a subset of the OCD commands are available. In DEBUG Mode, all OCD commands become available unless the user code and control registers are protected by programming the Read Protect option bit (RP). This Read Protect option bit prevents the code in memory from being read out of the Z8 Encore! XP[®] F0822 Series products. When this option is enabled, several of the OCD commands are disabled. Table 93 contains a summary of the OCD commands. Each OCD command is described further in the bulleted list. It also lists the commands that operate when the device is not in DEBUG Mode (normal operation) and those commands that are disabled by programming the Read Protect option bit.

Debug Command	Command Byte	Enabled When Not in DEBUG Mode?	Disabled by Read Protect Option Bit
Read OCD Revision	00H	Yes	-
Write OCD Counter Register	01H	-	-
Read OCD Status Register	02H	Yes	-
Read OCD Counter Register	03H	-	-
Write OCD Control Register	04H	Yes	Cannot clear DBGMODE bit
Read OCD Control Register	05H	Yes	-
Write Program Counter	06H	-	Disabled
Read Program Counter	07H	-	Disabled
Write Register	08H	-	Only writes of the peripheral control reg- isters at address F00H–FFH are allowed. Additionally, only the Mass Erase com- mand is allowed to be written to the Flash Control Register.

Table 93. On-Chip Debugger Commands

167

Read Register (09H). The Read Register command reads data from the Register File. Data can be read 1-256 bytes at a time (256 bytes can be read by setting size to zero). Reading peripheral control registers through the OCD does not effect peripheral operation. For example, register bits that are normally cleared upon a read operation will not be affected (the WDTSTAT Register is affected by the OCD Read Register operation). If the device is not in DEBUG Mode or if the Read Protect option bit is enabled, this command returns FFH for all of the data values.

```
DBG \leftarrow 09H
DBG \leftarrow {4'h0,Register Address[11:8]
DBG \leftarrow Register Address[7:0]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-256 data bytes
```

Write Program Memory (0AH). The Write Program Memory command writes data to Program memory. This command is equivalent to the LDC and LDCI instructions. Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size to zero). The on-chip Flash Controller must be written to and unlocked for the programming operation to occur. If the Flash Controller is not unlocked, the data is discarded. If the device is not in DEBUG Mode or if the Read Protect option bit is enabled, the data is discarded.

```
DBG ← 0AH

DBG ← Program Memory Address[15:8]

DBG ← Program Memory Address[7:0]

DBG ← Size[15:8]

DBG ← Size[7:0]

DBG ← 1-65536 data bytes
```

Read Program Memory (0BH). The Read Program Memory command reads data from Program memory. This command is equivalent to the LDC and LDCI instructions. Data can be read 1-65536 bytes at a time (65536 bytes can be read by setting size to zero). If the device is not in DEBUG Mode or if the Read Protect option bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH

DBG \leftarrow Program Memory Address[15:8]

DBG \leftarrow Program Memory Address[7:0]

DBG \leftarrow Size[15:8]

DBG \leftarrow Size[7:0]

DBG \rightarrow 1-65536 data bytes
```

(Flash version only) Write Data Memory (0CH). The Write Data Memory command writes data to Data Memory. This command is equivalent to the LDE and LDEI instructions. Data can be written 1-65536 bytes at a time (65536 bytes can be written by setting size to 0). If the device is not in DEBUG Mode or if the Read Protect option bit is enabled, the data is discarded.

```
DBG ← 0CH
DBG ← Data Memory Address[15:8]
DBG ← Data Memory Address[7:0]
DBG ← Size[15:8]
```


Figure 38. Recommended 20MHz Crystal Oscillator Configuration

Table 96. Recommended Crys	tal Oscillator Specifications	(20MHz Operation)
----------------------------	-------------------------------	-------------------

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	25	Ω	Maximum
Load Capacitance (CL)	20	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

186

ilog[®]

On-Chip Peripheral AC and DC Electrical Characteristics

Table 100 provides information about the Power-On Reset and Voltage Brown-Out electrical characteristics.

Table	100.	Power-C)n R	eset and	Vo	Itage	Brown-0	Dut	Electrical	Characte	ristics and	Timing
-------	------	---------	------	----------	----	-------	---------	-----	------------	----------	-------------	--------

		T _A =	–40°C to 1	05°C		
Symbol	Parameter	Minimum	Typical*	Maximum	Units	Conditions
V _{POR}	Power-On Reset Voltage Threshold	2.15	2.40	2.60	V	$V_{DD} = V_{POR}$
V _{VBO}	Voltage Brown-Out Reset Voltage Threshold	2.05	2.30	2.55	V	$V_{DD} = V_{VBO}$
	V _{POR} to V _{VBO} hys- teresis	50	100	_	mV	
	Starting V _{DD} voltage to ensure valid POR	-	V_{SS}	_	V	
T _{ANA}	POR Analog Delay	_	50	_	μs	V _{DD} > V _{POR} ; T _{POR} Digital Reset delay follows T _{ANA}
T _{POR}	POR Digital Delay	-	5.0	_	ms	50 WDT Oscillator cycles (10kHz) + 16 System Clock cycles (20MHz)
T _{VBO}	Voltage Brown-Out Pulse Rejection Period	-	10	_	μs	V _{DD} < V _{VBO} to generate a Reset.
T _{RAMP}	Time for VDD to transition from V_{SS} to V_{POR} to ensure valid Reset	0.10	-	100	ms	
Note: *Da gui	ata in the typical column is dance only and are not te	s from charac	terization at ction.	3.3 V and 25°	C. These	e values are provided for design

205

Table 119. Arithmetic Instructions (Continued)

Mnemonic	Operands	Instruction
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using Extended Addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using Extended Addressing

Table 120. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	_	Complement Carry Flag
RCF	_	Reset Carry Flag
SCF	_	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
TCMX	dst, src	Test Complement Under Mask using Extended Addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using Extended Addressing

Table 121. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load Constant to/from Program memory and Auto- Increment Addresses
LDEI	dst, src	Load External Data to/from Data Memory and Auto- Increment Addresses

Figure 59. Second Op Code Map after 1FH

Hex Address: F0F

Table 145. Timer 0–1 Control Registers (TxCTL)

Bit	7	6	5	4	3	2	1	0			
Field	TEN	TPOL		PRES		TMODE					
RESET		0									
R/W		R/W									
Address				F07H,	F0FH						

Hex Addresses: F10–F3F

This address range is reserved.

UART Control Registers

For more information about the UART registers, see the <u>UART Control Register Defini-</u> tions section on page 88.

Hex Address: F40

Bit	7	6	5	4	3	2	1	0			
Field		TXD									
RESET	Х	Х	Х	Х	Х	Х	Х	Х			
R/W	W	W	W	W	W	W	W	W			
Address				F4	он						

Table 146. UART Transmit Data Register (U0TXD)

Table 147. UART Receive Data Register (U0RXD)

Bit	7	6	5	4	3	2	1	0			
Field	RXD										
RESET		Х									
R/W		R									
Address				F4	0H						

Hex Address: F41

Table 148. UART Status 0 Register (U0STAT0)

Bit	7	6	5	4	3	2	1	0		
Field	RDA	PE	OE	FE	BRKD	TDRE	TXE	CTS		
RESET			0		Х					
R/W		R								
Address		F41H								

Hex Address: F42

Table 149. UART Control 0 Register (U0CTL0)

Bit	7	6	5	4	3	2	1	0				
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN				
RESET		0										
R/W		R/W										
Address				F4	2H							

Hex Address: F43

Table 150. UART Control 1 Register (U0CTL1)

Bit	7	6	5	4	3	2	1	0			
Field	MPMD[1]	MPEN	MPMD[0]	MPBT	DEPOL	BRGCTL	RDAIRQ	IREN			
RESET		0									
R/W		R/W									
Address				F4	3H						

Hex Address: F44

Table 151. UART Status 1 Register (U0STAT1)

Bit	7	6	5	4	3	2	1	0		
Field	Reserved NEWFRM MP									
RESET	0									
R/W	R R/W R							र		
Address	F44H									

Z8 Encore! XP	[®] F0822 Series
Produc	t Specification

236

Hex Address: F63

Table 165. SPI Mode Register (SPIMODE)

Bit	7	6	5	4	3	2	1	0			
Field	Reserved DIAG				IUMBITS[2:0	SSIO	SSV				
RESET		0									
R/W	F	२	R/W								
Address				F6	3H						

Hex Address: F64

Table 166. SPI Diagnostic State Register (SPIDST)

Bit	7	6	5	4	3	2	1	0				
Field	SCKEN	TCKEN		SPISTATE								
RESET		0										
R/W		R										
Address		F64H										

Hex Address: F65

This address is reserved.

Hex Address: F66

Table 167. SPI Baud Rate High Byte Register (SPIBRH)

Bit	7	6	5	4	3	2	1	0			
Field		BRH									
RESET	1										
R/W		R/W									
Address				F6	6H						